1
|
Li J, Liu T, Xian M, Zhou K, Wei J. The Power of Exercise: Unlocking the Biological Mysteries of Peripheral-Central Crosstalk in Parkinson's Disease. J Adv Res 2025:S2090-1232(25)00143-2. [PMID: 40049515 DOI: 10.1016/j.jare.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/06/2025] [Accepted: 03/01/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Exercise is a widely recognized non-pharmacological treatment for Parkinson's Disease (PD). The bidirectional regulation between the brain and peripheral organs has emerged as a promising area of research, with the mechanisms by which exercise impacts PD closely linked to the interplay between peripheral signals and the central nervous system. AIM OF REVIEW This review aims to summarize the mechanisms by which exercise influences peripheral-central crosstalk to improve PD, discuss the molecular processes mediating these interactions, elucidate the pathways through which exercise may modulate PD pathophysiology, and identify directions for future research. KEY SCIENTIFIC CONCEPTS OF REVIEW This review examines how exercise-induced cytokine release promotes neuroprotection in PD. It discusses how exercise can stimulate cytokine secretion through various pathways, including the gut-brain, muscle-brain, liver-brain, adipose-brain, and bone-brain axes, thereby alleviating PD symptoms. Additionally, the potential contributions of the heart-brain, lung-brain, and spleen-brain axes, as well as multi-axis crosstalk-such as the brain-gut-muscle and brain-gut-bone axes-are explored in the context of exercise therapy. The study highlights the need for further research into peripheral-central crosstalk and outlines future directions to address challenges in clinical PD therapy.
Collapse
Affiliation(s)
- Jingwen Li
- Institute for Sports and Brain Health, School of Physical Education, Henan University, Kaifeng, Henan, 475004, China
| | - Tingting Liu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Meiyan Xian
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Ke Zhou
- Institute for Sports and Brain Health, School of Physical Education, Henan University, Kaifeng, Henan, 475004, China.
| | - Jianshe Wei
- Institute for Sports and Brain Health, School of Physical Education, Henan University, Kaifeng, Henan, 475004, China; Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
2
|
Liu J, Yang J, Wu Q, Fang Z, Wang T, Wang Z, Xu D. Review of osteokines in spinal cord injury: potential biomarkers during rehabilitation. J Orthop Surg Res 2025; 20:64. [PMID: 39827357 PMCID: PMC11742232 DOI: 10.1186/s13018-024-05415-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/25/2024] [Indexed: 01/22/2025] Open
Abstract
After spinal cord injury (SCI), mechanical unloading, denervation, as well as negative changes in blood supply, inflammation state, and hormone levels produce significant negative effects on bone density, leading to a high prevalence of osteoporosis after SCI. It has been recently discovered that skeletal bone also has endocrine functions. Osteokines, secreted from bone tissue, could play multiple roles in regulating bone density, muscle mass, glucose metabolism, and functions of the central nervous system-changes in the osteokine levels after SCI have been detected. Therefore, bone density and osteokine levels should be stressed in clinical settings. Clinical treatment measures for bone loss after SCI include exercise training, physical agent therapy, acupuncture, and so on. According to previous studies, these treatments could affect the expression levels of osteokines. In conclusion, bone loss and changes in osteokines after SCI are worthy of great attention during the rehabilitation of SCI. Osteokines could become biomarkers during SCI rehabilitation, reflecting both bone density and systemic functions. This review summarized recent findings regarding bone loss after SCI, changes in osteokines, and the effect of rehabilitation therapies, with a particular emphasis on the local and systemic regulatory roles of osteokines, as well as their potential as biomarkers during SCI rehabilitation.
Collapse
Affiliation(s)
- Jing Liu
- Department of Acupuncture and Rehabilitation, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Qinhuai District, Hanzhong Road 155th, Nanjing, 210029, China
| | - Jingyi Yang
- Rehabilitation therapy department, School of Acupuncture-Moxibustion and Tuina of Nanjing, University of Chinese Medicine·School of Health Preservation and Rehabilitation of Nanjing University of Chinese Medicine, Qixia District, Xianlin Road 138th, Nanjing, 210023, China
| | - Qi Wu
- Rehabilitation Medicine School, Nanjing Medical University, Nanjing, 210029, China
| | - Zixuan Fang
- Rehabilitation therapy department, School of Acupuncture-Moxibustion and Tuina of Nanjing, University of Chinese Medicine·School of Health Preservation and Rehabilitation of Nanjing University of Chinese Medicine, Qixia District, Xianlin Road 138th, Nanjing, 210023, China
| | - Tong Wang
- Rehabilitation Medicine School, Nanjing Medical University, Nanjing, 210029, China.
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Gulou District, Guangzhou Road 300th, Nanjing, 210029, China.
| | - Zun Wang
- Rehabilitation therapy department, School of Acupuncture-Moxibustion and Tuina of Nanjing, University of Chinese Medicine·School of Health Preservation and Rehabilitation of Nanjing University of Chinese Medicine, Qixia District, Xianlin Road 138th, Nanjing, 210023, China.
- Rehabilitation Medicine School, Nanjing Medical University, Nanjing, 210029, China.
| | - Daoming Xu
- Department of Acupuncture and Rehabilitation, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Qinhuai District, Hanzhong Road 155th, Nanjing, 210029, China.
| |
Collapse
|
3
|
Khan S, Haider MF. A Comprehensive Review on Repurposing the Nanocarriers for the Treatment of Parkinson's Disease: An Updated Patent and Clinical Trials. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2025; 24:181-195. [PMID: 39400019 DOI: 10.2174/0118715273323074241001071645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024]
Abstract
Parkinson's Disease (PD) is a progressive neurodegenerative disorder marked by the deterioration of dopamine-producing neurons, resulting in motor impairments like tremors and rigidity. While the precise cause remains elusive, genetic and environmental factors are implicated. Mitochondrial dysfunction, oxidative stress, and protein misfolding contribute to the disease's pathology. Current therapeutics primarily aim at symptom alleviation, employing dopamine replacement and deep brain stimulation. However, the quest for disease-modifying treatments persists. Ongoing clinical trials explore novel approaches, such as neuroprotective agents and gene therapies, reflecting the evolving PD research landscape. This review provides a comprehensive overview of PD, covering its basics, causal factors, major pathways, existing treatments, and a nuanced exploration of ongoing clinical trials. As the scientific community strives to unravel PD's complexities, this review offers insights into the multifaceted strategies pursued for a better understanding and enhanced management of this debilitating condition.
Collapse
Affiliation(s)
- Sara Khan
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| | - Md Faheem Haider
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| |
Collapse
|
4
|
Carlomagno F, Hasenmajer V, Spaziani M, Tenuta M, Sesti F, Tarantino C, Pozza C, Isidori AM, Gianfrilli D. Total osteocalcin levels are independently associated with worse testicular function and a higher degree of hypothalamic-pituitary-gonadal axis activation in Klinefelter syndrome. J Endocrinol Invest 2024; 47:3049-3056. [PMID: 38773059 PMCID: PMC11549210 DOI: 10.1007/s40618-024-02390-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/02/2024] [Indexed: 05/23/2024]
Abstract
PURPOSE The role of osteocalcin (OCN) in pubertal development, male hypogonadism, and the effect of testosterone (Te) replacement therapy (TRT) remains unclear. We aimed to investigate the total OCN (tOCN) concentrations in male patients with Klinefelter syndrome (KS), a model of adult hypergonadotropic hypogonadism. METHODS This retrospective longitudinal study investigated 254 male patients with KS (47,XXY) between 2007 and 2021 at an academic referral center, categorized as (1) prepubertal, (2) pubertal, and (3) adults. All prepubertal patients were Te-naïve. Adult patients were subcategorized as (1) eugonadal, (2) hypogonadal, and (3) receiving TRT. We also analyzed 18 adult patients with available tOCN levels before and 3 months after TRT commencement. RESULTS The tOCN levels varied throughout the lifespan according to pubertal status, were highest in eugonadal and significantly lower in TRT subjects, correlated with both LH (p = 0.017) and FSH levels (p = 0.004) in adults, and significantly declined after 3 months of TRT (p = 0.006) in the adult KS cohort. HPG-axis hormones levels demonstrated no correlation in prepubertal boys. Adjustment for age and body mass index confirmed previous results and revealed significant inverse correlations with total Te (p = 0.004), calculated free Te (p = 0.016), the Te/LH (p = 0.010), and calculated free Te/LH ratios (p = 0.031). CONCLUSION In KS, a model of male hypergonadotropic hypogonadism, tOCN levels were not associated with gonadal function during normal prepuberty and pubertal development but were associated with worse testicular function and a higher degree of HPG stimulation in adults. TRT acutely reduced tOCN levels in adults.
Collapse
Affiliation(s)
- F Carlomagno
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - V Hasenmajer
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - M Spaziani
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - M Tenuta
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - F Sesti
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - C Tarantino
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - C Pozza
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - A M Isidori
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, 00161, Rome, Italy
- Endocrine and Andrological Regional Rare Disease Center (Endo-ERN Accredited), Policlinico Umberto I, 00161, Rome, Italy
| | - D Gianfrilli
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, 00161, Rome, Italy.
| |
Collapse
|
5
|
Liu T, Wu H, Li J, Zhu C, Wei J. Unraveling the Bone-Brain Axis: A New Frontier in Parkinson's Disease Research. Int J Mol Sci 2024; 25:12842. [PMID: 39684552 DOI: 10.3390/ijms252312842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Parkinson's disease (PD), as a widespread neurodegenerative disorder, significantly impacts patients' quality of life. Its primary symptoms include motor disturbances, tremor, muscle stiffness, and balance disorders. In recent years, with the advancement of research, the concept of the bone-brain axis has gradually become a focal point in the field of PD research. The bone-brain axis refers to the interactions and connections between the skeletal system and the central nervous system (CNS), playing a crucial role in the pathogenesis and pathological processes of PD. The purpose of this review is to comprehensively and deeply explore the bone-brain axis in PD, covering various aspects such as the complex relationship between bone metabolism and PD, the key roles of neurotransmitters and hormones in the bone-brain axis, the role of inflammation and immunity, microRNA (miRNA) functional regulation, and potential therapeutic strategies. Through a comprehensive analysis and in-depth discussion of numerous research findings, this review aims to provide a solid theoretical foundation for a deeper understanding of the pathogenesis of PD and to offer strong support for the development of new treatment methods.
Collapse
Affiliation(s)
- Tingting Liu
- Institute for Brain Sciences Research, Center for Translational Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Haojie Wu
- Institute for Brain Sciences Research, Center for Translational Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jingwen Li
- Institute for Brain Sciences Research, Center for Translational Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Chaoyang Zhu
- Institute for Brain Sciences Research, Center for Translational Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jianshe Wei
- Institute for Brain Sciences Research, Center for Translational Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
6
|
Bian X, Wang Y, Zhang W, Ye C, Li J. GPR37 and its neuroprotective mechanisms: bridging osteocalcin signaling and brain function. Front Cell Dev Biol 2024; 12:1510666. [PMID: 39633709 PMCID: PMC11614806 DOI: 10.3389/fcell.2024.1510666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
Osteocalcin (OCN) is a hormone secreted by osteoblasts and has attracted widespread attention for its role in regulating brain function. Clinical studies indicate a positive correlation between levels of circulating OCN and cognitive performance. Indeed, lower circulating OCN has been detected in various neurodegenerative diseases (NDs), while OCN supplementation under certain conditions may improve cognitive function. GPR37, a G protein-coupled receptor, has recently been identified as a receptor for OCN. It exhibits distinct expression patterns across various brain regions and cell types, potentially influencing its functional roles within the brain. Research indicates that GPR37 regulates neuronal migration, cell proliferation, differentiation, and myelination. Furthermore, GPR37 has been shown to mitigate inflammation and apoptosis through various mechanisms, exerting neuroprotective effects. However, its regulatory influence on brain function exhibits inconsistency, highlighting a duality in its actions. Therefore, this review thoroughly summarizes the roles and mechanisms of GPR37 in modulating cellular physiological activities and its involvement in immune responses, stress reactions, and neuroprotection. It aims to enhance the understanding of how GPR37 modulates brain function and facilitate the identification of novel therapeutic targets or strategies for related diseases.
Collapse
Affiliation(s)
- Xuepeng Bian
- Department of Rehabilitation, School of International Medical Technology, Shanghai Sanda University, Shanghai, China
| | - Yangping Wang
- Physical Education College, Shanghai University, Shanghai, China
| | - Weijie Zhang
- Physical Education College, Shanghai University, Shanghai, China
| | - Changlin Ye
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Jingjing Li
- Physical Education College, Shanghai University, Shanghai, China
| |
Collapse
|
7
|
Li R, Miao Z, Liu Y, Chen X, Wang H, Su J, Chen J. The Brain-Gut-Bone Axis in Neurodegenerative Diseases: Insights, Challenges, and Future Prospects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307971. [PMID: 39120490 PMCID: PMC11481201 DOI: 10.1002/advs.202307971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 06/04/2024] [Indexed: 08/10/2024]
Abstract
Neurodegenerative diseases are global health challenges characterized by the progressive degeneration of nerve cells, leading to cognitive and motor impairments. The brain-gut-bone axis, a complex network that modulates multiple physiological systems, has gained increasing attention owing to its profound effects on the occurrence and development of neurodegenerative diseases. No comprehensive review has been conducted to clarify the triangular relationship involving the brain-gut-bone axis and its potential for innovative therapies for neurodegenerative disorders. In light of this, a new perspective is aimed to propose on the interplay between the brain, gut, and bone systems, highlighting the potential of their dynamic communication in neurodegenerative diseases, as they modulate multiple physiological systems, including the nervous, immune, endocrine, and metabolic systems. Therapeutic strategies for maintaining the balance of the axis, including brain health regulation, intestinal microbiota regulation, and improving skeletal health, are also explored. The intricate physiological interactions within the brain-gut-bone axis pose a challenge in the development of effective treatments that can comprehensively target this system. Furthermore, the safety of these treatments requires further evaluation. This review offers a novel insights and strategies for the prevention and treatment of neurodegenerative diseases, which have important implications for clinical practice and patient well-being.
Collapse
Affiliation(s)
- Rong Li
- Department of NeurosurgeryShanghai Changhai HospitalNaval Medical UniversityShanghai200433China
| | - Zong Miao
- Department of NeurosurgeryShanghai Changhai HospitalNaval Medical UniversityShanghai200433China
| | - Yu'e Liu
- Tongji University Cancer CenterShanghai Tenth People's Hospital of Tongji UniversitySchool of MedicineTongji UniversityShanghai200092China
| | - Xiao Chen
- Department of OrthopedicsXinhua HospitalShanghai Jiao Tong University School of MedicineShanghai200092China
- Institute of Translational MedicineShanghai UniversityShanghai200444China
- Organoid Research CenterShanghai UniversityShanghai200444China
| | - Hongxiang Wang
- Department of NeurosurgeryShanghai Changhai HospitalNaval Medical UniversityShanghai200433China
| | - Jiacan Su
- Department of OrthopedicsXinhua HospitalShanghai Jiao Tong University School of MedicineShanghai200092China
- Institute of Translational MedicineShanghai UniversityShanghai200444China
- Organoid Research CenterShanghai UniversityShanghai200444China
| | - Juxiang Chen
- Department of NeurosurgeryShanghai Changhai HospitalNaval Medical UniversityShanghai200433China
| |
Collapse
|
8
|
Qi X, He X, Peng Y, He X, Yang Q, Jiao K, Liu H. Roles of osteocalcin in the central nervous system. CNS Neurosci Ther 2024; 30:e70016. [PMID: 39252492 PMCID: PMC11386255 DOI: 10.1111/cns.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/04/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Bone-derived protein osteocalcin, which has beneficial effects on brain function, may be a future research direction for neurological disorders. A growing body of evidence suggests a link between osteocalcin and neurological disorders, but the exact relationship is contradictory and unclear. SCOPE OF REVIEW The aim of this review is to summarize the current research on the interaction between osteocalcin and the central nervous system and to propose some speculative future research directions. MAJOR CONCLUSIONS In the normal central nervous system, osteocalcin is involved in neuronal structure, neuroprotection, and the regulation of cognition and anxiety. Studies on osteocalcin-related abnormalities in the central nervous system are divided into animal model studies and human studies, depending on the subject. In humans, the link between osteocalcin and brain function is inconsistent. These conflicting data may be due to methodological inconsistencies. By reviewing the related literature on osteocalcin, some comorbidities of the bone and nervous system and future research directions related to osteocalcin are proposed.
Collapse
Affiliation(s)
- Xiao‐Shan Qi
- Department of RadiologyAffiliated Hospital of Zunyi Medical University, Engineering Research Center of Intelligent Medical Imaging in Guizhou Higher Education lnstitutions, Medical Imaging Center of Guizhou ProvinceZunyiChina
- The First Clinical Medical CollegeZunyi Medical UniversityZunyiChina
| | - Xin He
- Department of RadiologyAffiliated Hospital of Zunyi Medical University, Engineering Research Center of Intelligent Medical Imaging in Guizhou Higher Education lnstitutions, Medical Imaging Center of Guizhou ProvinceZunyiChina
| | - Ying Peng
- Department of RadiologyAffiliated Hospital of Zunyi Medical University, Engineering Research Center of Intelligent Medical Imaging in Guizhou Higher Education lnstitutions, Medical Imaging Center of Guizhou ProvinceZunyiChina
| | - Xing‐Hong He
- Department of RadiologyAffiliated Hospital of Zunyi Medical University, Engineering Research Center of Intelligent Medical Imaging in Guizhou Higher Education lnstitutions, Medical Imaging Center of Guizhou ProvinceZunyiChina
| | - Qian‐Yu Yang
- The First Clinical Medical CollegeZunyi Medical UniversityZunyiChina
| | - Kai Jiao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, School of StomatologyThe Fourth Military Medical UniversityXi‘anChina
| | - Heng Liu
- Department of RadiologyAffiliated Hospital of Zunyi Medical University, Engineering Research Center of Intelligent Medical Imaging in Guizhou Higher Education lnstitutions, Medical Imaging Center of Guizhou ProvinceZunyiChina
| |
Collapse
|
9
|
Elseweidy MM, Ali AEM, Hassanin SM, Mahmoud YK. Empagliflozin ameliorates liver fibrosis in NASH rat model via targeting hepatic NF-κB/SOX9/OPN signaling and osteocalcin level. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3449-3459. [PMID: 37962587 PMCID: PMC11074015 DOI: 10.1007/s00210-023-02826-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) may be associated with tissue fibrotic changes and can be treated via different therapeutic tools which may however either initiate weak or long-term side effects that minimize its use. Empagliflozin (EMPA) is an oral anti-diabetic drug which has characteristic effects during hepatic steatosis regarding lipid accumulation and insulin resistance. In this study, we aimed to investigate an additional mechanism through which EMPA can exert and potentiate its anti-inflammatory and anti-fibrotic effects in NASH rat model. Male Wistar albino rats fed on high fat diet (HFD) and 20% fructose in drinking water for 18 weeks and received EMPA (30 mg/kg/day, orally) starting from week 11. Body and liver weights, homeostatic model assessment of insulin resistance (HOMA-IR), lipid profile, liver function tests, other biochemical and histological parameters were determined. HFD joined with fructose intake significantly increased body and liver weights, HOMA-IR value, hepatic inflammatory and fibrotic markers, liver transaminases, hepatic expression of nuclear factor-kappa B (NF-κB), sex determining region Y box 9 (SOX 9), and osteopontin (OPN) with significant decrease in hepatic osteocalcin (OCN). Intense hepatic lesions with severe microsteatosis and deposition of collagen fibers were clearly observed. Effectively, EMPA restored the normal liver functions, downregulated hepatic inflammatory cytokines, NF-κB, SOX 9, OPN, and increased OCN level. These results highlight another pathway illustrated the anti-fibrotic effects of EMPA against liver fibrosis probably through downregulation of NF-κB/SOX 9/OPN signaling along with upregulation of hepatic OCN which may potentiate the valuable anti-inflammatory and anti-fibrotic effects of EMPA.
Collapse
Affiliation(s)
- Mohamed M Elseweidy
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Abd El-Monem Ali
- Pathology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Sara M Hassanin
- Zagazig University Hospitals, Zagazig University, Zagazig, Egypt
| | - Yasmin K Mahmoud
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
10
|
Liu W, Hu Q, Zhang F, Shi K, Wu J. Investigation of the causal relationship between osteocalcin and dementia: A Mendelian randomization study. Heliyon 2023; 9:e21073. [PMID: 37916108 PMCID: PMC10616355 DOI: 10.1016/j.heliyon.2023.e21073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/03/2023] [Accepted: 10/13/2023] [Indexed: 11/03/2023] Open
Abstract
Objective Basic medical studies have reported an improved effect of osteocalcin on cognition. We explored the causal link between osteocalcin and dementia via the implementation of Mendelian randomization methodology. Methods Genome-wide association studies were employed to identify single nucleotide polymorphisms (SNPs) showing significant correlations with osteocalcin. Subsequently, A two-sample Mendelian randomization analysis was conducted utilizing the inverse-variance-weighted (IVW) technique to assess the causal relationship between osteocalcin and various types of dementia, including Alzheimer's disease (AD), Parkinson's disease (PD), Lewy body dementia (LBD), and vascular dementia (VD). This approach aimed to minimize potential sources of confounding bias and provide more robust results. Multivariable MR (MVMR) analysis was conducted to adjust for potential genetic pleiotropy. Results The study employed three SNPs, namely rs71631868, rs9271374, and rs116843408, as genetic tools to evaluate the causal association of osteocalcin with dementia. The IVW analysis indicated that osteocalcin may have a potential protective effect against AD with an odds ratio (OR) of 0.790 (95 % CI: 0.688-0.906; P < 0.001). However, no significant relationship was observed between osteocalcin and other types of dementia. Furthermore, the MVMR analysis indicated that the impact of osteocalcin on AD remained consistent even after adjusting for age-related macular degeneration and Type 2 diabetes with an OR of 0.856 (95 % CI: 0.744-0.985; P = 0.030). Conclusions Our findings provide important insights into the role of osteocalcin in the pathogenesis of AD. Future research is required to clarify the underlying mechanisms and their clinical applications.
Collapse
Affiliation(s)
- Wangmi Liu
- The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Qiang Hu
- Pujiang Tianxian Orthopedic Hospital, Jinhua, 322200, China
| | - Feng Zhang
- The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Kesi Shi
- The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Jiayan Wu
- Department of Neurology, Chongming Branch, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 66 East Xiangyang Road, Chongming, Shanghai, China
| |
Collapse
|
11
|
Patricia da Silva E, da Silva Feltran G, Alexandre Alcântara Dos Santos S, Cardoso de Oliveira R, Assis RIF, Antônio Justulin Junior L, Carleto Andia D, Zambuzzi WF, Latini A, Foganholi da Silva RA. Hyperglycemic microenvironment compromises the homeostasis of communication between the bone-brain axis by the epigenetic repression of the osteocalcin receptor, Gpr158 in the hippocampus. Brain Res 2023; 1803:148234. [PMID: 36634900 DOI: 10.1016/j.brainres.2023.148234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
Diabetes mellitus (DM) is a chronic metabolic disease, mainly characterized by increased blood glucose and insulin dysfunction. In response to the persistent systemic hyperglycemic state, numerous metabolic and physiological complications have already been well characterized. However, its relationship to bone fragility, cognitive deficits and increased risk of dementia still needs to be better understood. The impact of chronic hyperglycemia on bone physiology and architecture was assessed in a model of chronic hyperglycemia induced by a single intraperitoneal administration of streptozotocin (STZ; 55 mg/kg) in Wistar rats. In addition, the bone-to-brain communication was investigated by analyzing the gene expression and methylation status of genes that encode the main osteokines released by the bone [Fgf23 (fibroblast growth factor 23), Bglap (bone gamma-carboxyglutamate protein) and Lcn2 (lipocalin 2) and their receptors in both, the bone and the brain [Fgfr1 (fibroblast growth factor receptor 1), Gpr6A (G-protein coupled receptor family C group 6 member A), Gpr158 (G protein-coupled receptor 158) and Slc22a17 (Solute carrier family 22 member 17)]. It was observed that chronic hyperglycemia negatively impacted on bone biology and compromised the balance of the bone-brain endocrine axis. Ultrastructural disorganization was accompanied by global DNA hypomethylation and changes in gene expression of DNA-modifying enzymes that were accompanied by changes in the methylation status of the osteokine promoter region Bglap and Lcn2 (lipocalin 2) in the femur. Additionally, the chronic hyperglycemic state was accompanied by modulation of gene expression of the osteokines Fgf23 (fibroblast growth factor 23), Bglap (bone gamma-carboxyglutamate protein) and Lcn2 (lipocalin 2) in the different brain regions. However, transcriptional regulation mediated by DNA methylation was observed only for the osteokine receptors, Fgfr1(fibroblast growth factor receptor 1) in the striatum and Gpr158 (G protein-coupled receptor 158) in the hippocampus. This is a pioneer study demonstrating that the chronic hyperglycemic state compromises the crosstalk between bone tissue and the brain, mainly affecting the hippocampus, through transcriptional silencing of the Bglap receptor by hypermethylation of Gpr158 gene.
Collapse
Affiliation(s)
- Ericka Patricia da Silva
- CEEpiRG, Program in Environmental and Experimental Pathology, Paulista University - UNIP, São Paulo, São Paulo, Brazil
| | - Geórgia da Silva Feltran
- Laboratory of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | | | - Rodrigo Cardoso de Oliveira
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo -FOB, Bauru, São Paulo, Brazil
| | - Rahyza I F Assis
- Department of Clinical Dentistry, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Luis Antônio Justulin Junior
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | - Denise Carleto Andia
- School of Dentistry, Health Science Institute, Paulista University - UNIP, São Paulo, São Paulo, Brazil
| | - Willian F Zambuzzi
- Laboratory of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | - Alexandra Latini
- LABOX, Department of Biochemistry, Center for Biological Sciences, Federal University of Santa Catarina - UFSC, Florianopolis, Brazil.
| | - Rodrigo A Foganholi da Silva
- CEEpiRG, Program in Environmental and Experimental Pathology, Paulista University - UNIP, São Paulo, São Paulo, Brazil; Department of Dentistry, University of Taubaté - UNITAU, Taubaté, São Paulo, Brazil.
| |
Collapse
|
12
|
Jeong SH, Hong N, Lee HS, Han S, Lee YG, Lee Y, Rhee Y, Sohn YH, Lee PH. Low skull bone density is associated with poor motor prognosis in women with Parkinson’s disease. Front Aging Neurosci 2022; 14:1053786. [DOI: 10.3389/fnagi.2022.1053786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022] Open
Abstract
Parkinson’s disease (PD) and osteoporosis are degenerative diseases that have shared pathomechanisms. To investigate the associations of skull bone density with nigrostriatal dopaminergic degeneration and longitudinal motor prognosis in female patients with PD. We analyzed the data of 260 drug-naïve female PD patients aged ≥50 years old who were followed-up for ≥3 years after their first visit to the clinic with baseline dopamine transporter (DAT) imaging. We measured skull bone density as a surrogate marker for systemic bone loss by calculating the Hounsfield unit (HU) in computed tomography scans. A Cox proportional hazard model was built to compare the rates of levodopa-induced dyskinesia (LID) or wearing-off according to skull HU. Longitudinal changes in levodopa-equivalent dose (LED) during a 3-year follow-up were assessed using a linear mixed model. A lower skull HU was associated with lower baseline DAT availability in striatal subregions; however, this relationship was not significant after adjusting for age, disease duration, body mass index, and white matter hyperintensities. After adjusting for confounding factors, a lower skull HU was significantly associated with an increased risk of LID development (hazard ratio = 1.660 per 1 standard deviation decrease, p = 0.007) and wearing-off (hazard ratio = 1.613, p = 0.016) in younger (<67 years) but not in older patients. Furthermore, a lower skull HU was associated with a steeper increase in LED during follow-up in younger patients only (β = –21.99, p < 0.001). This study suggests that baseline skull bone density would be closely linked to motor prognosis in drug naïve women with PD.
Collapse
|
13
|
Ross RD, Olali AZ, Shi Q, Hoover DR, Sharma A, Weber KM, French AL, McKay H, Tien PC, Yin MT, Rubin LH. Brief Report: Undercarboxylated Osteocalcin Is Associated With Cognition in Women With and Without HIV. J Acquir Immune Defic Syndr 2022; 91:162-167. [PMID: 36094482 PMCID: PMC9470989 DOI: 10.1097/qai.0000000000003043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 06/03/2022] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Bone loss and cognitive impairment are common in women living with HIV (WLWH) and are exacerbated by menopause. Bone-derived undercarboxylated osteocalcin (ucOCN) and sclerostin appear to influence cognition. The current study investigated whether the circulating levels of these 2 proteins are associated with cognition in midlife WLWH and demographically similar HIV seronegative women. METHODS Plasma samples from women enrolled in a musculoskeletal substudy within the Women's Interagency HIV Study were used to measure ucOCN and sclerostin. A neuropsychological (NP) test battery assessing executive function, processing speed, attention/working memory, learning, memory, verbal fluency, and motor function was administered within 6 months of musculoskeletal enrollment and every 2 years after (1-4 follow-up visits per participant). A series of generalized estimating equations were conducted to examine the association between biomarkers and NP performance at the initial assessment and over time in the total sample and in WLWH only. Primary predictors included biomarkers, time, and biomarker by time interactions. If the interaction terms were not significant, models were re-run without interactions. RESULTS Neither biomarker predicted changes in NP performance over time in the total sample or in WLWH. ucOCN was positively associated with executive function in the total sample and in WLWH and with motor skills in WLWH. ucOCN was negatively associated with attention/working memory in the total sample. There were no significant associations between sclerostin and NP performance. CONCLUSION The current study suggests an association between bone-derived ucOCN and cognition in women with and without HIV infection.
Collapse
Affiliation(s)
- Ryan D. Ross
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL
| | - Arnold Z. Olali
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL
| | - Qiuhu Shi
- New York Medical College, Valhalla, NY
| | - Donald R. Hoover
- Department of Statistics and Institute for Health, Health Care Policy and Aging Research, Rutgers University, Piscataway, NJ
| | | | - Kathleen M. Weber
- Cook County Health/CORE Center and Hektoen Institute of Medicine, Chicago, IL
| | - Audrey L French
- Department of Medicine, Stroger Hospital of Cook County/CORE Center, Chicago, IL
| | - Heather McKay
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Phyllis C. Tien
- Department of Medicine, University of California, San Francisco and Medical Service, Department of Veteran Affairs Medical Center, San Francisco, CA
| | | | - Leah H. Rubin
- Department of Neurology, Psychiatry, and Epidemiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
14
|
Onaolapo AY, Ojo FO, Olofinnade AT, Falade J, Lawal IA, Onaolapo OJ. Microbiome-Based Therapies in Parkinson's Disease: Can Tuning the Microbiota Become a Viable Therapeutic Strategy? CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 22:CNSNDDT-EPUB-126136. [PMID: 36056826 DOI: 10.2174/1871527321666220903114559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/20/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Progressive neurodegenerative disorders such as Parkinson's disease (PD) have continued to baffle medical science, despite strides in the understanding of their pathology. The inability of currently available therapies to halt disease progression is a testament to an incomplete understanding of pathways crucial to disease initiation, progression and management. Science has continued to link the activities and equilibrium of the gut microbiome to the health and proper functioning of brain neurons. They also continue to stir interest in the potential applications of technologies that may shift the balance of the gut microbiome towards achieving a favourable outcome in PD management. There have been suggestions that an improved understanding of the roles of the gut microbiota is likely to lead to the emergence of an era where their manipulation becomes a recognized strategy for PD management. This review examines the current state of our journey in the quest to understand how the gut microbiota can influence several aspects of PD. We highlight the relationship between the gut microbiome/microbiota and PD pathogenesis, as well as preclinical and clinical evidence evaluating the effect of postbiotics, probiotics and prebiotics in PD management. This is with a view to ascertaining if we are at the threshold of discovering the application of a usable tool in our quest for disease modifying therapies in PD.
Collapse
Affiliation(s)
- Adejoke Y Onaolapo
- Behavioural Neuroscience/Neurobiology Unit, Department of Anatomy, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Folusho O Ojo
- Department of Anatomy, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Anthony T Olofinnade
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Clinical Sciences, College of Medicine, Lagos State University, Lagos State
| | - Joshua Falade
- Department of Mental Health, Afe-Babalola University Ado-Ekiti Ekiti State Nigeria
| | - Ismail A Lawal
- Department of Anatomy, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Department of Anatomy, Faculty of Health Sciences. Alhikmah University Ilorin, Kwara State, Nigeria
| | - Olakunle J Onaolapo
- Behavioural Neuroscience/Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| |
Collapse
|
15
|
Tsai YL, Yen CT, Wang YF. Astrocyte Dysregulation and Calcium Ion Imbalance May Link the Development of Osteoporosis and Alzheimer’s Disease. J Alzheimers Dis 2022; 88:439-445. [DOI: 10.3233/jad-220218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The typical symptoms of patients with Alzheimer’s disease (AD) are amyloid-β (Aβ) plaques and tau hyperphosphorylation. However, recent studies show that these symptoms are not the cause of the disease but are generated after the pathogenesis. Compared with other types of dementia, AD has the obvious features of pineal gland calcification and decreased melatonin production. The pineal gland is mainly composed of pinealocytes that release melatonin and astrocytes. Astrocytes function to maintain a balanced concentration of calcium ions, provide nerve cell nutrients, and migrate nutrients in vivo. Calcium ions are among the most important neurotransmitters. Once triggered, a calcium wave can be formed between astrocytes to activate other astrocytes to transmit information. Most calcium is stored in the skeleton. Bone tissue is composed mainly of osteocytes, osteoblasts, and osteoclasts. Of these, osteocyte is a kind of astrocyte which regulates the activity of osteoclasts and osteoblasts. The pineal gland is composed mainly of astrocytes; osteocytes are also a kind of astrocyte. Therefore, we conclude that when astrocytes are gradually disabled, calcium may be lost from the bones, prompting osteoporosis. The calcium ions then released into the blood may accumulate and cause ectopic calcification in the pineal gland, which promotes the occurrence of AD. Finally, this study used aspects of drugs and hormones (bone and calcium metabolism hormones and melatonin) to infer the hypothesis, which proposes that astrocyte dysregulation promotes the long-term imbalance of calcium ions in vivo and leads to osteoporosis and AD.
Collapse
Affiliation(s)
- Yi-Liang Tsai
- Department of Nuclear Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- Department of Medical Research, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Chieh-Tsung Yen
- Department of Neurology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Yuh-Feng Wang
- Department of Nuclear Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- Department of Radiology, School of Medicine, Tzu Chi University, Hualien, Taiwan
- Center of Preventive Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
16
|
Fehsel K, Christl J. Comorbidity of osteoporosis and Alzheimer's disease: Is `AKT `-ing on cellular glucose uptake the missing link? Ageing Res Rev 2022; 76:101592. [PMID: 35192961 DOI: 10.1016/j.arr.2022.101592] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 02/08/2023]
Abstract
Osteoporosis and Alzheimer's disease (AD) are both degenerative diseases. Osteoporosis often proceeds cognitive deficits, and multiple studies have revealed common triggers that lead to energy deficits in brain and bone. Risk factors for osteoporosis and AD, such as obesity, type 2 diabetes, aging, chemotherapy, vitamin deficiency, alcohol abuse, and apolipoprotein Eε4 and/or Il-6 gene variants, reduce cellular glucose uptake, and protective factors, such as estrogen, insulin, exercise, mammalian target of rapamycin inhibitors, hydrogen sulfide, and most phytochemicals, increase uptake. Glucose uptake is a fine-tuned process that depends on an abundance of glucose transporters (Gluts) on the cell surface. Gluts are stored in vesicles under the plasma membrane, and protective factors cause these vesicles to fuse with the membrane, resulting in presentation of Gluts on the cell surface. This translocation depends mainly on AKT kinase signaling and can be affected by a range of factors. Reduced AKT kinase signaling results in intracellular glucose deprivation, which causes endoplasmic reticulum stress and iron depletion, leading to activation of HIF-1α, the transcription factor necessary for higher Glut expression. The link between diseases and aging is a topic of growing interest. Here, we show that diseases that affect the same biochemical pathways tend to co-occur, which may explain why osteoporosis and/or diabetes are often associated with AD.
Collapse
|
17
|
Nomura S, Kono R, Imaoka M, Tazaki F, Okuno Y, Utsunomiya H, Takeda M, Nakamura M. Traditional Japanese apricot (Prunus mume) induces osteocalcin in osteoblasts. Biosci Biotechnol Biochem 2022; 86:528-534. [PMID: 35150233 DOI: 10.1093/bbb/zbac013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/17/2022] [Indexed: 01/20/2023]
Abstract
The fruit of Prunus mume (ume, also known as Japanese apricot) has been used as a functional food in Japan since ancient times. We previously reported that ume stimulates the differentiation of preosteoblastic cells. Osteocalcin (OCN) is secreted by osteoblasts, and there is known association with glucolipid metabolism and cognitive function. This study sought to clarify the relationship between ume extracts and OCN production both in vitro and in vivo. Alkaline phosphatase activity and OCN level in the ethyl acetate extracts of ume-treated extracts were significantly increased in preosteoblast MC3T3-E1 cells compared with the control group. In human study, serum OCN level was significantly higher in the high ume intake group than in the low intake group in community-dwelling participants over 60 years old. These results suggest that ume has the potential to upregulated OCN production both in vitro and in vivo.
Collapse
Affiliation(s)
- Sachiko Nomura
- Department of Strategic Surveillance for Functional Food and Comprehensive Traditional Medicine, Wakayama Medical University, Wakayama, Japan
- Cognitive Reserve Research Center, Osaka Kawasaki Rehabilitation University, Kaizuka, Osaka, Japan
| | - Ryohei Kono
- Department of Strategic Surveillance for Functional Food and Comprehensive Traditional Medicine, Wakayama Medical University, Wakayama, Japan
| | - Masakazu Imaoka
- Cognitive Reserve Research Center, Osaka Kawasaki Rehabilitation University, Kaizuka, Osaka, Japan
- Department of Rehabilitation, Osaka Kawasaki Rehabilitation University, Kaizuka, Osaka, Japan
| | - Fumie Tazaki
- Cognitive Reserve Research Center, Osaka Kawasaki Rehabilitation University, Kaizuka, Osaka, Japan
- Department of Rehabilitation, Osaka Kawasaki Rehabilitation University, Kaizuka, Osaka, Japan
| | - Yoshiharu Okuno
- Department of Applied Chemistry and Biochemistry, National Institute of Technology, Wakayama College, Wakayama, Japan
| | - Hirotoshi Utsunomiya
- Department of Strategic Surveillance for Functional Food and Comprehensive Traditional Medicine, Wakayama Medical University, Wakayama, Japan
- Cognitive Reserve Research Center, Osaka Kawasaki Rehabilitation University, Kaizuka, Osaka, Japan
| | - Masatoshi Takeda
- Cognitive Reserve Research Center, Osaka Kawasaki Rehabilitation University, Kaizuka, Osaka, Japan
| | - Misa Nakamura
- Cognitive Reserve Research Center, Osaka Kawasaki Rehabilitation University, Kaizuka, Osaka, Japan
- Department of Rehabilitation, Osaka Kawasaki Rehabilitation University, Kaizuka, Osaka, Japan
| |
Collapse
|
18
|
Trivedi T, Guise TA. Systemic effects of abnormal bone resorption on muscle, metabolism, and cognition. Bone 2022; 154:116245. [PMID: 34718221 DOI: 10.1016/j.bone.2021.116245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 12/11/2022]
Abstract
Skeletal tissue is dynamic, undergoing constant remodeling to maintain musculoskeletal integrity and balance in the human body. Recent evidence shows that apart from maintaining homeostasis in the local microenvironment, the skeleton systemically affects other tissues. Several cancer-associated and noncancer-associated bone disorders can disrupt the physiological homeostasis locally in the bone microenvironment and indirectly contribute to dysregulation of systemic body function. The systemic effects of bone on the regulation of distant organ function have not been widely explored. Recent evidence suggests that bone can interact with skeletal muscle, pancreas, and brain by releasing factors from mineralized bone matrix. Currently available bone-targeting therapies such as bisphosphonates and denosumab inhibit bone resorption, decrease morbidity associated with bone destruction, and improve survival. Bisphosphonates have been a standard treatment for bone metastases, osteoporosis, and cancer treatment-induced bone diseases. The extraskeletal effects of bisphosphonates on inhibition of tumor growth are known. However, our knowledge of the effects of bisphosphonates on muscle weakness, hyperglycemia, and cognitive defects is currently evolving. To be able to identify the molecular link between bone and distant organs during abnormal bone resorption and then treat these abnormalities and prevent their systemic effects could improve survival benefits. The current review highlights the link between bone resorption and its systemic effects on muscle, pancreas, and brain.
Collapse
Affiliation(s)
- Trupti Trivedi
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Theresa A Guise
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America.
| |
Collapse
|
19
|
Urquiza P, Solesio ME. Inorganic Polyphosphate, Mitochondria, and Neurodegeneration. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2022; 61:27-49. [PMID: 35697936 DOI: 10.1007/978-3-031-01237-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With an aging population, the presence of aging-associated pathologies is expected to increase within the next decades. Regrettably, we still do not have any valid pharmacological or non-pharmacological tools to prevent, revert, or cure these pathologies. The absence of therapeutical approaches against aging-associated pathologies can be at least partially explained by the relatively lack of knowledge that we still have regarding the molecular mechanisms underlying them, as well as by the complexity of their etiopathology. In fact, a complex number of changes in the physiological function of the cell has been described in all these aging-associated pathologies, including neurodegenerative disorders. Based on multiple scientific manuscripts produced by us and others, it seems clear that mitochondria are dysfunctional in many of these aging-associated pathologies. For example, mitochondrial dysfunction is an early event in the etiopathology of all the main neurodegenerative disorders, and it could be a trigger of many of the other deleterious changes which are present at the cellular level in these pathologies. While mitochondria are complex organelles and their regulation is still not yet entirely understood, inorganic polyphosphate (polyP) could play a crucial role in the regulation of some mitochondrial processes, which are dysfunctional in neurodegeneration. PolyP is a well-preserved biopolymer; it has been identified in every organism that has been studied. It is constituted by a series of orthophosphates connected by highly energetic phosphoanhydride bonds, comparable to those found in ATP. The literature suggests that the role of polyP in maintaining mitochondrial physiology might be related, at least partially, to its effects as a key regulator of cellular bioenergetics. However, further research needs to be conducted to fully elucidate the molecular mechanisms underlying the effects of polyP in the regulation of mitochondrial physiology in aging-associated pathologies, including neurodegenerative disorders. With a significant lack of therapeutic options for the prevention and/or treatment of neurodegeneration, the search for new pharmacological tools against these conditions has been continuous in past decades, even though very few therapeutic approaches have shown potential in treating these pathologies. Therefore, increasing our knowledge about the molecular mechanisms underlying the effects of polyP in mitochondrial physiology as well as its metabolism could place this polymer as a promising and innovative pharmacological target not only in neurodegeneration, but also in a wide range of aging-associated pathologies and conditions where mitochondrial dysfunction has been described as a crucial component of its etiopathology, such as diabetes, musculoskeletal disorders, and cardiovascular disorders.
Collapse
Affiliation(s)
- Pedro Urquiza
- Department of Biology, Rutgers University, Camden, NJ, USA
| | | |
Collapse
|
20
|
Berger JM, Karsenty G. Osteocalcin and the Physiology of Danger. FEBS Lett 2021; 596:665-680. [PMID: 34913486 PMCID: PMC9020278 DOI: 10.1002/1873-3468.14259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 12/02/2022]
Abstract
Bone biology has long been driven by the question as to what molecules affect cell differentiation or the functions of bone. Exploring this issue has been an extraordinarily powerful way to improve our knowledge of bone development and physiology. More recently, a second question has emerged: does bone have other functions besides making bone? Addressing this conundrum revealed that the bone-derived hormone osteocalcin affects a surprisingly large number of organs and physiological processes, including acute stress response. This review will focus on this emerging aspect of bone biology taking osteocalcin as a case study and will show how classical and endocrine functions of bone help to define a new functional identity for this tissue.
Collapse
Affiliation(s)
- Julian Meyer Berger
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, NY, 10032, USA
| | - Gerard Karsenty
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, NY, 10032, USA
| |
Collapse
|
21
|
Zhao Y, Suo Y, Yang Z, Hao Y, Li W, Su Y, Shi Y, Gao Y, Song L, Yin X, Shi H. Inspiration for the prevention and treatment of neuropsychiatric disorders: New insight from the bone-brain-axis. Brain Res Bull 2021; 177:263-272. [PMID: 34678443 DOI: 10.1016/j.brainresbull.2021.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/09/2021] [Accepted: 10/15/2021] [Indexed: 11/30/2022]
Abstract
Bone is the main supporting structure of the body and the main organ involved in body movement and calcium and phosphorus metabolism. Recent studies have shown that bone is also a potential new endocrine organ that participates in the physiological and pathophysiological processes of the cardiovascular, digestive, and endocrine systems through various bioactive cytokines secreted by bone cells and bone marrow. Bone-derived active cytokines can also directly act on the central nervous system and regulate brain function and individual behavior. The bidirectional regulation of the bone-brain axis has gradually attracted attention in the field of neuroscience. This paper reviews the regulatory effects of bone-derived active cytokines and bone-derived cells on individual brain function and brain diseases, as well as the occurrence and development of related neuropsychiatric diseases. The central regulatory mechanism function is briefly introduced, which will broaden the scope for mechanistic research and help establish prevention and treatment strategies for neuropsychiatric diseases based on the bone-brain axis.
Collapse
Affiliation(s)
- Ye Zhao
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Yining Suo
- Child Health Department, Hebei Children's Hospital, Shijiazhuang 050031, China
| | - Zhenbang Yang
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Ying Hao
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Wenshuya Li
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Yujiao Su
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Yun Shi
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Yuan Gao
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medicinal University, 050017, China; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Li Song
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medicinal University, 050017, China; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Xi Yin
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Department of Functional Region of Diagnosis, Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China.
| | - Haishui Shi
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medicinal University, 050017, China; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China.
| |
Collapse
|
22
|
Chen H, Shang D, Wen Y, Liang C. Bone-Derived Modulators That Regulate Brain Function: Emerging Therapeutic Targets for Neurological Disorders. Front Cell Dev Biol 2021; 9:683457. [PMID: 34179014 PMCID: PMC8222721 DOI: 10.3389/fcell.2021.683457] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/18/2021] [Indexed: 12/31/2022] Open
Abstract
Bone has traditionally been regarded as a structural organ that supports and protects the various organs of the body. Recent studies suggest that bone also acts as an endocrine organ to regulate whole-body metabolism. Particularly, homeostasis of the bone is shown to be necessary for brain development and function. Abnormal bone metabolism is associated with the onset and progression of neurological disorders. Recently, multiple bone-derived modulators have been shown to participate in brain function and neurological disorders, including osteocalcin, lipocalin 2, and osteopontin, as have bone marrow-derived cells such as mesenchymal stem cells, hematopoietic stem cells, and microglia-like cells. This review summarizes current findings regarding the roles of these bone-derived modulators in the brain, and also follows their involvement in the pathogenesis of neurological disorders. The content of this review may aide in the development of promising therapeutic strategies for neurological disorders via targeting bone.
Collapse
Affiliation(s)
- Hongzhen Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.,Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dewei Shang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuguan Wen
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chao Liang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
23
|
Lin Y, Zhou M, Dai W, Guo W, Qiu J, Zhang Z, Mo M, Ding L, Ye P, Wu Y, Zhu X, Wu Z, Xu P, Chen X. Bone-Derived Factors as Potential Biomarkers for Parkinson's Disease. Front Aging Neurosci 2021; 13:634213. [PMID: 33732138 PMCID: PMC7959739 DOI: 10.3389/fnagi.2021.634213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/29/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Parkinson’s disease (PD) and osteoporosis are both common aging diseases. It is reported that PD has a close relationship with osteoporosis and bone secretory proteins may be involved in disease progression. Objectives: To detect the bone-derived factors in plasma and cerebrospinal fluid (CSF) of patients with PD and evaluate their correlations with C-reaction protein (CRP) level, motor impairment, and Hoehn-Yahr (HY) stage of the disease. Methods: We included 250 PD patients and 250 controls. Levels of osteocalcin (OCN), osteopontin (OPN), osteoprotegerin (OPG), Sclerostin (SO), Bone morphogenetic protein 2 (BMP2), and Dickkopf-1 (DKK-1) in plasma and CSF were measured by custom protein antibody arrays. Data were analyzed using Mann–Whitney U-test and Spearman’s receptor activator of NF-κB (RANK) correlation. Results: Plasma levels of OCN and OPN were correlated with CRP levels and HY stage and motor impairment of PD. Furthermore, the plasma assessment with CSF detection may enhance their potential prediction on PD. Conclusions: OCN and OPN may serve as potential biomarkers for PD. The inflammation response may be involved in the cross-talk between the two factors and PD.
Collapse
Affiliation(s)
- Yuwan Lin
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Miaomiao Zhou
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei Dai
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenyuan Guo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiewen Qiu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhiling Zhang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingshu Mo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liuyan Ding
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Panghai Ye
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yijuan Wu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoqin Zhu
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zhuohua Wu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiang Chen
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
24
|
Hou YF, Shan C, Zhuang SY, Zhuang QQ, Ghosh A, Zhu KC, Kong XK, Wang SM, Gong YL, Yang YY, Tao B, Sun LH, Zhao HY, Guo XZ, Wang WQ, Ning G, Gu YY, Li ST, Liu JM. Gut microbiota-derived propionate mediates the neuroprotective effect of osteocalcin in a mouse model of Parkinson's disease. MICROBIOME 2021; 9:34. [PMID: 33517890 PMCID: PMC7849090 DOI: 10.1186/s40168-020-00988-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/29/2020] [Indexed: 05/07/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disorder with no absolute cure. The evidence of the involvement of gut microbiota in PD pathogenesis suggests the need to identify certain molecule(s) derived from the gut microbiota, which has the potential to manage PD. Osteocalcin (OCN), an osteoblast-secreted protein, has been shown to modulate brain function. Thus, it is of interest to investigate whether OCN could exert protective effect on PD and, if yes, whether the underlying mechanism lies in the subsequent changes in gut microbiota. RESULTS The intraperitoneal injection of OCN can effectively ameliorate the motor deficits and dopaminergic neuronal loss in a 6-hydroxydopamine-induced PD mouse model. The further antibiotics treatment and fecal microbiota transplantation experiments confirmed that the gut microbiota was required for OCN-induced protection in PD mice. OCN elevated Bacteroidetes and depleted Firmicutes phyla in the gut microbiota of PD mice with elevated potential of microbial propionate production and was confirmed by fecal propionate levels. Two months of orally administered propionate successfully rescued motor deficits and dopaminergic neuronal loss in PD mice. Furthermore, AR420626, the agonist of FFAR3, which is the receptor of propionate, mimicked the neuroprotective effects of propionate and the ablation of enteric neurons blocked the prevention of dopaminergic neuronal loss by propionate in PD mice. CONCLUSIONS Together, our results demonstrate that OCN ameliorates motor deficits and dopaminergic neuronal loss in PD mice, modulating gut microbiome and increasing propionate level might be an underlying mechanism responsible for the neuroprotective effects of OCN on PD, and the FFAR3, expressed in enteric nervous system, might be the main action site of propionate. Video abstract.
Collapse
Affiliation(s)
- Yan-Fang Hou
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai, 200025, China
| | - Chang Shan
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai, 200025, China
| | - Si-Yue Zhuang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qian-Qian Zhuang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Arijit Ghosh
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ke-Cheng Zhu
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai, 200025, China
| | - Xiao-Ke Kong
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai, 200025, China
| | - Shu-Min Wang
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai, 200025, China
| | - Yan-Ling Gong
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yu-Ying Yang
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai, 200025, China
| | - Bei Tao
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai, 200025, China
| | - Li-Hao Sun
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai, 200025, China
| | - Hong-Yan Zhao
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai, 200025, China
| | - Xing-Zhi Guo
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai, 200025, China
| | - Wei-Qing Wang
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai, 200025, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai, 200025, China
| | - Yan-Yun Gu
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai, 200025, China.
| | - Sheng-Tian Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Jian-Min Liu
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai, 200025, China.
| |
Collapse
|
25
|
Wang SM, He Y, Zhu MT, Tao B, Zhao HY, Sun LH, Liu JM. The Associations of Serum Osteocalcin and Cortisol Levels With the Psychological Performance in Primary Hyperparathyroidism Patients. Front Endocrinol (Lausanne) 2021; 12:692722. [PMID: 34456863 PMCID: PMC8397408 DOI: 10.3389/fendo.2021.692722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES The aim of this study was to investigate factors responsible for the psychological performance in primary hyperparathyroidism (PHPT) patients. METHODS A group of 38 PHPT patients receiving questionnaires, including Beck Depression Inventory (BDI), State-Trait Anxiety Inventory (STAI), and 36-Item Short Form Survey (SF-36), was evaluated. The relationships between scores of questionnaires and clinical biomarkers were examined. Collinearity and linear regression model were applied to examine variables determining the scores of the questionnaire. In 192 PHPT patients, bivariate and partial correlation were used to analyze the relationships between serum concentrations of parathyroid hormone (PTH), calcium, osteocalcin (OCN), and cortisol. RESULTS Among 38 patients receiving questionnaire tests, 50% (19/38) of the patients developed state anxiety, 60.5% (23/38) of the patients had the trait of developing anxiety. In addition, 18.4% (7/38) of the patients developed mild to severe depression. Serum cortisol at 8:00 was negatively and significantly correlated with social function (r = -0.389, p = 0.041) after controlling for age, sex, disease duration, serum PTH, calcium, phosphorus, and 25-hydroxyvitamin D [25(OH)D] concentration. OCN was significantly and negatively correlated with score of STAI-S (r = -0.426, p = 0.027). In the linear regression model for BDI score, variables with statistical significance were serum OCN (β = -0.422, p = 0.019) and cortisol at 0:00 (β = 0.371, p = 0.037). In 192 PHPT patients, the serum concentration of OCN (r = 0.373, p = 0.000) was positively correlated with PTH level. After controlling for age, sex, disease duration, serum 25(OH)D, phosphorus, and calcium concentration, the positive correlation between OCN and PTH was still statistically significant (r = 0.323, p = 0.000). The serum concentration of cortisol at 0:00 was significantly and positively correlated with serum calcium (r = 0.246, p = 0.001) in bivariate correlation analysis. After controlling for age, sex, disease duration, serum PTH, 25(OH)D, and phosphorus concentration, serum cortisol at 0:00 was still positively and significantly correlated with serum calcium (r = 0.245, p = 0.001). CONCLUSION Serum levels of OCN and cortisol, rather than PTH and calcium, are associated with the development of anxiety and depression symptoms in PHPT patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Li-hao Sun
- *Correspondence: Li-hao Sun, ; Jian-min Liu,
| | | |
Collapse
|
26
|
Yu Z, Ling Z, Lu L, Zhao J, Chen X, Xu P, Zou X. Regulatory Roles of Bone in Neurodegenerative Diseases. Front Aging Neurosci 2020; 12:610581. [PMID: 33408628 PMCID: PMC7779400 DOI: 10.3389/fnagi.2020.610581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/24/2020] [Indexed: 12/18/2022] Open
Abstract
Osteoporosis and neurodegenerative diseases are two kinds of common disorders of the elderly, which often co-occur. Previous studies have shown the skeletal and central nervous systems are closely related to pathophysiology. As the main structural scaffold of the body, the bone is also a reservoir for stem cells, a primary lymphoid organ, and an important endocrine organ. It can interact with the brain through various bone-derived cells, mostly the mesenchymal and hematopoietic stem cells (HSCs). The bone marrow is also a place for generating immune cells, which could greatly influence brain functions. Finally, the proteins secreted by bones (osteokines) also play important roles in the growth and function of the brain. This article reviews the latest research studying the impact of bone-derived cells, bone-controlled immune system, and bone-secreted proteins on the brain, and evaluates how these factors are implicated in the progress of neurodegenerative diseases and their potential use in the diagnosis and treatment of these diseases.
Collapse
Affiliation(s)
- Zhengran Yu
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Orthopaedic Research Institute/Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zemin Ling
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Orthopaedic Research Institute/Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lin Lu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jin Zhao
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiang Chen
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Orthopaedic Research Institute/Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
27
|
Schatz M, Saravanan S, d'Adesky ND, Bramlett H, Perez-Pinzon MA, Raval AP. Osteocalcin, ovarian senescence, and brain health. Front Neuroendocrinol 2020; 59:100861. [PMID: 32781196 DOI: 10.1016/j.yfrne.2020.100861] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/20/2020] [Accepted: 08/05/2020] [Indexed: 12/19/2022]
Abstract
Menopause, an inevitable event in a woman's life, significantly increases risk of bone resorption and diseases such as Alzheimer's, vascular dementia, cardiac arrest, and stroke. The sole role of bones, as traditionally regarded, is to provide structural support for skeletal muscles and allow for ambulation, however this concept is becoming quickly outdated. New literature has emerged that suggests the bone cell-derived hormone osteocalcin (OCN) plays a pivotal role in cognition. OCN levels are correlated with bone mass density and bone turnover, and thus are strongly influenced by the changes associated with menopause. The goal of the current review is to discuss potential gaps in our knowledge of OCN and cognition, discrepancies in methods of OCN quantification, and therapies to enhance circulating OCN. A discussion on implementing exercise or low frequency vibration interventions at the menopausal transition to reduce risk and severity of neurological diseases and associated cognitive decline is included.
Collapse
Affiliation(s)
- Marc Schatz
- Department of Orthopaedic Surgery, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Sharnikha Saravanan
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, Miami, FL 33136, USA
| | - Nathan D d'Adesky
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, Miami, FL 33136, USA
| | - Helen Bramlett
- Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL 33136, USA
| | - Miguel A Perez-Pinzon
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, Miami, FL 33136, USA
| | - Ami P Raval
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, Miami, FL 33136, USA.
| |
Collapse
|
28
|
Karsenty G. The facts of the matter: What is a hormone? PLoS Genet 2020; 16:e1008938. [PMID: 32589668 PMCID: PMC7319275 DOI: 10.1371/journal.pgen.1008938] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 06/17/2020] [Indexed: 12/17/2022] Open
Affiliation(s)
- Gerard Karsenty
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York, United States of America
| |
Collapse
|
29
|
Shan C, Gong YL, Zhuang QQ, Hou YF, Wang SM, Zhu Q, Huang GR, Tao B, Sun LH, Zhao HY, Li ST, Liu JM. Protective effects of β- nicotinamide adenine dinucleotide against motor deficits and dopaminergic neuronal damage in a mouse model of Parkinson's disease. Prog Neuropsychopharmacol Biol Psychiatry 2019; 94:109670. [PMID: 31220519 DOI: 10.1016/j.pnpbp.2019.109670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 05/06/2019] [Accepted: 06/11/2019] [Indexed: 01/07/2023]
Abstract
The level of nicotinamide adenine dinucleotide (NAD) decreases in Parkinson's disease (PD), and its reduction has been reported to be involved in many age-associated neurodegenerative pathologies. Thus, we investigated whether NAD replenishment is beneficial in a 6-hydroxydopamine (6-OHDA)-induced mouse model of PD. Preinjection with NAD in the striatum ameliorated motor deficits and dopaminergic neuronal damage in the substantia nigra and striatum of a mouse model of PD. Moreover, preincubation with NAD protected PC12 cells against the loss of cell viability, morphological damage, oxidative stress and mitochondrial dysfunction caused by 6-OHDA. These results add credence to the beneficial role of NAD against parkinsonian neurodegeneration in mouse models of PD, provide evidence for the potential of NAD for the prevention of PD, and suggest that NAD prevents pathological changes in PD via decreasing mitochondrial dysfunctions.
Collapse
Affiliation(s)
- Chang Shan
- Department of Endocrine and Metabolic Diseases, Rui-jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases. Shanghai 200025, China
| | - Yan-Ling Gong
- Bio-X Institutes, Key laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qian-Qian Zhuang
- Bio-X Institutes, Key laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan-Fang Hou
- Department of Endocrine and Metabolic Diseases, Rui-jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases. Shanghai 200025, China
| | - Shu-Min Wang
- Department of Endocrine and Metabolic Diseases, Rui-jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases. Shanghai 200025, China
| | - Qin Zhu
- Department of Endocrine and Metabolic Diseases, Rui-jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases. Shanghai 200025, China
| | - Guo-Rui Huang
- Department of Endocrine and Metabolic Diseases, Rui-jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases. Shanghai 200025, China
| | - Bei Tao
- Department of Endocrine and Metabolic Diseases, Rui-jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases. Shanghai 200025, China
| | - Li-Hao Sun
- Department of Endocrine and Metabolic Diseases, Rui-jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases. Shanghai 200025, China
| | - Hong-Yan Zhao
- Department of Endocrine and Metabolic Diseases, Rui-jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases. Shanghai 200025, China
| | - Sheng-Tian Li
- Bio-X Institutes, Key laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jian-Min Liu
- Department of Endocrine and Metabolic Diseases, Rui-jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases. Shanghai 200025, China.
| |
Collapse
|
30
|
Roles for osteocalcin in brain signalling: implications in cognition- and motor-related disorders. Mol Brain 2019; 12:23. [PMID: 30909971 PMCID: PMC6434857 DOI: 10.1186/s13041-019-0444-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/13/2019] [Indexed: 12/16/2022] Open
Abstract
It is now generally accepted that the extra-skeleton functionalities of bone are multifaceted. Its endocrine functions came first to light when it was realized that osteoblasts, the bone forming cells, maintain energy homeostasis by improving glucose metabolism, insulin sensitivity and energy expenditure through osteocalcin, a multipurpose osteokine secreted by osteoblasts. Recently, the emerging knowledge on the functional aspects of this osteokine expanded to properties including adult and maternal regulation of cognitive functions. Therapeutic potential of this osteokine has also been recently reported in experimental Parkinson’s disease models. This review highlights such findings on the functions of osteocalcin in the brain and emphasizes on exploring and analyzing much more in-depth basic and clinical studies.
Collapse
|