1
|
Tseilikman VE, Tseilikman OB, Shevyrin VA, Yegorov ON, Epitashvili AA, Aristov MR, Karpenko MN, Lipatov IA, Pashkov AA, Shamshurin MV, Buksha IA, Shonina AK, Kolesnikova A, Shatilov VA, Zhukov MS, Novak J. Unraveling the Liver-Brain Axis: Resveratrol's Modulation of Key Enzymes in Stress-Related Anxiety. Biomedicines 2024; 12:2063. [PMID: 39335576 PMCID: PMC11428544 DOI: 10.3390/biomedicines12092063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/31/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Stress-related anxiety disorders and anxiety-like behavior in post-traumatic stress disorder (PTSD) are associated with altered neurocircuitry pathways, neurotransmitter systems, and the activities of monoamine and glucocorticoid-metabolizing enzymes. Resveratrol, a natural polyphenol, is recognized for its antioxidant, anti-inflammatory, and antipsychiatric properties. Previous studies suggest that resveratrol reduces anxiety-like behavior in animal PTSD models by downregulating key enzymes such as 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD-1) and monoamine oxidases (MAOs). However, the underlying mechanisms remain unclear. In this study, we explored the efficacy of resveratrol in treating stress-induced anxiety using a chronic predator stress model in rats. Resveratrol was administered intraperitoneally at 100 mg/kg following a 10-day stress exposure, and anxiety behavior was assessed with an elevated plus maze. Our results indicated that stress-related anxiety correlated with increased activities of brain MAO-A, MAO-B, and hepatic 11β-HSD-1, alongside elevated oxidative stress markers in the brain and liver. Resveratrol treatment improved anxiety behavior and decreased enzyme activities, oxidative stress, and hepatic damage. We demonstrate that resveratrol exerts antianxiogenic effects by modulating glucocorticoid and monoamine metabolism in the brain and liver. These findings suggest resveratrol's potential as a therapeutic agent for anxiety disorders, warranting further clinical investigation.
Collapse
Affiliation(s)
- Vadim E. Tseilikman
- Scientific and Educational Center ‘Biomedical Technologies’, School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia
- Zelman Institute of Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia
| | - Olga B. Tseilikman
- Scientific and Educational Center ‘Biomedical Technologies’, School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia
| | - Vadim A. Shevyrin
- Research, Educational and Innovative Center of Chemical and Pharmaceutical Technologies Chemical Technology Institute, Ural Federal University Named after the First President of Russia B.N. Yeltsin, 620002 Ekaterinburg, Russia
| | - Oleg N. Yegorov
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia
| | | | - Maxim R. Aristov
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia
| | - Marina N. Karpenko
- Pavlov Department of Physiology, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia
| | - Ilya A. Lipatov
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia
| | - Anton A. Pashkov
- Federal Neurosurgical Center, 630048 Novosibirsk, Russia
- Department of Data Collection and Processing Systems, Novosibirsk State Technical University, 630048 Novosibirsk, Russia
| | - Maxim V. Shamshurin
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia
| | - Irina A. Buksha
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia
| | - Anna K. Shonina
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia
| | - Alexandra Kolesnikova
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia
| | - Vladislav A. Shatilov
- Scientific and Educational Center ‘Biomedical Technologies’, School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia
| | - Maxim S. Zhukov
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia
| | - Jurica Novak
- Center for Artificial Intelligence and Cybersecurity, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
2
|
Barbagallo F, Bosoni D, Perone V, Cucinella L, Dealberti D, Cannarella R, Calogero AE, Nappi RE. Gene-environment interaction in functional hypothalamic amenorrhea. Front Endocrinol (Lausanne) 2024; 15:1423898. [PMID: 39268244 PMCID: PMC11390525 DOI: 10.3389/fendo.2024.1423898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
Functional hypothalamic amenorrhea (FHA) is a common cause of amenorrhea and chronic anovulation in adolescent girls and young women, diagnosed after excluding other organic causes. It is commonly associated with calorie restriction, excessive physical exercise, and psychosocial stress. These stressors alter the pulsatile secretion of gonadotropin-releasing hormone, leading to a chronic condition of hypoestrogenism and significant health consequences. Recent evidence has highlighted a genetic predisposition to FHA that could explain interindividual variability in stress response. Indeed, not all women experience FHA in response to stress. Rare variants in genes associated with idiopathic hypogonadotropic hypogonadism have been identified in women with FHA, suggesting that these mutations may contribute to an increased susceptibility of women to the trigger of stress exposure. FHA appears today as a complex disease resulting from the combination of genetic predisposition, environmental factors, and epigenetic changes. Furthermore, the genetic background of FHA allows for the hypothesis of a male counterpart. Despite the paucity of data, preliminary findings indicate that an equivalent condition of FHA exists in men, warranting further investigation. This narrative review aims to summarize the recent genetic evidence contributing to the pathophysiology of FHA and to raise awareness on a possible male counterpart.
Collapse
Affiliation(s)
- Federica Barbagallo
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - David Bosoni
- Department of Obstetrics and Gynecology, Azienda Ospedaliera Nazionale SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Valeria Perone
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Research Center for Reproductive Medicine, Gynecological Endocrinology and Menopause, IRCCS San Matteo Foundation, Pavia, Italy
| | - Laura Cucinella
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Research Center for Reproductive Medicine, Gynecological Endocrinology and Menopause, IRCCS San Matteo Foundation, Pavia, Italy
| | - Davide Dealberti
- Department of Obstetrics and Gynecology, Azienda Ospedaliera Nazionale SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rossella E Nappi
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Research Center for Reproductive Medicine, Gynecological Endocrinology and Menopause, IRCCS San Matteo Foundation, Pavia, Italy
| |
Collapse
|
3
|
Yuan M, Yang B, Rothschild G, Mann JJ, Sanford LD, Tang X, Huang C, Wang C, Zhang W. Epigenetic regulation in major depression and other stress-related disorders: molecular mechanisms, clinical relevance and therapeutic potential. Signal Transduct Target Ther 2023; 8:309. [PMID: 37644009 PMCID: PMC10465587 DOI: 10.1038/s41392-023-01519-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/14/2023] [Accepted: 05/31/2023] [Indexed: 08/31/2023] Open
Abstract
Major depressive disorder (MDD) is a chronic, generally episodic and debilitating disease that affects an estimated 300 million people worldwide, but its pathogenesis is poorly understood. The heritability estimate of MDD is 30-40%, suggesting that genetics alone do not account for most of the risk of major depression. Another factor known to associate with MDD involves environmental stressors such as childhood adversity and recent life stress. Recent studies have emerged to show that the biological impact of environmental factors in MDD and other stress-related disorders is mediated by a variety of epigenetic modifications. These epigenetic modification alterations contribute to abnormal neuroendocrine responses, neuroplasticity impairment, neurotransmission and neuroglia dysfunction, which are involved in the pathophysiology of MDD. Furthermore, epigenetic marks have been associated with the diagnosis and treatment of MDD. The evaluation of epigenetic modifications holds promise for further understanding of the heterogeneous etiology and complex phenotypes of MDD, and may identify new therapeutic targets. Here, we review preclinical and clinical epigenetic findings, including DNA methylation, histone modification, noncoding RNA, RNA modification, and chromatin remodeling factor in MDD. In addition, we elaborate on the contribution of these epigenetic mechanisms to the pathological trait variability in depression and discuss how such mechanisms can be exploited for therapeutic purposes.
Collapse
Affiliation(s)
- Minlan Yuan
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Biao Yang
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Gerson Rothschild
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - J John Mann
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, NY, 10032, USA
- Department of Radiology, Columbia University, New York, NY, 10032, USA
| | - Larry D Sanford
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Xiangdong Tang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Canhua Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chuang Wang
- Department of Pharmacology, and Provincial Key Laboratory of Pathophysiology in School of Medicine, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Wei Zhang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Medical Big Data Center, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Fauser AM, Stidham E, Cady C, Gupta A. Role of microRNA-132 in Opioid Addiction through Modification of Neural Stem Cell Differentiation. J Pers Med 2022; 12:jpm12111800. [PMID: 36579528 PMCID: PMC9696313 DOI: 10.3390/jpm12111800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
In this editorial, we focused on the article, "MicroRNA-132 in the Adult Dentate Gyrus is Involved in Opioid Addiction Via Modifying the Differentiation of Neural Stem Cells" by Jia and colleagues [...].
Collapse
Affiliation(s)
- Anne-Marie Fauser
- Bohlander Stem Cell Research Laboratory, Biology Department, Bradley University, Peoria, IL 61625, USA
| | - Emily Stidham
- Bohlander Stem Cell Research Laboratory, Biology Department, Bradley University, Peoria, IL 61625, USA
| | - Craig Cady
- Bohlander Stem Cell Research Laboratory, Biology Department, Bradley University, Peoria, IL 61625, USA
| | - Ashim Gupta
- Regenerative Orthopaedics, Noida 201301, India
- Future Biologics, Lawrenceville, GA 30043, USA
- South Texas Orthopaedic Research Institute (STORI Inc.), Laredo, TX 78045, USA
- Correspondence:
| |
Collapse
|
5
|
Hong SW, Teesdale-Spittle P, Page R, Ellenbroek B, Truman P. Biologically Active Compounds Present in Tobacco Smoke: Potential Interactions Between Smoking and Mental Health. Front Neurosci 2022; 16:885489. [PMID: 35557609 PMCID: PMC9087043 DOI: 10.3389/fnins.2022.885489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/28/2022] [Indexed: 12/01/2022] Open
Abstract
Tobacco dependence remains one of the major preventable causes of premature morbidity and mortality worldwide. There are well over 8,000 compounds present in tobacco and tobacco smoke, but we do not know what effect, if any, many of them have on smokers. Major interest has been on nicotine, as well as on toxic and carcinogenic effects and several major and minor components of tobacco smoke responsible for the negative health effects of smoking have been elucidated. Smokers themselves report a variety of positive effects from smoking, including effects on depression, anxiety and mental acuity. Smoking has also been shown to have protective effects in Parkinson’s Disease. Are the subjective reports of a positive effect of smoking due to nicotine, of some other components of tobacco smoke, or are they a manifestation of the relief from nicotine withdrawal symptoms that smoking provides? This mini-review summarises what is currently known about the components of tobacco smoke with potential to have positive effects on smokers.
Collapse
Affiliation(s)
- Sa Weon Hong
- School of Health Sciences, Massey University, Wellington, New Zealand
| | - Paul Teesdale-Spittle
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Rachel Page
- School of Health Sciences, Massey University, Wellington, New Zealand
| | - Bart Ellenbroek
- Department of Psychology, Victoria University of Wellington, Wellington, New Zealand
| | - Penelope Truman
- School of Health Sciences, Massey University, Wellington, New Zealand
| |
Collapse
|
6
|
Restraint Stress in Mice Alters Set of 25 miRNAs Which Regulate Stress- and Depression-Related mRNAs. Int J Mol Sci 2020; 21:ijms21249469. [PMID: 33322800 PMCID: PMC7763317 DOI: 10.3390/ijms21249469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
In the present study, we aim to identify the effect of restrain stress (RS) on the expression of miRNAs in mouse serum. We used three genotypes of animals (mice with knock-out of the gene-encoding norepinephrine transporter, NET-KO; C57BL/6J, and SWR/J) which had previously been shown to display different sensitivity to RS, and focused on miRNAs which were altered by RS in the serum of all three genotypes. An analysis of miRNAs expression allowed for the identification of a set of 25 differentially expressed miRNAs; 10 were down-regulated compared to an appropriate control group of animals, while 15 were up-regulated. The application of DIANA-miRPath v. 3.0 allowed for the identification of selected pathways (KEGG) and Gene Ontology (GO) categories that were significantly controlled by these miRNAs, while miRWalk v. 3.0-the platform that used the machine learning based algorithm, TaRPmiR-was used to find their targets. The results indicate that 25 miRNAs, identified as altered upon RS in three genotypes of mice, are responsible for regulation of mRNA-encoding proteins that are key for the main hypotheses of depression; therefore, they may help to understand the link between stress and depression at the molecular level.
Collapse
|
7
|
Luan D, Zhao MG, Shi YC, Li L, Cao YJ, Feng HX, Zhang ZJ. Mechanisms of repetitive transcranial magnetic stimulation for anti-depression: Evidence from preclinical studies. World J Psychiatry 2020; 10:223-233. [PMID: 33134113 PMCID: PMC7582130 DOI: 10.5498/wjp.v10.i10.223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/11/2020] [Accepted: 09/02/2020] [Indexed: 02/05/2023] Open
Abstract
This review summarizes the anti-depressant mechanisms of repetitive transcranial magnetic stimulation in preclinical studies, including anti-inflammatory effects mediated by activation of nuclear factor-E2-related factor 2 signaling pathway, anti-oxidative stress effects, enhancement of synaptic plasticity and neurogenesis via activation of the endocannabinoid system and brain derived neurotrophic factor signaling pathway, increasing the content of monoamine neurotransmitters via inhibition of Sirtuin 1/monoamine oxidase A signaling pathway, and reducing the activity of the hypothalamic-pituitary-adrenocortical axis. We also discuss the shortcomings of transcranial magnetic stimulation in preclinical studies such as inaccurate positioning, shallow depth of stimulation, and difficulty in elucidating the neural circuit mechanism up- and down-stream of the stimulation target brain region.
Collapse
Affiliation(s)
- Di Luan
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Ming-Ge Zhao
- Department of Nursing, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Ya-Chen Shi
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Ling Li
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Yu-Jia Cao
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Hai-Xia Feng
- Department of Nursing, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Zhi-Jun Zhang
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- Department of Psychology, Xinxiang Medical University, Xinxiang 453003, Henan Province, China
- Mental Health Center, Zhejiang University School of Medicine, Hangzhou 310013, Zhejiang province, China
| |
Collapse
|
8
|
Pascale E, Divisato G, Palladino R, Auriemma M, Ngalya EF, Caiazzo M. Noncoding RNAs and Midbrain DA Neurons: Novel Molecular Mechanisms and Therapeutic Targets in Health and Disease. Biomolecules 2020; 10:E1269. [PMID: 32899172 PMCID: PMC7563414 DOI: 10.3390/biom10091269] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022] Open
Abstract
Midbrain dopamine neurons have crucial functions in motor and emotional control and their degeneration leads to several neurological dysfunctions such as Parkinson's disease, addiction, depression, schizophrenia, and others. Despite advances in the understanding of specific altered proteins and coding genes, little is known about cumulative changes in the transcriptional landscape of noncoding genes in midbrain dopamine neurons. Noncoding RNAs-specifically microRNAs and long noncoding RNAs-are emerging as crucial post-transcriptional regulators of gene expression in the brain. The identification of noncoding RNA networks underlying all stages of dopamine neuron development and plasticity is an essential step to deeply understand their physiological role and also their involvement in the etiology of dopaminergic diseases. Here, we provide an update about noncoding RNAs involved in dopaminergic development and metabolism, and the related evidence of these biomolecules for applications in potential treatments for dopaminergic neurodegeneration.
Collapse
Affiliation(s)
- Emilia Pascale
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (E.P.); (G.D.); (R.P.); (M.A.); (E.F.N.)
| | - Giuseppina Divisato
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (E.P.); (G.D.); (R.P.); (M.A.); (E.F.N.)
| | - Renata Palladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (E.P.); (G.D.); (R.P.); (M.A.); (E.F.N.)
| | - Margherita Auriemma
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (E.P.); (G.D.); (R.P.); (M.A.); (E.F.N.)
| | - Edward Faustine Ngalya
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (E.P.); (G.D.); (R.P.); (M.A.); (E.F.N.)
| | - Massimiliano Caiazzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (E.P.); (G.D.); (R.P.); (M.A.); (E.F.N.)
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
9
|
Vermeiren Y, Hirschberg Y, Mertens I, De Deyn PP. Biofluid Markers for Prodromal Parkinson's Disease: Evidence From a Catecholaminergic Perspective. Front Neurol 2020; 11:595. [PMID: 32760338 PMCID: PMC7373724 DOI: 10.3389/fneur.2020.00595] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/22/2020] [Indexed: 12/26/2022] Open
Abstract
Parkinson's disease (PD) is the most frequent of all Lewy body diseases, a family of progressive neurodegenerative disorders characterized by intra-neuronal cytoplasmic inclusions of α-synuclein. Its most defining features are bradykinesia, tremor, rigidity and postural instability. By the time PD manifests with motor signs, 70% of dopaminergic midbrain neurons are lost, and the disease is already in the middle or late stage. However, there are various non-motor symptoms occurring up to 20 years before the actual parkinsonism that are closely associated with profound deficiency of myocardial noradrenaline content and peripheral sympathetic denervation, as evidenced by neuroimaging experiments in recent years. Additionally, there is an inherent autotoxicity of catecholamines in the neuronal cells in which they are produced, forming toxic catecholaldehyde intermediates that make α-synuclein prone to aggregation, initiating a cascade of events that ultimately leads to neuronal death. The etiopathogenesis of PD and related synucleinopathies thus may well be a prototypical example of a catecholamine-regulated neurodegeneration, given that the synucleinopathy in PD spreads in synergy with central and peripheral catecholaminergic dysfunction from the earliest phases onward. That is why catecholamines and their metabolites, precursors, or derivatives in cerebrospinal fluid or plasma could be of particular interest as biomarkers for prodromal and de novo PD. Because there is great demand for such markers, this mini-review summarizes all catecholamine-related studies to date, in addition to providing profound neurochemical evidence on a systemic and cellular level to further emphasize this hypothesis and with emphasis on extracellular vesicles as a novel diagnostic and therapeutic incentive.
Collapse
Affiliation(s)
- Yannick Vermeiren
- Laboratory of Neurochemistry and Behavior, Department of Biomedical Sciences, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Alzheimer Center, University of Groningen and University Medical Center Groningen (UMCG), Groningen, Netherlands.,Centre for Proteomics (CFP), University of Antwerp, Antwerp, Belgium.,Sustainable Health Department, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Yael Hirschberg
- Centre for Proteomics (CFP), University of Antwerp, Antwerp, Belgium.,Sustainable Health Department, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Inge Mertens
- Centre for Proteomics (CFP), University of Antwerp, Antwerp, Belgium.,Sustainable Health Department, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Peter P De Deyn
- Laboratory of Neurochemistry and Behavior, Department of Biomedical Sciences, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Alzheimer Center, University of Groningen and University Medical Center Groningen (UMCG), Groningen, Netherlands.,Department of Neurology, Memory Clinic of Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| |
Collapse
|
10
|
Chen Y, Feng Z, Shen M, Lin W, Wang Y, Wang S, Li C, Wang S, Chen M, Shan W, Xie XQ. Insight into Ginkgo biloba L. Extract on the Improved Spatial Learning and Memory by Chemogenomics Knowledgebase, Molecular Docking, Molecular Dynamics Simulation, and Bioassay Validations. ACS OMEGA 2020; 5:2428-2439. [PMID: 32064403 PMCID: PMC7017398 DOI: 10.1021/acsomega.9b03960] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/16/2020] [Indexed: 05/08/2023]
Abstract
Epilepsy is a common cause of serious cognitive disorders and is known to have impact on patients' memory and executive functions. Therefore, the development of antiepileptic drugs for the improvement of spatial learning and memory in patients with epileptic cognitive dysfunction is important. In the present work, we systematically predicted and analyzed the potential effects of Ginkgo terpene trilactones (GTTL) on cognition and pathologic changes utilizing in silico and in vivo approaches. Based on our established chemogenomics knowledgebase, we first conducted the network systems pharmacology analysis to predict that ginkgolide A/B/C may target 5-HT 1A, 5-HT 1B, and 5-HT 2B. The detailed interactions were then further validated by molecular docking and molecular dynamics (MD) simulations. In addition, status epilepticus (SE) was induced by lithium-pilocarpine injection in adult Wistar male rats, and the results of enzyme-linked immunosorbent assay (ELISA) demonstrated that administration with GTTL can increase the expression of brain-derived neurotrophic factor (BDNF) when compared to the model group. Interestingly, recent studies suggest that the occurrence of a reciprocal involvement of 5-HT receptor activation along with the hippocampal BDNF-increased expression can significantly ameliorate neurologic changes and reverse behavioral deficits in status epilepticus rats while improving cognitive function and alleviating neuronal injury. Therefore, we evaluated the effects of GTTL (bilobalide, ginkgolide A, ginkgolide B, and ginkgolide C) on synergistic antiepileptic effect. Our experimental data showed that the spatial learning and memory abilities (e.g., electroencephalography analysis and Morris water maze test for behavioral assessment) of rats administrated with GTTL were significantly improved under the middle dose (80 mg/kg, GTTL) and high dose (160 mg/kg, GTTL). Moreover, the number of neurons in the hippocampus of the GTTL group increased when compared to the model group. Our studies showed that GTTL not only protected rat cerebral hippocampal neurons against epilepsy but also improved the learning and memory ability. Therefore, GTTL may be a potential drug candidate for the prevention and/or treatment of epilepsy.
Collapse
Affiliation(s)
- Yan Chen
- College
of Pharmacology Sciences, Zhejiang University
of Technology, Hangzhou 310014, P. R. China
- Department of Pharmaceutical Sciences and Computational
Chemical
Genomics Screening Center, School of Pharmacy, National Center of Excellence for
Computational Drug Abuse Research, Drug Discovery Institute, Departments of Computational Biology
and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Zhiwei Feng
- Department of Pharmaceutical Sciences and Computational
Chemical
Genomics Screening Center, School of Pharmacy, National Center of Excellence for
Computational Drug Abuse Research, Drug Discovery Institute, Departments of Computational Biology
and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Mingzhe Shen
- Department of Pharmaceutical Sciences and Computational
Chemical
Genomics Screening Center, School of Pharmacy, National Center of Excellence for
Computational Drug Abuse Research, Drug Discovery Institute, Departments of Computational Biology
and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Weiwei Lin
- Department of Pharmaceutical Sciences and Computational
Chemical
Genomics Screening Center, School of Pharmacy, National Center of Excellence for
Computational Drug Abuse Research, Drug Discovery Institute, Departments of Computational Biology
and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Yuanqiang Wang
- School of
Pharmacy and Bioengineering, Chongqing University
of Technology, Chongqing 400054, P. R. China
| | - Siyi Wang
- Department of Pharmaceutical Sciences and Computational
Chemical
Genomics Screening Center, School of Pharmacy, National Center of Excellence for
Computational Drug Abuse Research, Drug Discovery Institute, Departments of Computational Biology
and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Caifeng Li
- College
of Pharmacology Sciences, Zhejiang University
of Technology, Hangzhou 310014, P. R. China
| | - Shengfeng Wang
- College
of Pharmacology Sciences, Zhejiang University
of Technology, Hangzhou 310014, P. R. China
| | - Maozi Chen
- Department of Pharmaceutical Sciences and Computational
Chemical
Genomics Screening Center, School of Pharmacy, National Center of Excellence for
Computational Drug Abuse Research, Drug Discovery Institute, Departments of Computational Biology
and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Weiguang Shan
- College
of Pharmacology Sciences, Zhejiang University
of Technology, Hangzhou 310014, P. R. China
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences and Computational
Chemical
Genomics Screening Center, School of Pharmacy, National Center of Excellence for
Computational Drug Abuse Research, Drug Discovery Institute, Departments of Computational Biology
and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
11
|
Liu N, Wang ZZ, Zhao M, Zhang Y, Chen NH. Role of non-coding RNA in the pathogenesis of depression. Gene 2019; 735:144276. [PMID: 31816363 DOI: 10.1016/j.gene.2019.144276] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 12/20/2022]
Abstract
Depression is increasingly threatening human health as a serious psychological problem. However, it is remarkable that the precise mechanism underlying depression remains unelucidated. Recent studies have clarified that non-coding RNA, including but not limited to microRNA, long non-coding RNA, and circular RNA, plays an important role in the pathogenesis of depression. The research results cited in this paper reveal the origin, expression, distribution, function, and mechanism of microRNA in the nervous system. MicroRNA is involved in regulation of life activities, including growth, immune reaction, haematopoiesis, and metabolism, which are significant for maintaining normal physiological functions. Moreover, microRNA plays an important role in cell death and proliferation, development of cancer, and disease prognosis. Here, we also introduce the general research status of long non-coding RNA and circular RNA. Next, descriptive study methods, including fluorescence quantitative polymerase chain reaction, northern blot, microarray technology, RNA-seq, and fluorescent in situ hybridization are discussed. Functional study methods are also summarized and divided into gain- and loss-of-function studies. Moreover, the roles of non-coding RNA in the pathogenesis of depression, including neurogenesis, synaptic plasticity, brain-derived neurotrophic factor expression, HPA axis regulation, neurotransmission, neuropeptide expression, neuro-inflammation, and polyamine synthesis are discussed. Nevertheless, many unknown associations between non-coding RNA and depression remain to be clarified.
Collapse
Affiliation(s)
- Nuo Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ming Zhao
- Department of Pharmacy, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
12
|
Liu X, Zhang R, Wu Z, Si W, Ren Z, Zhang S, Zhou J, Chen D. miR‑134‑5p/Foxp2/Syn1 is involved in cognitive impairment in an early vascular dementia rat model. Int J Mol Med 2019; 44:1729-1740. [PMID: 31545395 PMCID: PMC6777691 DOI: 10.3892/ijmm.2019.4331] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 08/07/2019] [Indexed: 12/14/2022] Open
Abstract
Forkhead box P2 (Foxp2) is a transcription factor involved in vocal learning. However, the number of previous studies that have investigated the role of Foxp2 in early vascular dementia (VD) is limited. The aim of the present study was to determine whether microRNA (miR)‑134‑5p/Foxp2 contributes to cognitive impairment in a chronic ischemia‑induced early VD model. miR‑134‑5p was found to be significantly increased in the cortex in a rat VD model. Intracerebroventricular injection of miR‑134‑5p antagomir into VD rats prevented the loss of synaptic proteins and the development of cognitive impairment phenotypes. Histopathological analysis revealed that miR‑134‑5p aggravated cognitive impairment in VD rats through damage to cortical neurons and loss of synaptic proteins. Bioinformatics analysis predicted that miR‑134‑5p targets Foxp2 mRNA. Dual luciferase analysis and western blotting supported the prediction that miR‑134‑5p targets Foxp2. Furthermore, the silencing of Foxp2 significantly inhibited the effect of miR‑134‑5p on synaptic protein loss. Chromatin immunoprecipitation‑quantitative polymerase chain reaction analysis indicated that Foxp2 binds to the synapsin I (Syn1) promoter at ‑400/‑600 bp upstream of the transcription start site. In conclusion, the miR‑134‑5p/Foxp2/Syn1 axis was found to contribute to cognitive impairment in a chronic ischemia‑induced early VD model, which may enable the development of new therapeutic strategies for the prevention and treatment of VD.
Collapse
Affiliation(s)
- Xin Liu
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Ruilin Zhang
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Zimei Wu
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Wenwen Si
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Zhenxing Ren
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Saixia Zhang
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Jianhong Zhou
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Dongfeng Chen
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|