1
|
Chen B, Zhang Y, Xiao H, Wang L, Li J, Xu Y, Wang JH. Associative memory cells of encoding fear signals and anxiety are recruited by neuroligin-3-mediated synapse formation. Commun Biol 2024; 7:1464. [PMID: 39511365 PMCID: PMC11543854 DOI: 10.1038/s42003-024-07170-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024] Open
Abstract
Acute severe stress may induce fear memory and anxiety. Their mechanisms are expectedly revealed to explore therapeutic strategies. We have investigated the recruitment of associative memory cells that encode stress signals to cause fear memory and anxiety by multidisciplinary approaches. In addition to fear memory and anxiety, the social stress by the resident/intruder paradigm leads to synapse interconnections between somatosensory S1-Tr and auditory cortical neurons in intruder mice. These S1-Tr cortical neurons become to receive convergent synapse innervations newly from the auditory cortex and innately from the thalamus as well as encode the stress signals including battle sound and somatic pain, i.e., associative memory neurons. Neuroligin-3 mRNA knockdown in the S1-Tr cortex precludes the recruitment of associative memory neurons and the onset of fear memory and anxiety. The stress-induced recruitment of associative memory cells in sensory cortices for stress-relevant fear memory and anxiety is based on neuroligin-3-mediated new synapse formation.
Collapse
Affiliation(s)
- Bingchen Chen
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yun Zhang
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Huajuan Xiao
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Lei Wang
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jiayi Li
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Xu
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jin-Hui Wang
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Chen B, Zhang Y, Xiao H, Wang L, Li J, Xu Y, Wang JH. Associative memory cells of encoding fear signals and anxiety are recruited by neuroligin-3-mediated synapse formation. Commun Biol 2024; 7:1464. [DOI: :10.1038/s42003-024-07170-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
|
3
|
Griffith EC, West AE, Greenberg ME. Neuronal enhancers fine-tune adaptive circuit plasticity. Neuron 2024; 112:3043-3057. [PMID: 39208805 PMCID: PMC11550865 DOI: 10.1016/j.neuron.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/22/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Neuronal activity-regulated gene expression plays a crucial role in sculpting neural circuits that underpin adaptive brain function. Transcriptional enhancers are now recognized as key components of gene regulation that orchestrate spatiotemporally precise patterns of gene transcription. We propose that the dynamics of enhancer activation uniquely position these genomic elements to finely tune activity-dependent cellular plasticity. Enhancer specificity and modularity can be exploited to gain selective genetic access to specific cell states, and the precise modulation of target gene expression within restricted cellular contexts enabled by targeted enhancer manipulation allows for fine-grained evaluation of gene function. Mounting evidence also suggests that enduring stimulus-induced changes in enhancer states can modify target gene activation upon restimulation, thereby contributing to a form of cell-wide metaplasticity. We advocate for focused exploration of activity-dependent enhancer function to gain new insight into the mechanisms underlying brain plasticity and cognitive dysfunction.
Collapse
Affiliation(s)
- Eric C Griffith
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Anne E West
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA.
| | | |
Collapse
|
4
|
Banazadeh M, Abiri A, Poortaheri MM, Asnaashari L, Langarizadeh MA, Forootanfar H. Unexplored power of CRISPR-Cas9 in neuroscience, a multi-OMICs review. Int J Biol Macromol 2024; 263:130413. [PMID: 38408576 DOI: 10.1016/j.ijbiomac.2024.130413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/27/2023] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
The neuroscience and neurobiology of gene editing to enhance learning and memory is of paramount interest to the scientific community. The advancements of CRISPR system have created avenues to treat neurological disorders by means of versatile modalities varying from expression to suppression of genes and proteins. Neurodegenerative disorders have also been attributed to non-canonical DNA secondary structures by affecting neuron activity through controlling gene expression, nucleosome shape, transcription, translation, replication, and recombination. Changing DNA regulatory elements which could contribute to the fate and function of neurons are thoroughly discussed in this review. This study presents the ability of CRISPR system to boost learning power and memory, treat or cure genetically-based neurological disorders, and alleviate psychiatric diseases by altering the activity and the irritability of the neurons at the synaptic cleft through DNA manipulation, and also, epigenetic modifications using Cas9. We explore and examine how each different OMIC techniques can come useful when altering DNA sequences. Such insight into the underlying relationship between OMICs and cellular behaviors leads us to better neurological and psychiatric therapeutics by intelligently designing and utilizing the CRISPR/Cas9 technology.
Collapse
Affiliation(s)
- Mohammad Banazadeh
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ardavan Abiri
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT 06520, USA
| | | | - Lida Asnaashari
- Student Research Committee, Kerman Universiy of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Langarizadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Forootanfar
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
5
|
Fuentes-Ramos M, Barco Á. Unveiling Transcriptional and Epigenetic Mechanisms Within Engram Cells: Insights into Memory Formation and Stability. ADVANCES IN NEUROBIOLOGY 2024; 38:111-129. [PMID: 39008013 DOI: 10.1007/978-3-031-62983-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Memory traces for behavioral experiences, such as fear conditioning or taste aversion, are believed to be stored through biophysical and molecular changes in distributed neuronal ensembles across various brain regions. These ensembles are known as engrams, and the cells that constitute them are referred to as engram cells. Recent advancements in techniques for labeling and manipulating neural activity have facilitated the study of engram cells throughout different memory phases, including acquisition, allocation, long-term storage, retrieval, and erasure. In this chapter, we will explore the application of next-generation sequencing methods to engram research, shedding new light on the contribution of transcriptional and epigenetic mechanisms to engram formation and stability.
Collapse
Affiliation(s)
- Miguel Fuentes-Ramos
- Instituto de Neurociencias, Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas, Alicante, Spain
| | - Ángel Barco
- Instituto de Neurociencias, Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas, Alicante, Spain.
| |
Collapse
|
6
|
Yip KYT, Gräff J. Tissue clearing applications in memory engram research. Front Behav Neurosci 2023; 17:1181818. [PMID: 37700912 PMCID: PMC10493294 DOI: 10.3389/fnbeh.2023.1181818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/26/2023] [Indexed: 09/14/2023] Open
Abstract
A memory engram is thought to be the physical substrate of the memory trace within the brain, which is generally depicted as a neuronal ensemble activated by learning to fire together during encoding and retrieval. It has been postulated that engram cell ensembles are functionally interconnected across multiple brain regions to store a single memory as an "engram complex", but visualizing this engram complex across the whole brain has for long been hindered by technical limitations. With the recent development of tissue clearing techniques, advanced light-sheet microscopy, and automated 3D image analysis, it has now become possible to generate a brain-wide map of engram cells and thereby to visualize the "engram complex". In this review, we first provide a comprehensive summary of brain-wide engram mapping studies to date. We then compile a guide on implementing the optimal tissue clearing technique for engram tagging approaches, paying particular attention to visualize engram reactivation as a critical mnemonic property, for which whole-brain multiplexed immunostaining becomes a challenging prerequisite. Finally, we highlight the potential of tissue clearing to simultaneously shed light on both the circuit connectivity and molecular underpinnings of engram cells in a single snapshot. In doing so, novel brain regions and circuits can be identified for subsequent functional manipulation, thus providing an opportunity to robustly examine the "engram complex" underlying memory storage.
Collapse
Affiliation(s)
| | - Johannes Gräff
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
7
|
Yoshikawa S, Taniguchi K, Sawamura H, Ikeda Y, Tsuji A, Matsuda S. A New Concept of Associations between Gut Microbiota, Immunity and Central Nervous System for the Innovative Treatment of Neurodegenerative Disorders. Metabolites 2022; 12:1052. [PMID: 36355135 PMCID: PMC9692629 DOI: 10.3390/metabo12111052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/20/2022] [Accepted: 10/31/2022] [Indexed: 07/30/2023] Open
Abstract
Nerve cell death accounts for various neurodegenerative disorders, in which altered immunity to the integrated central nervous system (CNS) might have destructive consequences. This undesirable immune response often affects the progressive neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, schizophrenia and/or amyotrophic lateral sclerosis (ALS). It has been shown that commensal gut microbiota could influence the brain and/or several machineries of immune function. In other words, neurodegenerative disorders may be connected to the gut-brain-immune correlational system. The engrams in the brain could retain the information of a certain inflammation in the body which might be involved in the pathogenesis of neurodegenerative disorders. Tactics involving the use of probiotics and/or fecal microbiota transplantation (FMT) are now evolving as the most promising and/or valuable for the modification of the gut-brain-immune axis. More deliberation of this concept and the roles of gut microbiota would lead to the development of stupendous treatments for the prevention of, and/or therapeutics for, various intractable diseases including several neurodegenerative disorders.
Collapse
|
8
|
Rienecker KDA, Poston RG, Segales JS, Finholm IW, Sono MH, Munteanu SJ, Ghaninejad-Esfahani M, Rejepova A, Tejeda-Garibay S, Wickman K, Marron Fernandez de Velasco E, Thayer SA, Saha RN. Mild membrane depolarization in neurons induces immediate early gene transcription and acutely subdues responses to successive stimulus. J Biol Chem 2022; 298:102278. [PMID: 35863435 PMCID: PMC9396413 DOI: 10.1016/j.jbc.2022.102278] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/22/2022] Open
Abstract
Immediate early genes (IEGs) are transcribed in response to neuronal activity from sensory stimulation during multiple adaptive processes in the brain. The transcriptional profile of IEGs is indicative of the duration of neuronal activity, but its sensitivity to the strength of depolarization remains unknown. Also unknown is whether activity history of graded potential changes influence future neuronal activity. In this work with dissociated rat cortical neurons, we found that mild depolarization—mediated by elevated extracellular potassium (K+)—induces a wide array of rapid IEGs and transiently depresses transcriptional and signaling responses to a successive stimulus. This latter effect was independent of de novo transcription, translation, and signaling via calcineurin or mitogen-activated protein kinase. Furthermore, as measured by multiple electrode arrays and calcium imaging, mild depolarization acutely subdues subsequent spontaneous and bicuculline-evoked activity via calcium- and N-methyl-d-aspartate receptor–dependent mechanisms. Collectively, this work suggests that a recent history of graded potential changes acutely depress neuronal intrinsic properties and subsequent responses. Such effects may have several potential downstream implications, including reducing signal-to-noise ratio during synaptic plasticity processes.
Collapse
Affiliation(s)
- Kira D A Rienecker
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, California, USA, 95343
| | - Robert G Poston
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, California, USA, 95343
| | - Joshua S Segales
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, California, USA, 95343
| | - Isabelle W Finholm
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Morgan H Sono
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, California, USA, 95343
| | - Sorina J Munteanu
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, California, USA, 95343
| | - Mina Ghaninejad-Esfahani
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, California, USA, 95343
| | - Ayna Rejepova
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, California, USA, 95343
| | - Susana Tejeda-Garibay
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, California, USA, 95343
| | - Kevin Wickman
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | | | - Stanley A Thayer
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Ramendra N Saha
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, California, USA, 95343.
| |
Collapse
|
9
|
Ortega-de San Luis C, Ryan TJ. Understanding the physical basis of memory: Molecular mechanisms of the engram. J Biol Chem 2022; 298:101866. [PMID: 35346687 PMCID: PMC9065729 DOI: 10.1016/j.jbc.2022.101866] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 12/18/2022] Open
Abstract
Memory, defined as the storage and use of learned information in the brain, is necessary to modulate behavior and critical for animals to adapt to their environments and survive. Despite being a cornerstone of brain function, questions surrounding the molecular and cellular mechanisms of how information is encoded, stored, and recalled remain largely unanswered. One widely held theory is that an engram is formed by a group of neurons that are active during learning, which undergoes biochemical and physical changes to store information in a stable state, and that are later reactivated during recall of the memory. In the past decade, the development of engram labeling methodologies has proven useful to investigate the biology of memory at the molecular and cellular levels. Engram technology allows the study of individual memories associated with particular experiences and their evolution over time, with enough experimental resolution to discriminate between different memory processes: learning (encoding), consolidation (the passage from short-term to long-term memories), and storage (the maintenance of memory in the brain). Here, we review the current understanding of memory formation at a molecular and cellular level by focusing on insights provided using engram technology.
Collapse
Affiliation(s)
- Clara Ortega-de San Luis
- School of Biochemistry and Immunology and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
| | - Tomás J Ryan
- School of Biochemistry and Immunology and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland; Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia; Child & Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario, Canada.
| |
Collapse
|
10
|
Gao WJ, Yang SS, Mack NR, Chamberlin LA. Aberrant maturation and connectivity of prefrontal cortex in schizophrenia-contribution of NMDA receptor development and hypofunction. Mol Psychiatry 2022; 27:731-743. [PMID: 34163013 PMCID: PMC8695640 DOI: 10.1038/s41380-021-01196-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 06/02/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023]
Abstract
The neurobiology of schizophrenia involves multiple facets of pathophysiology, ranging from its genetic basis over changes in neurochemistry and neurophysiology, to the systemic level of neural circuits. Although the precise mechanisms associated with the neuropathophysiology remain elusive, one essential aspect is the aberrant maturation and connectivity of the prefrontal cortex that leads to complex symptoms in various stages of the disease. Here, we focus on how early developmental dysfunction, especially N-methyl-D-aspartate receptor (NMDAR) development and hypofunction, may lead to the dysfunction of both local circuitry within the prefrontal cortex and its long-range connectivity. More specifically, we will focus on an "all roads lead to Rome" hypothesis, i.e., how NMDAR hypofunction during development acts as a convergence point and leads to local gamma-aminobutyric acid (GABA) deficits and input-output dysconnectivity in the prefrontal cortex, which eventually induce cognitive and social deficits. Many outstanding questions and hypothetical mechanisms are listed for future investigations of this intriguing hypothesis that may lead to a better understanding of the aberrant maturation and connectivity associated with the prefrontal cortex.
Collapse
Affiliation(s)
- Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA.
| | - Sha-Sha Yang
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Nancy R Mack
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Linda A Chamberlin
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| |
Collapse
|
11
|
Fuentes-Ramos M, Alaiz-Noya M, Barco A. Transcriptome and epigenome analysis of engram cells: Next-generation sequencing technologies in memory research. Neurosci Biobehav Rev 2021; 127:865-875. [PMID: 34097980 DOI: 10.1016/j.neubiorev.2021.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/19/2022]
Abstract
Transcription and epigenetic changes are integral components of the neuronal response to stimulation and have been postulated to be drivers or substrates for enduring changes in animal behavior, including learning and memory. Memories are thought to be deposited in neuronal assemblies called engrams, i.e., groups of cells that undergo persistent physical or chemical changes during learning and are selectively reactivated to retrieve the memory. Despite the research progress made in recent years, the identity of specific epigenetic changes, if any, that occur in these cells and subsequently contribute to the persistence of memory traces remains unknown. The analysis of these changes is challenging due to the difficulty of exploring molecular alterations that only occur in a relatively small percentage of cells embedded in a complex tissue. In this review, we discuss the recent advances in this field and the promise of next-generation sequencing (NGS) and epigenome editing methods for overcoming these challenges and address long-standing questions concerning the role of epigenetic mechanisms in memory encoding, maintenance and expression.
Collapse
Affiliation(s)
- Miguel Fuentes-Ramos
- Instituto de Neurociencias, Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas, Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Marta Alaiz-Noya
- Instituto de Neurociencias, Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas, Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Angel Barco
- Instituto de Neurociencias, Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas, Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550, Alicante, Spain.
| |
Collapse
|
12
|
Kyrke-Smith M, Volk LJ, Cooke SF, Bear MF, Huganir RL, Shepherd JD. The Immediate Early Gene Arc Is Not Required for Hippocampal Long-Term Potentiation. J Neurosci 2021; 41:4202-4211. [PMID: 33833081 PMCID: PMC8143205 DOI: 10.1523/jneurosci.0008-20.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 11/21/2022] Open
Abstract
Memory consolidation is thought to occur through protein synthesis-dependent synaptic plasticity mechanisms such as long-term potentiation (LTP). Dynamic changes in gene expression and epigenetic modifications underlie the maintenance of LTP. Similar mechanisms may mediate the storage of memory. Key plasticity genes, such as the immediate early gene Arc, are induced by learning and by LTP induction. Mice that lack Arc have severe deficits in memory consolidation, and Arc has been implicated in numerous other forms of synaptic plasticity, including long-term depression and cell-to-cell signaling. Here, we take a comprehensive approach to determine if Arc is necessary for hippocampal LTP in male and female mice. Using a variety of Arc knock-out (KO) lines, we found that germline Arc KO mice show no deficits in CA1 LTP induced by high-frequency stimulation and enhanced LTP induced by theta-burst stimulation. Temporally restricting the removal of Arc to adult animals and spatially restricting it to the CA1 using Arc conditional KO mice did not have an effect on any form of LTP. Similarly, acute application of Arc antisense oligodeoxynucleotides had no effect on hippocampal CA1 LTP. Finally, the maintenance of in vivo LTP in the dentate gyrus of Arc KO mice was normal. We conclude that Arc is not necessary for hippocampal LTP and may mediate memory consolidation through alternative mechanisms.SIGNIFICANCE STATEMENT The immediate early gene Arc is critical for maintenance of long-term memory. How Arc mediates this process remains unclear, but it has been proposed to sustain Hebbian synaptic potentiation, which is a key component of memory encoding. This form of plasticity is modeled experimentally by induction of LTP, which increases Arc mRNA and protein expression. However, mechanistic data implicates Arc in the endocytosis of AMPA-type glutamate receptors and the weakening of synapses. Here, we took a comprehensive approach to determine if Arc is necessary for hippocampal LTP. We find that Arc is not required for LTP maintenance and may regulate memory storage through alternative mechanisms.
Collapse
Affiliation(s)
| | - Lenora J Volk
- Department of Neuroscience, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Samuel F Cooke
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Department of Basic and Clinical Neurosciences, King's College London, London, WC2R 2LS, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, United Kingdom
| | - Mark F Bear
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Richard L Huganir
- Department of Neuroscience, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Jason D Shepherd
- Department of Neurobiology, University of Utah, Salt Lake City, Utah 84112
| |
Collapse
|
13
|
Rao-Ruiz P, Visser E, Mitrić M, Smit AB, van den Oever MC. A Synaptic Framework for the Persistence of Memory Engrams. Front Synaptic Neurosci 2021; 13:661476. [PMID: 33841124 PMCID: PMC8024575 DOI: 10.3389/fnsyn.2021.661476] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 02/26/2021] [Indexed: 12/31/2022] Open
Abstract
The ability to store and retrieve learned information over prolonged periods of time is an essential and intriguing property of the brain. Insight into the neurobiological mechanisms that underlie memory consolidation is of utmost importance for our understanding of memory persistence and how this is affected in memory disorders. Recent evidence indicates that a given memory is encoded by sparsely distributed neurons that become highly activated during learning, so-called engram cells. Research by us and others confirms the persistent nature of cortical engram cells by showing that these neurons are required for memory expression up to at least 1 month after they were activated during learning. Strengthened synaptic connectivity between engram cells is thought to ensure reactivation of the engram cell network during retrieval. However, given the continuous integration of new information into existing neuronal circuits and the relatively rapid turnover rate of synaptic proteins, it is unclear whether a lasting learning-induced increase in synaptic connectivity is mediated by stable synapses or by continuous dynamic turnover of synapses of the engram cell network. Here, we first discuss evidence for the persistence of engram cells and memory-relevant adaptations in synaptic plasticity, and then propose models of synaptic adaptations and molecular mechanisms that may support memory persistence through the maintenance of enhanced synaptic connectivity within an engram cell network.
Collapse
Affiliation(s)
- Priyanka Rao-Ruiz
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Esther Visser
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Miodrag Mitrić
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Michel C van den Oever
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
14
|
Mukherjee D, Gonzales BJ, Ashwal-Fluss R, Turm H, Groysman M, Citri A. Egr2 induction in spiny projection neurons of the ventrolateral striatum contributes to cocaine place preference in mice. eLife 2021; 10:65228. [PMID: 33724178 PMCID: PMC8057818 DOI: 10.7554/elife.65228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/15/2021] [Indexed: 12/16/2022] Open
Abstract
Drug addiction develops due to brain-wide plasticity within neuronal ensembles, mediated by dynamic gene expression. Though the most common approach to identify such ensembles relies on immediate early gene expression, little is known of how the activity of these genes is linked to modified behavior observed following repeated drug exposure. To address this gap, we present a broad-to-specific approach, beginning with a comprehensive investigation of brain-wide cocaine-driven gene expression, through the description of dynamic spatial patterns of gene induction in subregions of the striatum, and finally address functionality of region-specific gene induction in the development of cocaine preference. Our findings reveal differential cell-type specific dynamic transcriptional recruitment patterns within two subdomains of the dorsal striatum following repeated cocaine exposure. Furthermore, we demonstrate that induction of the IEG Egr2 in the ventrolateral striatum, as well as the cells within which it is expressed, are required for the development of cocaine seeking. The human brain is ever changing, constantly rewiring itself in response to new experiences, knowledge or information from the environment. Addictive drugs such as cocaine can hijack the genetic mechanisms responsible for this plasticity, creating dangerous, obsessive drug-seeking and consuming behaviors. Cocaine-induced plasticity is difficult to apprehend, however, as brain regions or even cell populations can react differently to the compound. For instance, sub-regions in the striatum – the brain area that responds to rewards and helps to plan movement – show distinct responses during progressive exposure to cocaine. And while researchers know that the drug immediately changes how neurons switch certain genes on and off, it is still unclear how these genetic modifications later affect behavior. Mukherjee, Gonzales et al. explored these questions at different scales, first focusing on how progressive cocaine exposure changed the way various gene programs were activated across the entire brain. This revealed that programs in the striatum were the most affected by the drug. Examining this region more closely showed that cocaine switches on genes in specific ‘spiny projection’ neuron populations, depending on where these cells are located and the drug history of the mouse. Finally, Mukherjee, Gonzales et al. used genetically modified mice to piece together cocaine exposure, genetic changes and modifications in behavior. These experiments revealed that the drive to seek cocaine depended on activation of the Egr2 gene in populations of spiny projection neurons in a specific sub-region of the striatum. The gene, which codes for a protein that regulates how genes are switched on and off, was itself strongly activated by cocaine intake. Cocaine addiction can have devastating consequences for individuals. Grasping how this drug alters the brain could pave the way for new treatments, while also providing information on the basic mechanisms underlying brain plasticity.
Collapse
Affiliation(s)
- Diptendu Mukherjee
- The Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel.,Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ben Jerry Gonzales
- The Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel.,Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Reut Ashwal-Fluss
- The Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel
| | - Hagit Turm
- The Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel.,Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maya Groysman
- The Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel
| | - Ami Citri
- The Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel.,Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,Program in Child and Brain Development, Canadian Institute for Advanced Research, MaRS Centre, Toronto, Canada
| |
Collapse
|
15
|
Vinarskaya AK, Balaban PM, Roshchin MV, Zuzina AB. Sodium butyrate as a selective cognitive enhancer for weak or impaired memory. Neurobiol Learn Mem 2021; 180:107414. [PMID: 33610771 DOI: 10.1016/j.nlm.2021.107414] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/23/2021] [Accepted: 02/15/2021] [Indexed: 01/09/2023]
Abstract
Several recent studies showed that memory can be modulated by manipulating chromatin modifications using histone deacetylase (HDAC) inhibitors during memory formation, consolidation, and reconsolidation. We used a context fear conditioning paradigm with minimal non-painful current as a reinforcement, what elicited alertness to the context and freezing during tests in rats. Such paradigm resulted in a relatively weak memory in significant part of the rats. Here, we demonstrate that intraperitoneal administration of the HDAC inhibitor sodium butyrate immediately following memory reactivation, produced memory enhancement in rats with weak memory, however, not in rats with strong memory. Additionally, we investigated the ability of the HDAC inhibitor sodium butyrate to restore the contextual memory impaired due to the blockade of protein synthesis during memory reactivation. The results obtained evidence that the HDAC inhibitor sodium butyrate reinstated the impaired contextual memory. This enhancement effect is consistent with other studies demonstrating a role for HDAC inhibitors in the facilitation of contextual fear.
Collapse
Affiliation(s)
- Aliya Kh Vinarskaya
- Cellular Neurobiology of Learning Lab, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerova St., Moscow 117485, Russia.
| | - Pavel M Balaban
- Cellular Neurobiology of Learning Lab, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerova St., Moscow 117485, Russia
| | - Matvey V Roshchin
- Cellular Neurobiology of Learning Lab, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerova St., Moscow 117485, Russia
| | - Alena B Zuzina
- Cellular Neurobiology of Learning Lab, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerova St., Moscow 117485, Russia.
| |
Collapse
|
16
|
Kyrke-Smith M, Logan B, Abraham WC, Williams JM. Bilateral histone deacetylase 1 and 2 activity and enrichment at unique genes following induction of long-term potentiation in vivo. Hippocampus 2020; 31:389-407. [PMID: 33378103 DOI: 10.1002/hipo.23297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 12/15/2020] [Accepted: 12/19/2020] [Indexed: 11/10/2022]
Abstract
Long-term potentiation (LTP) is a synaptic plasticity mechanism critical to long-term memory. LTP induced in vivo is characterized by altered transcriptional activity, including a period of upregulation of gene expression which is followed by a later dominant downregulation. This temporal shift to downregulated gene expression is predicted to be partly mediated by epigenetic inhibitors of gene expression, such as histone deacetylases (HDACs). Further, pharmacological inhibitors of HDAC activity have previously been shown to enhance LTP persistence in vitro. To explore the contribution of HDACs to the persistence of LTP in vivo, we examined HDAC1 and HDAC2 activity over a 24 hr period following unilateral LTP induction in the dentate gyrus of freely moving rats. Surprisingly, we found significant changes in HDAC1 and HDAC2 activity in both the stimulated as well as the unstimulated hemispheres, with the largest increase in activity occurring bilaterally, 20 min after LTP stimulation. During this time point of heightened activity, chromatin immunoprecipitation assays showed that both HDAC1 and HDAC2 were enriched at distinct sets of genes within each hemispheres. Further, the HDAC inhibitor Trichostatin A enhanced an intermediate phase of LTP lasting days, which has not previously been associated with altered transcription. The inhibitor had no effect on the persistence of LTP lasting weeks. Together, these data suggest that HDAC activity early after the induction of LTP may negatively regulate plasticity-related gene expression that is involved in the initial stabilization of LTP, but not its long-term maintenance.
Collapse
Affiliation(s)
- Madeleine Kyrke-Smith
- Department of Anatomy, University of Otago, Dunedin, New Zealand.,Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Barbara Logan
- Department of Anatomy, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, Brain Research New Zealand-Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Wickliffe C Abraham
- Department of Anatomy, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, Brain Research New Zealand-Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Joanna M Williams
- Department of Anatomy, University of Otago, Dunedin, New Zealand.,Department of Psychology, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, Brain Research New Zealand-Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| |
Collapse
|
17
|
Smolen P, Baxter DA, Byrne JH. Comparing Theories for the Maintenance of Late LTP and Long-Term Memory: Computational Analysis of the Roles of Kinase Feedback Pathways and Synaptic Reactivation. Front Comput Neurosci 2020; 14:569349. [PMID: 33390922 PMCID: PMC7772319 DOI: 10.3389/fncom.2020.569349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/16/2020] [Indexed: 11/26/2022] Open
Abstract
A fundamental neuroscience question is how memories are maintained from days to a lifetime, given turnover of proteins that underlie expression of long-term synaptic potentiation (LTP) or “tag” synapses as eligible for LTP. A likely solution relies on synaptic positive feedback loops, prominently including persistent activation of Ca2+/calmodulin kinase II (CaMKII) and self-activated synthesis of protein kinase M ζ (PKMζ). Data also suggest positive feedback based on recurrent synaptic reactivation within neuron assemblies, or engrams, is necessary to maintain memories. The relative importance of these mechanisms is controversial. To explore the likelihood that each mechanism is necessary or sufficient to maintain memory, we simulated maintenance of LTP with a simplified model incorporating persistent kinase activation, synaptic tagging, and preferential reactivation of strong synapses, and analyzed implications of recent data. We simulated three model variants, each maintaining LTP with one feedback loop: autonomous, self-activated PKMζ synthesis (model variant I); self-activated CamKII (model variant II); and recurrent reactivation of strengthened synapses (model variant III). Variant I predicts that, for successful maintenance of LTP, either 1) PKMζ contributes to synaptic tagging, or 2) a low constitutive tag level persists during maintenance independent of PKMζ, or 3) maintenance of LTP is independent of tagging. Variant II maintains LTP and suggests persistent CaMKII activation could maintain PKMζ activity, a feedforward interaction not previously considered. However, we note data challenging the CaMKII feedback loop. In Variant III synaptic reactivation drives, and thus predicts, recurrent or persistent activation of CamKII and other necessary kinases, plausibly contributing to persistent elevation of PKMζ levels. Reactivation is thus predicted to sustain recurrent rounds of synaptic tagging and incorporation of plasticity-related proteins. We also suggest (model variant IV) that synaptic reactivation and autonomous kinase activation could synergistically maintain LTP. We propose experiments that could discriminate these maintenance mechanisms.
Collapse
Affiliation(s)
- Paul Smolen
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Douglas A Baxter
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States.,Engineering and Medicine, Texas A&M Health Science Center, Houston, TX, United States
| | - John H Byrne
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
18
|
Sun J, Lu Y, Yang J, Song Z, Lu W, Wang JH. mRNA and microRNA Profiles in the Amygdala Are Relevant to Susceptibility and Resilience to Psychological Stress Induced in Mice. J Mol Neurosci 2020; 70:1771-1796. [DOI: 10.1007/s12031-020-01570-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 04/22/2020] [Indexed: 12/22/2022]
|
19
|
Gobbo F, Cattaneo A. Neuronal Activity at Synapse Resolution: Reporters and Effectors for Synaptic Neuroscience. Front Mol Neurosci 2020; 13:572312. [PMID: 33192296 PMCID: PMC7609880 DOI: 10.3389/fnmol.2020.572312] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022] Open
Abstract
The development of methods for the activity-dependent tagging of neurons enabled a new way to tackle the problem of engram identification at the cellular level, giving rise to groundbreaking findings in the field of memory studies. However, the resolution of activity-dependent tagging remains limited to the whole-cell level. Notably, events taking place at the synapse level play a critical role in the establishment of new memories, and strong experimental evidence shows that learning and synaptic plasticity are tightly linked. Here, we provide a comprehensive review of the currently available techniques that enable to identify and track the neuronal activity with synaptic spatial resolution. We also present recent technologies that allow to selectively interfere with specific subsets of synapses. Lastly, we discuss how these technologies can be applied to the study of learning and memory.
Collapse
Affiliation(s)
- Francesco Gobbo
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Antonino Cattaneo
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy
| |
Collapse
|
20
|
Borodinova AA, Balaban PM. Epigenetic Regulation as a Basis for Long-Term Changes in the Nervous System: In Search of Specificity Mechanisms. BIOCHEMISTRY (MOSCOW) 2020; 85:994-966. [DOI: 10.1134/s0006297920090023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abstract
Adaptive long-term changes in the functioning of nervous system (plasticity, memory) are not written in the genome, but are directly associated with the changes in expression of many genes comprising epigenetic regulation. Summarizing the known data regarding the role of epigenetics in regulation of plasticity and memory, we would like to highlight several key aspects. (i) Different chromatin remodeling complexes and DNA methyltransferases can be organized into high-order multiprotein repressor complexes that are cooperatively acting as the “molecular brake pads”, selectively restricting transcriptional activity of specific genes at rest. (ii) Relevant physiological stimuli induce a cascade of biochemical events in the activated neurons resulting in translocation of different signaling molecules (protein kinases, NO-containing complexes) to the nucleus. (iii) Stimulus-specific nitrosylation and phosphorylation of different epigenetic factors is linked to a decrease in their enzymatic activity or changes in intracellular localization that results in temporary destabilization of the repressor complexes. (iv) Removing “molecular brakes” opens a “critical time window” for global and local epigenetic changes, triggering specific transcriptional programs and modulation of synaptic connections efficiency. It can be assumed that the reversible post-translational histone modifications serve as the basis of plastic changes in the neural network. On the other hand, DNA methylation and methylation-dependent 3D chromatin organization can serve a stable molecular basis for long-term maintenance of plastic changes and memory.
Collapse
|
21
|
Harel A, Ryan TJ. The memory toolbox: how genetic manipulations and cellular imaging are transforming our understanding of learned information. Curr Opin Behav Sci 2020. [DOI: 10.1016/j.cobeha.2020.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Snyder MA, Gao WJ. NMDA receptor hypofunction for schizophrenia revisited: Perspectives from epigenetic mechanisms. Schizophr Res 2020; 217:60-70. [PMID: 30979669 PMCID: PMC7258307 DOI: 10.1016/j.schres.2019.03.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 02/06/2023]
Abstract
Schizophrenia (SZ) is a neurodevelopmental disorder with cognitive deficits manifesting during early stages of the disease. Evidence suggests that genetic factors in combination with environmental insults lead to complex changes to glutamatergic, GABAergic, and dopaminergic systems. In particular, the N-methyl-d-aspartate receptor (NMDAR), a major glutamate receptor subtype, is implicated in both the disease progression and symptoms of SZ. NMDARs are critical for synaptic plasticity and cortical maturation, as well as learning and memory processes. In fact, any deviation from normal NMDAR expression and function can have devastating consequences. Surprisingly, there is little evidence from human patients that direct mutations of NMDAR genes contribute to SZ. One intriguing hypothesis is that epigenetic changes, which could result from early insults, alter protein expression and contribute to the NMDAR hypofunction found in SZ. Epigenetics is referred to as modifications that alter gene transcription without changing the DNA sequence itself. In this review, we first discuss how epigenetic changes to NMDAR genes could contribute to NMDAR hypofunction. We then explore how NMDAR hypofunction may contribute to epigenetic changes in other proteins or genes that lead to synaptic dysfunction and symptoms in SZ. We argue that NMDAR hypofunction occurs in early stage of the disease, and it may consequentially initiate GABA and dopamine deficits. Therefore, targeting NMDAR dysfunction during the early stages would be a promising avenue for prevention and therapeutic intervention of cognitive and social deficits that remain untreatable. Finally, we discuss potential questions regarding the epigenetic of SZ and future directions for research.
Collapse
Affiliation(s)
- Melissa A. Snyder
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada, K1H 8M5,Correspondence: Wen-Jun Gao, M.D., Ph.D., Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, Phone: (215) 991-8907, Fax: (215) 843-9802, ; Melissa A. Snyder, Ph.D.,
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, United States of America.
| |
Collapse
|
23
|
Locating the engram: Should we look for plastic synapses or information-storing molecules? Neurobiol Learn Mem 2020; 169:107164. [PMID: 31945459 DOI: 10.1016/j.nlm.2020.107164] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/18/2019] [Accepted: 01/10/2020] [Indexed: 12/12/2022]
Abstract
Karl Lashley began the search for the engram nearly seventy years ago. In the time since, much has been learned but divisions remain. In the contemporary neurobiology of learning and memory, two profoundly different conceptions contend: the associative/connectionist (A/C) conception and the computational/representational (C/R) conception. Both theories ground themselves in the belief that the mind is emergent from the properties and processes of a material brain. Where these theories differ is in their description of what the neurobiological substrate of memory is and where it resides in the brain. The A/C theory of memory emphasizes the need to distinguish memory cognition from the memory engram and postulates that memory cognition is an emergent property of patterned neural activity routed through engram circuits. In this model, learning re-organizes synapse association strengths to guide future neural activity. Importantly, the version of the A/C theory advocated for here contends that synaptic change is not symbolic and, despite normally being necessary, is not sufficient for memory cognition. Instead, synaptic change provides the capacity and a blueprint for reinstating symbolic patterns of neural activity. Unlike the A/C theory, which posits that memory emerges at the circuit level, the C/R conception suggests that memory manifests at the level of intracellular molecular structures. In C/R theory, these intracellular structures are information-conveying and have properties compatible with the view that brain computation utilizes a read/write memory, functionally similar to that in a computer. New research has energized both sides and highlighted the need for new discussion. Both theories, the key questions each theory has yet to resolve and several potential paths forward are presented here.
Collapse
|
24
|
Rienecker KDA, Poston RG, Saha RN. Merits and Limitations of Studying Neuronal Depolarization-Dependent Processes Using Elevated External Potassium. ASN Neuro 2020; 12:1759091420974807. [PMID: 33256465 PMCID: PMC7711227 DOI: 10.1177/1759091420974807] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/07/2020] [Accepted: 10/22/2020] [Indexed: 01/24/2023] Open
Abstract
Elevated extracellular potassium chloride is widely used to achieve membrane depolarization of cultured neurons. This technique has illuminated mechanisms of calcium influx through L-type voltage sensitive calcium channels, activity-regulated signaling, downstream transcriptional events, and many other intracellular responses to depolarization. However, there is enormous variability in these treatments, including durations from seconds to days and concentrations from 3mM to 150 mM KCl. Differential effects of these variable protocols on neuronal activity and transcriptional programs are underexplored. Furthermore, potassium chloride treatments in vitro are criticized for being poor representatives of in vivo phenomena and are questioned for their effects on cell viability. In this review, we discuss the intracellular consequences of elevated extracellular potassium chloride treatment in vitro, the variability of such treatments in the literature, the strengths and limitations of this tool, and relevance of these studies to brain functions and dysfunctions.
Collapse
Affiliation(s)
- Kira D. A. Rienecker
- Department of Molecular and Cell Biology,
School of Natural Sciences, University of California, Merced, United
States
| | - Robert G. Poston
- Department of Molecular and Cell Biology,
School of Natural Sciences, University of California, Merced, United
States
| | - Ramendra N. Saha
- Department of Molecular and Cell Biology,
School of Natural Sciences, University of California, Merced, United
States
| |
Collapse
|
25
|
Du K, Lu W, Sun Y, Feng J, Wang JH. mRNA and miRNA profiles in the nucleus accumbens are related to fear memory and anxiety induced by physical or psychological stress. J Psychiatr Res 2019; 118:44-65. [PMID: 31493709 DOI: 10.1016/j.jpsychires.2019.08.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/07/2019] [Accepted: 08/26/2019] [Indexed: 01/21/2023]
Abstract
Anxiety is presumably driven by fear memory. The nucleus accumbens involves emotional regulation. Molecular profiles in the nucleus accumbens related to stress-induced fear memory remain elucidated. Fear memory in mice was induced by a paradigm of social defeat. Physical and psychological stress was delivered to an intruder that was attacked by an aggressive resident. Meanwhile, an observer experienced psychological stress by seeing aggressor attacks. The nucleus accumbens tissues from intruder and observer mice that appear fear memory and anxiety as well as control mice were harvested for analyses of mRNA and miRNA profiles by high throughput sequencing. In the nucleus accumbens of intruders and observers with fear memory and anxiety, genes encoding AdrRα, AChRM2/3, GluRM2/8, HrR1, SSR, BDNF and AC are upregulated, while genes encoding DR3/5, PR2, GPγ8 and P450 are downregulated. Physical and/or psychological stress leads to fear memory and anxiety likely by molecules relevant to certain synapses. Moreover, there are differential expressions in genes that encode GABARA, 5-HTR1/5, CREB3, AChRM2, RyR, Wnt and GPγ13 in the nucleus accumbens from intruders versus observers. GABAergic, serotonergic and cholinergic synapses as well as calcium, Wnt and CREB signaling molecules may be involved in fear memory differently induced by psychological stress and physical/psychological stress. The data from analyzing mRNA and miRNA profiles are consistent. Some molecules are validated by qRT-PCR and dual luciferase reporter assay. Fear memory and anxiety induced by the mixture of physical and psychological stress or psychological stress appear influenced by complicated molecular mechanisms in the nucleus accumbens.
Collapse
Affiliation(s)
- Kaixin Du
- Qingdao University, School of Pharmacy, Qingdao, Shandong, 266021, China
| | - Wei Lu
- Qingdao University, School of Pharmacy, Qingdao, Shandong, 266021, China.
| | - Yan Sun
- Qingdao University, School of Pharmacy, Qingdao, Shandong, 266021, China
| | - Jing Feng
- Qingdao University, School of Pharmacy, Qingdao, Shandong, 266021, China
| | - Jin-Hui Wang
- Qingdao University, School of Pharmacy, Qingdao, Shandong, 266021, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
26
|
Sun Y, Lu W, Du K, Wang JH. microRNA and mRNA profiles in the amygdala are relevant to fear memory induced by physical or psychological stress. J Neurophysiol 2019; 122:1002-1022. [PMID: 31268807 DOI: 10.1152/jn.00215.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Anxiety is presumably driven by fear memory. Molecular profiles in the amygdala of mice with fear memory induced by psychological and physical stresses remain to be elucidated. Fear memory in mice was induced by a paradigm of social defeat. Physical and psychological stresses (PPS) to an intruder were given by attacks from an aggressive resident. Psychological stress (PS) to an observer was given by the witnessing of aggressor attacks. Amygdala tissues from these mice showing fear memory and anxiety vs. tissues from control mice were harvested to analyze mRNA and microRNA profiles by high-throughput sequencing. In the amygdala of intruders and observers with fear memory, the genes encoding 5-HTR1b, 5-HTR2a, DAR2, AChRM3, and IP3R1 are upregulated, whereas genes encoding GPγ11, GPγ13, GPγT2, RasC3, and P450 are downregulated, indicating that these molecules are involved in fear memory induced by physical/psychological stresses. In the comparison of intruders with observers, the upregulation of genes encoding 5-HTR6, GPγ8, P2R7, NFκ2, CREB3/1, and Itgα9 as well as the downregulation of genes encoding DAR5, 5-HTR1a, and HSP1a are involved in fear memory induced by physical stress. The upregulation of genes encoding DAR1, 5-HTR5a and SSR2/3 as well as the downregulation of AdRα1, CREB3/1, GPγ13 and GPγ8 are involved in fear memory induced by psychological stress. Results obtained by sequencing mRNA and microRNA profiles are consistent with results of quantitative RT-PCR analysis and dual-luciferase reporter assays performed for validation. In conclusion, fear memories and anxiety induced by PPS vs. PS are caused by the imbalanced regulation of different synapses and signaling pathways in the amygdala.NEW & NOTEWORTHY The current study identifies the molecular mechanism underlying fear memory and anxiety induced by psychological stress vs. physical stress, in which the imbalanced expression of microRNA-regulated mRNAs relevant to dopaminergic, adrenergic, and serotonergic synapses in the amygdala plays an important role. This result reveals different molecular profiles for psychological and physical stresses.
Collapse
Affiliation(s)
- Yan Sun
- Qingdao University, School of Pharmacy, Qingdao Shandong, China
| | - Wei Lu
- Qingdao University, School of Pharmacy, Qingdao Shandong, China
| | - Kaixin Du
- Qingdao University, School of Pharmacy, Qingdao Shandong, China
| | - Jin-Hui Wang
- Qingdao University, School of Pharmacy, Qingdao Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
27
|
Smolen P, Baxter DA, Byrne JH. How can memories last for days, years, or a lifetime? Proposed mechanisms for maintaining synaptic potentiation and memory. ACTA ACUST UNITED AC 2019; 26:133-150. [PMID: 30992383 PMCID: PMC6478248 DOI: 10.1101/lm.049395.119] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 03/12/2019] [Indexed: 01/24/2023]
Abstract
With memory encoding reliant on persistent changes in the properties of synapses, a key question is how can memories be maintained from days to months or a lifetime given molecular turnover? It is likely that positive feedback loops are necessary to persistently maintain the strength of synapses that participate in encoding. Such feedback may occur within signal-transduction cascades and/or the regulation of translation, and it may occur within specific subcellular compartments or within neuronal networks. Not surprisingly, numerous positive feedback loops have been proposed. Some posited loops operate at the level of biochemical signal-transduction cascades, such as persistent activation of Ca2+/calmodulin kinase II (CaMKII) or protein kinase Mζ. Another level consists of feedback loops involving transcriptional, epigenetic and translational pathways, and autocrine actions of growth factors such as BDNF. Finally, at the neuronal network level, recurrent reactivation of cell assemblies encoding memories is likely to be essential for late maintenance of memory. These levels are not isolated, but linked by shared components of feedback loops. Here, we review characteristics of some commonly discussed feedback loops proposed to underlie the maintenance of memory and long-term synaptic plasticity, assess evidence for and against their necessity, and suggest experiments that could further delineate the dynamics of these feedback loops. We also discuss crosstalk between proposed loops, and ways in which such interaction can facilitate the rapidity and robustness of memory formation and storage.
Collapse
Affiliation(s)
- Paul Smolen
- Department of Neurobiology and Anatomy, W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School of the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Douglas A Baxter
- Department of Neurobiology and Anatomy, W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School of the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - John H Byrne
- Department of Neurobiology and Anatomy, W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School of the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| |
Collapse
|
28
|
Manning CE, Eagle AL, Kwiatkowski CC, Achargui R, Woodworth H, Potter E, Ohnishi Y, Leinninger GM, Robison AJ. Hippocampal Subgranular Zone FosB Expression Is Critical for Neurogenesis and Learning. Neuroscience 2019; 406:225-233. [PMID: 30902680 DOI: 10.1016/j.neuroscience.2019.03.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 12/13/2022]
Abstract
Neural proliferation in the dentate gyrus (DG) is closely linked with learning and memory, but the transcriptional programming that drives adult proliferation remains incompletely understood. Our lab previously elucidated the critical role of the transcription factor ΔFosB in the dorsal hippocampus (dHPC) in learning and memory, and the FosB gene has been suggested to play a role in neuronal proliferation. However, the subregion-specific and potentially cell-autonomous role of dHPC ΔFosB in neurogenesis-dependent learning has not been studied. Here, we crossed neurotensin receptor-2 (NtsR2) Cre mice, which express Cre within the subgranular zone (SGZ) of dHPC DG, with floxed FosB mice to show that knockout of ΔFosB in hippocampal SGZ neurons reduces antidepressant-induced neurogenesis and impedes hippocampus-dependent learning in the novel object recognition task. Taken together, these data indicate that FosB gene expression in SGZ is necessary for both hippocampal neurogenesis and memory formation.
Collapse
Affiliation(s)
- Claire E Manning
- Department of Physiology, Michigan State University, East Lansing, MI, USA 48824
| | - Andrew L Eagle
- Department of Physiology, Michigan State University, East Lansing, MI, USA 48824
| | | | - Ridouane Achargui
- Department of Physiology, Michigan State University, East Lansing, MI, USA 48824
| | - Hillary Woodworth
- Department of Physiology, Michigan State University, East Lansing, MI, USA 48824
| | - Emily Potter
- Department of Physiology, Michigan State University, East Lansing, MI, USA 48824
| | - Yoshinori Ohnishi
- Dept. of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka, Japan; Department of Medical Biophysics and Radiation Biology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Gina M Leinninger
- Department of Physiology, Michigan State University, East Lansing, MI, USA 48824
| | - A J Robison
- Department of Physiology, Michigan State University, East Lansing, MI, USA 48824.
| |
Collapse
|
29
|
Abraham WC, Jones OD, Glanzman DL. Is plasticity of synapses the mechanism of long-term memory storage? NPJ SCIENCE OF LEARNING 2019; 4:9. [PMID: 31285847 PMCID: PMC6606636 DOI: 10.1038/s41539-019-0048-y] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/29/2019] [Indexed: 05/05/2023]
Abstract
It has been 70 years since Donald Hebb published his formalized theory of synaptic adaptation during learning. Hebb's seminal work foreshadowed some of the great neuroscientific discoveries of the following decades, including the discovery of long-term potentiation and other lasting forms of synaptic plasticity, and more recently the residence of memories in synaptically connected neuronal assemblies. Our understanding of the processes underlying learning and memory has been dominated by the view that synapses are the principal site of information storage in the brain. This view has received substantial support from research in several model systems, with the vast majority of studies on the topic corroborating a role for synapses in memory storage. Yet, despite the neuroscience community's best efforts, we are still without conclusive proof that memories reside at synapses. Furthermore, an increasing number of non-synaptic mechanisms have emerged that are also capable of acting as memory substrates. In this review, we address the key findings from the synaptic plasticity literature that make these phenomena such attractive memory mechanisms. We then turn our attention to evidence that questions the reliance of memory exclusively on changes at the synapse and attempt to integrate these opposing views.
Collapse
Affiliation(s)
- Wickliffe C. Abraham
- Department of Psychology, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Box 56, Dunedin, 9010 New Zealand
| | - Owen D. Jones
- Department of Psychology, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Box 56, Dunedin, 9010 New Zealand
| | - David L. Glanzman
- Departments of Integrative Biology and Physiology, and Neurobiology, and the Brain Research Institute, University of California, Los Angeles, CA 90095 USA
| |
Collapse
|