1
|
Zhou J, Zhu L. Shared genetic links between hypothyroidism and psychiatric disorders: evidence from a comprehensive genetic analysis. Front Endocrinol (Lausanne) 2024; 15:1370019. [PMID: 38904036 PMCID: PMC11187243 DOI: 10.3389/fendo.2024.1370019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024] Open
Abstract
Background Epidemiologic studies have suggested co-morbidity between hypothyroidism and psychiatric disorders. However, the shared genetic etiology and causal relationship between them remain currently unclear. Methods We assessed the genetic correlations between hypothyroidism and psychiatric disorders [anxiety disorders (ANX), schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BIP)] using summary association statistics from genome-wide association studies (GWAS). Two disease-associated pleiotropic risk loci and genes were identified, and pathway enrichment, tissue enrichment, and other analyses were performed to determine their specific functions. Furthermore, we explored the causal relationship between them through Mendelian randomization (MR) analysis. Results We found significant genetic correlations between hypothyroidism with ANX, SCZ, and MDD, both in the Linkage disequilibrium score regression (LDSC) approach and the high-definition likelihood (HDL) approach. Meanwhile, the strongest correlation was observed between hypothyroidism and MDD (LDSC: rg=0.264, P=7.35×10-12; HDL: rg=0.304, P=4.14×10-17). We also determined a significant genetic correlation between MDD with free thyroxine (FT4) and thyroid-stimulating hormone (TSH) levels. A total of 30 pleiotropic risk loci were identified between hypothyroidism and psychiatric disorders, of which the 15q14 locus was identified in both ANX and SCZ (P values are 6.59×10-11 and 2.10×10-12, respectively) and the 6p22.1 locus was identified in both MDD and SCZ (P values are 1.05×10-8 and 5.75×10-14, respectively). Sixteen pleiotropic risk loci were identified between MDD and indicators of thyroid function, of which, four loci associated with MDD (1p32.3, 6p22.1, 10q21.1, 11q13.4) were identified in both FT4 normal level and Hypothyroidism. Further, 79 pleiotropic genes were identified using Magma gene analysis (P<0.05/18776 = 2.66×10-6). Tissue-specific enrichment analysis revealed that these genes were highly enriched into six brain-related tissues. The pathway analysis mainly involved nucleosome assembly and lipoprotein particles. Finally, our two-sample MR analysis showed a significant causal effect of MDD on the increased risk of hypothyroidism, and BIP may reduce TSH normal levels. Conclusions Our findings not only provided evidence of a shared genetic etiology between hypothyroidism and psychiatric disorders, but also provided insights into the causal relationships and biological mechanisms that underlie their relationship. These findings contribute to a better understanding of the pleiotropy between hypothyroidism and psychiatric disorders, while having important implications for intervention and treatment goals for these disorders.
Collapse
Affiliation(s)
- Jianlong Zhou
- People’s Hospital of Deyang City, Affiliated to Chengdu University of Traditional Chinese Medicine, Deyang, China
| | - Lv Zhu
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Wu X, Wen G, Yan L, Wang Y, Ren X, Li G, Luo Y, Shang J, Lu L, Hermenean A, Yao J, Li B, Lu Y, Wu X. Ketamine administration causes cognitive impairment by destroying the circulation function of the glymphatic system. Biomed Pharmacother 2024; 175:116739. [PMID: 38759288 DOI: 10.1016/j.biopha.2024.116739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Ketamine, as a non-competitive antagonist of N-methyl-D-aspartate (NMDA) receptors, was originally used in general anesthesia. Epidemiological data show that ketamine has become one of the most commonly abused drugs in China. Ketamine administration might cause cognitive impairment; however, its molecular mechanism remains unclear. The glymphatic system is a lymphoid system that plays a key role in metabolic waste removal and cognitive regulation in the central nervous system. METHODS Focusing on the glymphatic system, this study evaluated the behavioral performance and circulatory function of the glymphatic system by building a short-term ketamine administration model in mice, and detected the expression levels of the 5-HT2c receptor, ΔFosb, Pten, Akt, and Aqp4 in the hippocampus. Primary astrocytes were cultured to verify the regulatory relationships among related indexes using a 5-HT2c receptor antagonist, a 5-HT2c receptor short interfering RNA (siRNA), and a ΔFosb siRNA. RESULTS Ketamine administration induced ΔFosb accumulation by increasing 5-HT2c receptor expression in mouse hippocampal astrocytes and primary astrocytes. ΔFosb acted as a transcription factor to recognize the AATGATTAAT bases in the 5' regulatory region of the Aqp4 gene (-1096 bp to -1087 bp), which inhibited Aqp4 expression, thus causing the circulatory dysfunction of the glymphatic system, leading to cognitive impairment. CONCLUSIONS Although this regulatory mechanism does not involve the Pten/Akt pathway, this study revealed a new mechanism of ketamine-induced cognitive impairment in non-neuronal systems, and provided a theoretical basis for the safety of clinical treatment and the effectiveness of withdrawal.
Collapse
Affiliation(s)
- Xue Wu
- China Medical University School of Forensic Medicine, Shenyang, China; Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, China; China Medical University Center of Forensic Investigation, China
| | - Gehua Wen
- China Medical University School of Forensic Medicine, Shenyang, China; Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, China; China Medical University Center of Forensic Investigation, China
| | - Lei Yan
- China Medical University School of Forensic Medicine, Shenyang, China; Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, China; China Medical University Center of Forensic Investigation, China
| | - Yexin Wang
- Key Laboratory of Health Ministry in Congenital Malformation, Affiliated Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinghua Ren
- Key Laboratory of Health Ministry in Congenital Malformation, Affiliated Shengjing Hospital of China Medical University, Shenyang, China
| | - Guiji Li
- Key Laboratory of Health Ministry in Congenital Malformation, Affiliated Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu Luo
- China Medical University School of Forensic Medicine, Shenyang, China; Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, China; China Medical University Center of Forensic Investigation, China
| | - Junbo Shang
- China Medical University School of Forensic Medicine, Shenyang, China; Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, China; China Medical University Center of Forensic Investigation, China
| | - Lei Lu
- Department of pediatrics Neonatology, University of Chicago, Chicago, IL 60615, USA
| | - Anca Hermenean
- Faculty of Medicine, Vasile Goldis Western University of Arad, Romania
| | - Jun Yao
- China Medical University School of Forensic Medicine, Shenyang, China; Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, China; China Medical University Center of Forensic Investigation, China
| | - Baoman Li
- China Medical University School of Forensic Medicine, Shenyang, China; Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, China; China Medical University Center of Forensic Investigation, China.
| | - Yan Lu
- Key Laboratory of Health Ministry in Congenital Malformation, Affiliated Shengjing Hospital of China Medical University, Shenyang, China.
| | - Xu Wu
- China Medical University School of Forensic Medicine, Shenyang, China; Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, China; China Medical University Center of Forensic Investigation, China.
| |
Collapse
|
3
|
Ji X, Liu X, Li X, Du X, Fan L. MircoRNA-322-5p promotes lipopolysaccharide-induced acute kidney injury mouse models and mouse primary proximal renal tubular epithelial cell injury by regulating T-box transcription factor 21/mitogen-activated protein kinase/extracellular signal-related kinase axis. Nefrologia 2023; 43 Suppl 2:8-20. [PMID: 37179213 DOI: 10.1016/j.nefroe.2023.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/25/2023] [Indexed: 05/15/2023] Open
Abstract
INTRODUCTION AND OBJECTIVES Acute kidney injury (AKI) is a common devastating complication characterized by an abrupt loss of renal function. It is of great significance to explore promising biomarkers for AKI treatment. MATERIALS AND METHODS Here, we established LPS (lipopolysaccharide)-induced AKI mice models and LPS-induced AKI mouse renal tubular epithelial cell model. The severity of AKI was determined by the levels of BUN (blood urea nitrogen) and SCr (serum creatinine), the observation of pathological section as well as the renal tubular injury score. The apoptosis was determined by the measurement of Caspase-3 and Caspase-9 activities, and cell apoptosis assays. qRT-PCR (quantitative real-time PCR) and western blot revealed that miR-322-5p (microRNA-322-5p) was up-regulated in LPS -induced AKI models while Tbx21 (T-box transcription factor 21) was down-regulated in LPS-induced AKI models. Dual-luciferase reporter and RNA pulldown assays detected the interaction of Tbx21 with miR-322-5p. RESULTS We found that miR-322-5p was overtly over-expressed in the in vitro LPS-induced AKI model and promoted the apoptosis of AKI mouse renal tubular epithelial cells via inhibiting Tbx21, which suppressed the mitochondrial fission and cell apoptosis through MAPK/ERK (mitogen-activated protein kinase/extracellular signal-related kinase) pathway. CONCLUSIONS We demonstrated that miR-322-5p promotes LPS-induced mouse AKI by regulating Tbx21/MAPK/ERK axis, which might provide new sights for AKI research.
Collapse
Affiliation(s)
- Xiaobing Ji
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Xiaodong Liu
- Department of Nephrology, The Second People's Hospital of Lianyungang,Affiliated to Kangda College of Nanjing Medical University, Lianyungang 222023, Jiangsu, China
| | - Xiangxiang Li
- Department of Nephrology, Nanjing Yuhua Hospital, Yuhua Branch of Nanjing First Hospital, Nanjing 210039, Jiangsu, China
| | - Xin Du
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Li Fan
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China.
| |
Collapse
|
4
|
Xiong X, Min X, Yu H, Fei X, Zhu Y, Pan B, Xiong Y, Fu W, Li J. MicroRNA-34b-5p targets PPP1R11 to inhibit proliferation and promote apoptosis in cattleyak Sertoli cells by regulating specific signaling pathways. Theriogenology 2022; 194:46-57. [DOI: 10.1016/j.theriogenology.2022.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022]
|
5
|
Liu YP, Wu X, Meng JH, Yao J, Wang BJ. Functional Analysis of the 3' Untranslated Region of the Human GRIN1 Gene in Regulating Gene Expression in vitro. Neuropsychiatr Dis Treat 2020; 16:2361-2370. [PMID: 33116535 PMCID: PMC7567549 DOI: 10.2147/ndt.s268753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 09/12/2020] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Abnormal expression of the NR1 subunit of the N-methyl-d-aspartate (NMDA) receptor may potentially increase the susceptibility to neuropsychiatric diseases. The purpose of this study was to investigate the functional sequence of the 3'UTR of the human GRIN1 gene, which encodes the GluN1 receptor to determine the effect on the expression of GluN1 receptor. METHODS We transferred seven recombinant pmirGLO recombinant vectors containing the 3'UTR truncated fragment of the GRIN1 gene into HEK-293, SK-N-SH, and U87 cell lines and compared the relative fluorescence intensity of adjacent length fragments. The TargetScan database was used to predict miRNAs. Then, miRNA mimics/inhibitors were co-transfected into the three cell lines with the 3'UTR of GRIN1 (pmirGLO - GRIN1), to investigate their influence on GRIN1 gene expression. RESULTS Compared with the pmirGLo-Basic vector, the relative fluorescence intensity of the complete GRIN1 gene 3'UTR recombinant sequence -27 bp - +1284 bp (the next base of the stop codon is +1) was significantly decreased in all three cell lines. The relative fluorescence intensities were significantly different between -27 bp - +294 bp and -27 bp - +497 bp regions, and between -27 bp - +708 bp and -27 bp - +907 bp regions. According to the prediction of the TargetScan database and analysis, miR-212-5p, miR-324-3p and miR-326 may bind to +295 bp - +497 bp, while miR-491-5p may bind to +798 bp - +907 bp. After co-transfection of miRNA mimic/inhibitor or mimic/inhibitor NC with a recombinant vector in the 3'UTR region of GRIN1 gene, we found that has-miR-491-5p inhibited GRIN1 expression significantly in all three cell lines, while has-miR-326 inhibitor upregulated GRIN1 expression in HEK-293 and U87 cells. CONCLUSION miR-491-5p may bind to the 3'UTR of the GRIN1 gene (+799 bp - +805 bp, the next base of the stop codon is +1) and down-regulate gene expression in HEK-293, SK-N-SH, and U87 cell lines, which implicates a potential role of miR-491-5p in central nervous system diseases.
Collapse
Affiliation(s)
- Yong-Ping Liu
- School of Forensic Medicine, China Medical University, Shenyang 110122, People's Republic of China
| | - Xue Wu
- School of Forensic Medicine, China Medical University, Shenyang 110122, People's Republic of China
| | - Jing-Hua Meng
- School of Forensic Medicine, China Medical University, Shenyang 110122, People's Republic of China
| | - Jun Yao
- School of Forensic Medicine, China Medical University, Shenyang 110122, People's Republic of China
| | - Bao-Jie Wang
- School of Forensic Medicine, China Medical University, Shenyang 110122, People's Republic of China
| |
Collapse
|
6
|
Wang W, Zhang K, Zhang H, Li M, Zhao Y, Wang B, Xin W, Yang W, Zhang J, Yue S, Yang X. Underlying Genes Involved in Atherosclerotic Macrophages: Insights from Microarray Data Mining. Med Sci Monit 2019; 25:9949-9962. [PMID: 31875420 PMCID: PMC6944040 DOI: 10.12659/msm.917068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background In an atherosclerotic artery wall, monocyte-derived macrophages are the principal mediators that respond to pathogens and inflammation. The present study aimed to investigate potential genetic changes in gene expression between normal tissue-resident macrophages and atherosclerotic macrophages in the human body. Material/Methods The expression profile data of GSE7074 acquired from the Gene Expression Omnibus (GEO) database, which includes the transcriptome of 4 types of macrophages, was downloaded. Differentially expressed genes (DEGs) were identified using R software, then we performed functional enrichment, protein-protein interaction (PPI) network construction, key node and module analysis, and prediction of microRNAs (miRNAs)/transcription factors (TFs) targeting genes. Results After data processing, 236 DEGs were identified, including 21 upregulated genes and 215 downregulated genes. The DEG set was enriched in 22 significant Gene Ontology (GO) terms and 25 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and the PPI network constructed with these DEGs comprised 6 key nodes with degrees ≥8. Key nodes in the PPI network and simultaneously involved in the prime modules, including rhodopsin (RHO), coagulation factor V (F5), and bestrophin-1 (BEST1), are promising for the prediction of atherosclerotic plaque formation. Furthermore, in the miRNA/TF-target network, hsa-miR-3177-5p might be involved in the pathogenesis of atherosclerosis via regulating BEST1, and the transcription factor early growth response-1 (EGR1) was found to be a potential promoter in atherogenesis. Conclusions The identified key hub genes, predicted miRNAs/TFs, and underlying molecular mechanisms may be involved in atherogenesis, thus potentially contributing to the treatment and diagnosis of patients with atherosclerotic disease.
Collapse
Affiliation(s)
- Weihan Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China (mainland)
| | - Kai Zhang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Hao Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China (mainland)
| | - Mengqi Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China (mainland)
| | - Yan Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Bangyue Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Wenqiang Xin
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China (mainland)
| | - Weidong Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China (mainland)
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China (mainland)
| | - Shuyuan Yue
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China (mainland)
| | - Xinyu Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China (mainland)
| |
Collapse
|