1
|
Kos J, Langiu M, Hellyer SD, Gregory KJ. Pharmacology, Signaling and Therapeutic Potential of Metabotropic Glutamate Receptor 5 Negative Allosteric Modulators. ACS Pharmacol Transl Sci 2024; 7:3671-3690. [PMID: 39698283 PMCID: PMC11651194 DOI: 10.1021/acsptsci.4c00213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/18/2024] [Accepted: 07/01/2024] [Indexed: 12/20/2024]
Abstract
Metabotropic glutamate receptors are a family of eight class C G protein-coupled receptors regulating higher order brain functions including cognition and motion. Metabotropic glutamate receptors have thus been heavily investigated as potential drug targets for treating neurological disorders. Drug discovery efforts directed toward metabotropic glutamate receptor subtype 5 (mGlu5) have been particularly fruitful, with a wealth of drug candidates and pharmacological tools identified. mGlu5 negative allosteric modulators (NAMs) are promising novel therapeutics for developmental, neuropsychiatric and neurodegenerative disorders (e.g., Alzheimer's Disease, Huntington's Disease, Parkinson's Disease, amyotrophic lateral sclerosis, autism spectrum disorders, substance use disorders, stroke, anxiety and depression) and show promise in ameliorating adverse effects induced by other medications (e.g., L-dopa induced dyskinesia in Parkinson's Disease). However, despite preclinical success, mGlu5 NAMs are yet to reach the market due to poor safety and efficacy profiles in clinical trials. Herein, we review the physiology and signal transduction of mGlu5. We provide a comprehensive critique of therapeutic options with respect to mGlu5 inhibitors, spanning from orthosteric antagonists to NAMs. Finally, we address the challenges associated with drug development and highlight future directions to guide rational drug discovery of safe and effective novel therapeutics.
Collapse
Affiliation(s)
- Jackson
A. Kos
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences and
Department of Pharmacology, Monash University, Parkville, VIC 3052, Australia
| | - Monica Langiu
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences and
Department of Pharmacology, Monash University, Parkville, VIC 3052, Australia
| | - Shane D. Hellyer
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences and
Department of Pharmacology, Monash University, Parkville, VIC 3052, Australia
| | - Karen J. Gregory
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences and
Department of Pharmacology, Monash University, Parkville, VIC 3052, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash University, Parkville, VIC 3052, Australia
| |
Collapse
|
2
|
Ramos-Prats A, Matulewicz P, Edenhofer ML, Wang KY, Yeh CW, Fajardo-Serrano A, Kress M, Kummer K, Lien CC, Ferraguti F. Loss of mGlu 5 receptors in somatostatin-expressing neurons alters negative emotional states. Mol Psychiatry 2024; 29:2774-2786. [PMID: 38575807 PMCID: PMC11420089 DOI: 10.1038/s41380-024-02541-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/06/2024]
Abstract
Subtype 5 metabotropic glutamate receptors (mGlu5) are known to play an important role in regulating cognitive, social and valence systems. However, it remains largely unknown at which circuits and neuronal types mGlu5 act to influence these behavioral domains. Altered tissue- or cell-specific expression or function of mGlu5 has been proposed to contribute to the exacerbation of neuropsychiatric disorders. Here, we examined how these receptors regulate the activity of somatostatin-expressing (SST+) neurons, as well as their influence on behavior and brain rhythmic activity. Loss of mGlu5 in SST+ neurons elicited excitatory synaptic dysfunction in a region and sex-specific manner together with a range of emotional imbalances including diminished social novelty preference, reduced anxiety-like behavior and decreased freezing during retrieval of fear memories. In addition, the absence of mGlu5 in SST+ neurons during fear processing impaired theta frequency oscillatory activity in the medial prefrontal cortex and ventral hippocampus. These findings reveal a critical role of mGlu5 in controlling SST+ neurons excitability necessary for regulating negative emotional states.
Collapse
Affiliation(s)
- Arnau Ramos-Prats
- Institute of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Pawel Matulewicz
- Institute of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Kai-Yi Wang
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-Wei Yeh
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ana Fajardo-Serrano
- Institute of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michaela Kress
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Kai Kummer
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Cheng-Chang Lien
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Francesco Ferraguti
- Institute of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
3
|
Mahony C, O'Ryan C. A molecular framework for autistic experiences: Mitochondrial allostatic load as a mediator between autism and psychopathology. Front Psychiatry 2022; 13:985713. [PMID: 36506457 PMCID: PMC9732262 DOI: 10.3389/fpsyt.2022.985713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/07/2022] [Indexed: 11/27/2022] Open
Abstract
Molecular autism research is evolving toward a biopsychosocial framework that is more informed by autistic experiences. In this context, research aims are moving away from correcting external autistic behaviors and toward alleviating internal distress. Autism Spectrum Conditions (ASCs) are associated with high rates of depression, suicidality and other comorbid psychopathologies, but this relationship is poorly understood. Here, we integrate emerging characterizations of internal autistic experiences within a molecular framework to yield insight into the prevalence of psychopathology in ASC. We demonstrate that descriptions of social camouflaging and autistic burnout resonate closely with the accepted definitions for early life stress (ELS) and chronic adolescent stress (CAS). We propose that social camouflaging could be considered a distinct form of CAS that contributes to allostatic overload, culminating in a pathophysiological state that is experienced as autistic burnout. Autistic burnout is thought to contribute to psychopathology via psychological and physiological mechanisms, but these remain largely unexplored by molecular researchers. Building on converging fields in molecular neuroscience, we discuss the substantial evidence implicating mitochondrial dysfunction in ASC to propose a novel role for mitochondrial allostatic load in the relationship between autism and psychopathology. An interplay between mitochondrial, neuroimmune and neuroendocrine signaling is increasingly implicated in stress-related psychopathologies, and these molecular players are also associated with neurodevelopmental, neurophysiological and neurochemical aspects of ASC. Together, this suggests an increased exposure and underlying molecular susceptibility to ELS that increases the risk of psychopathology in ASC. This article describes an integrative framework shaped by autistic experiences that highlights novel avenues for molecular research into mechanisms that directly affect the quality of life and wellbeing of autistic individuals. Moreover, this framework emphasizes the need for increased access to diagnoses, accommodations, and resources to improve mental health outcomes in autism.
Collapse
Affiliation(s)
| | - Colleen O'Ryan
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
4
|
Matrisciano F, Locci V, Dong E, Nicoletti F, Guidotti A, Grayson DR. Altered Expression and In Vivo Activity of mGlu5 Variant a Receptors in the Striatum of BTBR Mice: Novel Insights Into the Pathophysiology of Adult Idiopathic Forms of Autism Spectrum Disorders. Curr Neuropharmacol 2022; 20:2354-2368. [PMID: 35139800 PMCID: PMC9890299 DOI: 10.2174/1567202619999220209112609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND mGlu5 metabotropic glutamate receptors are considered as candidate drug targets in the treatment of "monogenic" forms of autism spectrum disorders (ASD), such as Fragile- X syndrome (FXS). However, despite promising preclinical data, clinical trials using mGlu5 receptor antagonists to treat FXS showed no beneficial effects. OBJECTIVE Here, we studied the expression and function of mGlu5 receptors in the striatum of adult BTBR mice, which model idiopathic forms of ASD, and behavioral phenotype. METHODS Behavioral tests were associated with biochemistry analysis including qPCR and western blot for mRNA and protein expression. In vivo analysis of polyphosphoinositides hydrolysis was performed to study the mGlu5-mediated intracellular signaling in the striatum of adult BTBR mice under basal conditions and after MTEP exposure. RESULTS Expression of mGlu5 receptors and mGlu5 receptor-mediated polyphosphoinositides hydrolysis were considerably high in the striatum of BTBR mice, sensitive to MTEP treatment. Changes in the expression of genes encoding for proteins involved in excitatory and inhibitory neurotransmission and synaptic plasticity, including Fmr1, Dlg4, Shank3, Brd4, bdnf-exon IX, Mef2c, and Arc, GriA2, Glun1, Nr2A, and Grm1, Grm2, GriA1, and Gad1 were also found. Behaviorally, BTBR mice showed high repetitive stereotypical behaviors, including self-grooming and deficits in social interactions. Acute or repeated injections with MTEP reversed the stereotyped behavior and the social interaction deficit. Similar effects were observed with the NMDA receptor blockers MK-801 or ketamine. CONCLUSION These findings support a pivotal role of mGlu5 receptor abnormal expression and function in idiopathic ASD adult forms and unveil novel potential targets for therapy.
Collapse
Affiliation(s)
- Francesco Matrisciano
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Valentina Locci
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Erbo Dong
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
- Center for Alcohol Research in Epigenetics Department of Psychiatry College of Medicine University of Illinois Chicago, Chicago, IL 60612, USA
| | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Alessandro Guidotti
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
- Center for Alcohol Research in Epigenetics Department of Psychiatry College of Medicine University of Illinois Chicago, Chicago, IL 60612, USA
| | - Dennis R. Grayson
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
- Center for Alcohol Research in Epigenetics Department of Psychiatry College of Medicine University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
5
|
Matulewicz P, Ramos-Prats A, Gómez-Santacana X, Llebaria A, Ferraguti F. Control of Theta Oscillatory Activity Underlying Fear Expression by mGlu 5 Receptors. Cells 2022; 11:cells11223555. [PMID: 36428984 PMCID: PMC9688906 DOI: 10.3390/cells11223555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/19/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022] Open
Abstract
Metabotropic glutamate 5 receptors (mGlu5) are thought to play an important role in mediating emotional information processing. In particular, negative allosteric modulators (NAMs) of mGlu5 have received a lot of attention as potential novel treatments for several neuropsychiatric diseases, including anxiety-related disorders. The aim of this study was to assess the influence of pre- and post-training mGlu5 inactivation in cued fear conditioned mice on neuronal oscillatory activity during fear retrieval. For this study we used the recently developed mGlu5 NAM Alloswicth-1 administered systemically. Injection of Alloswicth-1 before, but not after, fear conditioning resulted in a significant decrease in freezing upon fear retrieval. Mice injected with Alloswicth-1 pre-training were also implanted with recording microelectrodes into both the medial prefrontal cortex (mPFC) and ventral hippocampus (vHPC). The recordings revealed a reduction in theta rhythmic activity (4-12 Hz) in both the mPFC and vHPC during fear retrieval. These results indicate that inhibition of mGlu5 signaling alters local oscillatory activity in principal components of the fear brain network underlying a reduced response to a predicted threat.
Collapse
Affiliation(s)
- Pawel Matulewicz
- Institute of Pharmacology, Medical University of Innsbruck, Peter-Mayr-Str. 1, 6020 Innsbruck, Austria
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Jana Bazynskiego 8, 80-309 Gdansk, Poland
- Correspondence:
| | - Arnau Ramos-Prats
- Institute of Pharmacology, Medical University of Innsbruck, Peter-Mayr-Str. 1, 6020 Innsbruck, Austria
| | - Xavier Gómez-Santacana
- Laboratory of Medicinal Chemistry & Synthesis (MCS), Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Amadeu Llebaria
- Laboratory of Medicinal Chemistry & Synthesis (MCS), Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Francesco Ferraguti
- Institute of Pharmacology, Medical University of Innsbruck, Peter-Mayr-Str. 1, 6020 Innsbruck, Austria
| |
Collapse
|
6
|
Stress resilience-associated behaviors following predator scent stress are accompanied by upregulated nucleus accumbens mGlu5 transcription in female Sprague Dawley rats. Behav Brain Res 2022; 436:114090. [DOI: 10.1016/j.bbr.2022.114090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/19/2022] [Accepted: 08/29/2022] [Indexed: 12/27/2022]
|
7
|
Ramos-Prats A, Paradiso E, Castaldi F, Sadeghi M, Mir MY, Hörtnagl H, Göbel G, Ferraguti F. VIP-expressing interneurons in the anterior insular cortex contribute to sensory processing to regulate adaptive behavior. Cell Rep 2022; 39:110893. [PMID: 35649348 DOI: 10.1016/j.celrep.2022.110893] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 01/20/2022] [Accepted: 05/09/2022] [Indexed: 11/25/2022] Open
Abstract
Adaptive behavior critically depends on the detection of behaviorally relevant stimuli. The anterior insular cortex (aIC) has long been proposed as a key player in the representation and integration of sensory stimuli, and implicated in a wide variety of cognitive and emotional functions. However, to date, little is known about the contribution of aIC interneurons to sensory processing. By using a combination of whole-brain connectivity tracing, imaging of neural calcium dynamics, and optogenetic modulation in freely moving mice across different experimental paradigms, such as fear conditioning and social preference, we describe here a role for aIC vasoactive intestinal polypeptide-expressing (VIP+) interneurons in mediating adaptive behaviors. Our findings enlighten the contribution of aIC VIP+ interneurons to sensory processing, showing that they are anatomically connected to a wide range of sensory-related brain areas and critically respond to behaviorally relevant stimuli independent of task and modality.
Collapse
Affiliation(s)
- Arnau Ramos-Prats
- Department of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Enrica Paradiso
- Department of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Federico Castaldi
- Department of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Maryam Sadeghi
- Department for Medical Statistics, Informatics and Health Economics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Mohd Yaqub Mir
- Department of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Szentágothai Doctoral School of Neuroscience, Semmelweis University, 1121 Budapest, Hungary
| | - Heide Hörtnagl
- Department of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Georg Göbel
- Department for Medical Statistics, Informatics and Health Economics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Francesco Ferraguti
- Department of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| |
Collapse
|
8
|
Subtype-selective mechanisms of negative allosteric modulators binding to group I metabotropic glutamate receptors. Acta Pharmacol Sin 2021; 42:1354-1367. [PMID: 33122823 PMCID: PMC8285414 DOI: 10.1038/s41401-020-00541-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023]
Abstract
Group I metabotropic glutamate receptors (mGlu1 and mGlu5) are promising targets for multiple psychiatric and neurodegenerative disorders. Understanding the subtype selectivity of mGlu1 and mGlu5 allosteric sites is essential for the rational design of novel modulators with single- or dual-target mechanism of action. In this study, starting from the deposited mGlu1 and mGlu5 crystal structures, we utilized computational modeling approaches integrating docking, molecular dynamics simulation, and efficient post-trajectory analysis to reveal the subtype-selective mechanism of mGlu1 and mGlu5 to 10 diverse drug scaffolds representing known negative allosteric modulators (NAMs) in the literature. The results of modeling identified six pairs of non-conserved residues and four pairs of conserved ones as critical features to distinguish the selective NAMs binding to the corresponding receptors. In addition, nine pairs of residues are beneficial to the development of novel dual-target NAMs of group I metabotropic glutamate receptors. Furthermore, the binding modes of a reported dual-target NAM (VU0467558) in mGlu1 and mGlu5 were predicted to verify the identified residues that play key roles in the receptor selectivity and the dual-target binding. The results of this study can guide rational structure-based design of novel NAMs, and the approach can be generally applicable to characterize the features of selectivity for other G-protein-coupled receptors.
Collapse
|
9
|
Siegel-Ramsay JE, Romaniuk L, Whalley HC, Roberts N, Branigan H, Stanfield AC, Lawrie SM, Dauvermann MR. Glutamate and functional connectivity - support for the excitatory-inhibitory imbalance hypothesis in autism spectrum disorders. Psychiatry Res Neuroimaging 2021; 313:111302. [PMID: 34030047 DOI: 10.1016/j.pscychresns.2021.111302] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 12/24/2022]
Abstract
It has been proposed that the Glutamate (Glu) system is implicated in autism spectrum disorders (ASD) via an imbalance between excitatory and inhibitory brain circuits, which impacts on brain function. Here, we investigated the excitatory-inhibitory imbalance theory by measuring Glu-concentrations and the relationship with resting-state function. Nineteen adult males with ASD and 19 age and sex-matched healthy controls (HC) (23 - 58 years) underwent Proton Magnetic Resonance Spectroscopy of the dorsal anterior cingulate cortex (dACC) and resting-state functional Magnetic Resonance Imaging (fMRI). Glu and Glx concentrations were compared between groups. Seed-based functional connectivity was analyzed with a priori seeds of the right and left dACC. Finally, metabolite concentrations were related to functional connectivity coefficients and compared between both groups. Individuals with ASD showed significantly negative associations between increased Glx concentrations and reduced functional connectivity between the dACC and insular, limbic and parietal regions. In contrast, HC displayed a positive relationship between the same metabolite and connectivity measures. We provided new evidence to support the excitatory-inhibitory imbalance theory, where excitatory Glx concentrations were related to functional dysconnectivity in ASD. Future research is needed to investigate large-scale functional networks in association with both excitatory and inhibitory metabolites in subpopulations of ASD.
Collapse
Affiliation(s)
- Jennifer E Siegel-Ramsay
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom; Department of Psychiatry and Behavioral Science, University of Texas, Austin, United States
| | - Liana Romaniuk
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Heather C Whalley
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Neil Roberts
- Centre for Reproductive Health (CRH), School of Clinical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Holly Branigan
- School of Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew C Stanfield
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom; Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen M Lawrie
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Maria R Dauvermann
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States.
| |
Collapse
|
10
|
Zangrandi L, Schmuckermair C, Ghareh H, Castaldi F, Heilbronn R, Zernig G, Ferraguti F, Ramos-Prats A. Loss of mGluR5 in D1 Receptor-Expressing Neurons Improves Stress Coping. Int J Mol Sci 2021; 22:ijms22157826. [PMID: 34360592 PMCID: PMC8346057 DOI: 10.3390/ijms22157826] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/11/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022] Open
Abstract
The metabotropic glutamate receptor type 5 (mGluR5) has been proposed to play a crucial role in the selection and regulation of cognitive, affective, and emotional behaviors. However, the mechanisms by which these receptors mediate these effects remain largely unexplored. Here, we studied the role of mGluR5 located in D1 receptor-expressing (D1) neurons in the manifestation of different behavioral expressions. Mice with conditional knockout (cKO) of mGluR5 in D1 neurons (mGluR5D1 cKO) and littermate controls displayed similar phenotypical profiles in relation to memory expression, anxiety, and social behaviors. However, mGluR5D1 cKO mice presented different coping mechanisms in response to acute escapable or inescapable stress. mGluR5D1 cKO mice adopted an enhanced active stress coping strategy upon exposure to escapable stress in the two-way active avoidance (TWA) task and a greater passive strategy upon exposure to inescapable stress in the forced swim test (FST). In summary, this work provides evidence for a functional integration of the dopaminergic and glutamatergic system to mediate control over internal states upon stress exposure and directly implicates D1 neurons and mGluR5 as crucial mediators of behavioral stress responses.
Collapse
Affiliation(s)
- Luca Zangrandi
- Department of Neurology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (L.Z.); (R.H.)
- Institute of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.S.); (F.C.); (F.F.)
| | - Claudia Schmuckermair
- Institute of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.S.); (F.C.); (F.F.)
| | - Hussein Ghareh
- Department of Psychiatry 1, Medical University of Innsbruck, 6020 Innsbruck, Austria; (H.G.); (G.Z.)
| | - Federico Castaldi
- Institute of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.S.); (F.C.); (F.F.)
| | - Regine Heilbronn
- Department of Neurology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (L.Z.); (R.H.)
| | - Gerald Zernig
- Department of Psychiatry 1, Medical University of Innsbruck, 6020 Innsbruck, Austria; (H.G.); (G.Z.)
| | - Francesco Ferraguti
- Institute of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.S.); (F.C.); (F.F.)
| | - Arnau Ramos-Prats
- Institute of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.S.); (F.C.); (F.F.)
- Correspondence:
| |
Collapse
|
11
|
Su S, Li M, Wu D, Cao J, Ren X, Tao YX, Zang W. Gene Transcript Alterations in the Spinal Cord, Anterior Cingulate Cortex, and Amygdala in Mice Following Peripheral Nerve Injury. Front Cell Dev Biol 2021; 9:634810. [PMID: 33898422 PMCID: PMC8059771 DOI: 10.3389/fcell.2021.634810] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/05/2021] [Indexed: 12/19/2022] Open
Abstract
Chronic neuropathic pain caused by nerve damage is a most common clinical symptom, often accompanied by anxiety- and depression-like symptoms. Current treatments are very limited at least in part due to incompletely understanding mechanisms underlying this disorder. Changes in gene expression in the dorsal root ganglion (DRG) have been acknowledged to implicate in neuropathic pain genesis, but how peripheral nerve injury alters the gene expression in other pain-associated regions remains elusive. The present study carried out strand-specific next-generation RNA sequencing with a higher sequencing depth and observed the changes in whole transcriptomes in the spinal cord (SC), anterior cingulate cortex (ACC), and amygdala (AMY) following unilateral fourth lumbar spinal nerve ligation (SNL). In addition to providing novel transcriptome profiles of long non-coding RNAs (lncRNAs) and mRNAs, we identified pain- and emotion-related differentially expressed genes (DEGs) and revealed that numbers of these DEGs displayed a high correlation to neuroinflammation and apoptosis. Consistently, functional analyses showed that the most significant enriched biological processes of the upregulated mRNAs were involved in the immune system process, apoptotic process, defense response, inflammation response, and sensory perception of pain across three regions. Moreover, the comparisons of pain-, anxiety-, and depression-related DEGs among three regions present a particular molecular map among the spinal cord and supraspinal structures and indicate the region-dependent and region-independent alterations of gene expression after nerve injury. Our study provides a resource for gene transcript expression patterns in three distinct pain-related regions after peripheral nerve injury. Our findings suggest that neuroinflammation and apoptosis are important pathogenic mechanisms underlying neuropathic pain and that some DEGs might be promising therapeutic targets.
Collapse
Affiliation(s)
- Songxue Su
- Department of Anatomy, College of Basic Medicine, Zhengzhou University, Zhengzhou, China.,Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China
| | - Mengqi Li
- Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China.,Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Di Wu
- Department of Bioinformatics, College of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Jing Cao
- Department of Anatomy, College of Basic Medicine, Zhengzhou University, Zhengzhou, China.,Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China
| | - Xiuhua Ren
- Department of Anatomy, College of Basic Medicine, Zhengzhou University, Zhengzhou, China.,Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China
| | - Yuan-Xiang Tao
- Department of Anesthesiology, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, United States
| | - Weidong Zang
- Department of Anatomy, College of Basic Medicine, Zhengzhou University, Zhengzhou, China.,Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China
| |
Collapse
|
12
|
Kermorgant M, Ben Salem J, Iacovoni JS, Calise D, Dahan L, Guiard BP, Lopez S, Lairez O, Lasbories A, Nasr N, Pavy Le‐Traon A, Beaudry F, Senard J, Arvanitis DN. Cardiac sensory afferents modulate susceptibility to anxio-depressive behaviour in a mouse model of chronic heart failure. Acta Physiol (Oxf) 2021; 231:e13601. [PMID: 33316126 DOI: 10.1111/apha.13601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/23/2020] [Accepted: 12/09/2020] [Indexed: 12/20/2022]
Abstract
AIM Impairments in cerebral structure and cognitive performance in chronic heart failure (CHF) are critical components of its comorbidity spectrum. Autonomic afferents that arise from cardiac sensory fibres show enhanced activity with CHF. Desensitization of these fibres by local application of resiniferatoxin (RTX) during myocardial infarction (MI) is known to prevent cardiac hypertrophy, sympathetic hyperactivity and CHF. Whether these afferents mediate cerebral allostasis is unknown. METHODS CHF was induced by myocardial infarction. To evaluate if cardiac afferents contribute to cerebral allostasis, RTX was acutely applied to the pericardial space in controls (RTX) and in MI treated animals (MI/RTX). Subjects were then evaluated in a series of behavioural tests recapitulating different symptoms of depressive disorders. Proteomics of the frontal cortices (FC) was performed to identify contributing proteins and pathways responsible for behavioural allostasis. RESULTS Desensitization of cardiac afferents relieves hallmarks of an anxio/depressive-like state in mice. Unique protein signatures and regulatory pathways in FCs isolated from each treatment reveal the degree of complexity inherent in the FC response to stresses originating in the heart. While cortices from the combined treatment (MI/RTX) did not retain protein signatures from the individual treatment groups, all three groups suffer dysregulation in circadian entrainment. CONCLUSION CHF is comorbid with an anxio/depressive-like state and ablation of cardiac afferents relieves the despair phenotype. The strikingly different proteomic profiles observed in FCs suggest that MI and RTX lead to unique brain-signalling patterns and that the combined treatment, potentially through destructive interference mechanisms, most closely resembles controls.
Collapse
Affiliation(s)
- Marc Kermorgant
- INSERM DR Midi‐Pyrénées LimousinInstitut des Maladies Métaboliques et Cardiovasculaires (I2MC) UMR1048Université de Toulouse III Toulouse France
| | - Jennifer Ben Salem
- INSERM DR Midi‐Pyrénées LimousinInstitut des Maladies Métaboliques et Cardiovasculaires (I2MC) UMR1048Université de Toulouse III Toulouse France
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ) Département de Biomédecine Vétérinaire Faculté de Médecine Vétérinaire Université de Montréal Saint Hyacinthe QC Canada
- Centre de recherche sur le cerveau et l’apprentissage (CIRCA) Université de Montréal Montréal QC Canada
| | - Jason S. Iacovoni
- INSERM DR Midi‐Pyrénées LimousinInstitut des Maladies Métaboliques et Cardiovasculaires (I2MC) UMR1048Université de Toulouse III Toulouse France
| | - Denis Calise
- INSERM DR Midi‐Pyrénées LimousinCentre Régional d’Exploration Fonctionnelle et Ressources Expérimentales Service Microchirurgie, (CREFRE‐US06, Rangueil) Toulouse France
| | - Lionel Dahan
- Centre de Recherches sur la Cognition Animale Centre de Biologie Intégrative Université de Toulouse Toulouse France
- CNRSUniversité de Toulouse III Toulouse France
| | - Bruno P. Guiard
- Centre de Recherches sur la Cognition Animale Centre de Biologie Intégrative Université de Toulouse Toulouse France
- CNRSUniversité de Toulouse III Toulouse France
| | - Sébastien Lopez
- Centre de Recherches sur la Cognition Animale Centre de Biologie Intégrative Université de Toulouse Toulouse France
- CNRSUniversité de Toulouse III Toulouse France
| | - Olivier Lairez
- INSERM DR Midi‐Pyrénées LimousinInstitut des Maladies Métaboliques et Cardiovasculaires (I2MC) UMR1048Université de Toulouse III Toulouse France
- Fédération des services de cardiologie Hôpital RangueilUniversité de Toulouse III Toulouse France
| | - Antoine Lasbories
- INSERM DR Midi‐Pyrénées LimousinInstitut des Maladies Métaboliques et Cardiovasculaires (I2MC) UMR1048Université de Toulouse III Toulouse France
| | - Nathalie Nasr
- INSERM DR Midi‐Pyrénées LimousinInstitut des Maladies Métaboliques et Cardiovasculaires (I2MC) UMR1048Université de Toulouse III Toulouse France
- Département de Neurologie et Institut des Neurosciences CHU de ToulouseUniversité de Toulouse III Toulouse France
| | - Anne Pavy Le‐Traon
- INSERM DR Midi‐Pyrénées LimousinInstitut des Maladies Métaboliques et Cardiovasculaires (I2MC) UMR1048Université de Toulouse III Toulouse France
- Département de Neurologie et Institut des Neurosciences CHU de ToulouseUniversité de Toulouse III Toulouse France
| | - Francis Beaudry
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ) Département de Biomédecine Vétérinaire Faculté de Médecine Vétérinaire Université de Montréal Saint Hyacinthe QC Canada
- Centre de recherche sur le cerveau et l’apprentissage (CIRCA) Université de Montréal Montréal QC Canada
| | - Jean‐Michel Senard
- INSERM DR Midi‐Pyrénées LimousinInstitut des Maladies Métaboliques et Cardiovasculaires (I2MC) UMR1048Université de Toulouse III Toulouse France
- Département de Neurologie et Institut des Neurosciences CHU de ToulouseUniversité de Toulouse III Toulouse France
- Service de Pharmacologie Clinique CHU de ToulouseUniversité de Toulouse III Toulouse France
| | - Dina N Arvanitis
- INSERM DR Midi‐Pyrénées LimousinInstitut des Maladies Métaboliques et Cardiovasculaires (I2MC) UMR1048Université de Toulouse III Toulouse France
- CNRSUniversité de Toulouse III Toulouse France
| |
Collapse
|
13
|
Park JY, Cho SJ, Lee SH, Ryu Y, Jang JH, Kim SN, Park HJ. Peripheral ERK modulates acupuncture-induced brain neural activity and its functional connectivity. Sci Rep 2021; 11:5128. [PMID: 33664320 PMCID: PMC7933175 DOI: 10.1038/s41598-021-84273-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 01/25/2021] [Indexed: 12/20/2022] Open
Abstract
Acupuncture has been widely used as a therapeutic intervention, and the brain network plays a crucial role in its neural mechanism. This study aimed to investigate the acupuncture mechanism from peripheral to central by identifying how the peripheral molecular signals induced by acupuncture affect the brain neural responses and its functional connectivity. We confirmed that peripheral ERK activation by acupuncture plays a role in initiating acupuncture-induced peripheral proteomic changes in mice. The brain neural activities in the neocortex, hippocampus, thalamus, hypothalamus, periaqueductal grey, and nucleus of the solitary tract (Sol) were significantly changed after acupuncture, and these were altered by peripheral MEK/MAPK inhibition. The arcuate nucleus and lateral hypothalamus were the most affected by acupuncture and peripheral MEK/MAPK inhibition. The hypothalamic area was the most contributing brain region in contrast task PLS analysis. Acupuncture provoked extensive changes in brain functional connectivity, and the posterior hypothalamus showed the highest betweenness centrality after acupuncture. After brain hub identification, the Sol and cingulate cortex were selected as hub regions that reflect both degree and betweenness centrality after acupuncture. These results suggest that acupuncture activates brain functional connectivity and that peripheral ERK induced by acupuncture plays a role in initiating brain neural activation and its functional connectivity.
Collapse
Affiliation(s)
- Ji-Yeun Park
- College of Korean Medicine, Daejeon University, 62 Daehak-ro, Dong-gu, Daejeon, 34520, Republic of Korea
| | - Seong-Jin Cho
- Clinical Medicine Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Soon-Ho Lee
- Acupuncture and Meridian Science Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul, 02447, Republic of Korea
| | - Yeonhee Ryu
- Clinical Medicine Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Jae-Hwan Jang
- Acupuncture and Meridian Science Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul, 02447, Republic of Korea
| | - Seung-Nam Kim
- College of Korean Medicine, Dongguk University, 32 Dongguk-Ro, Goyang, 10326, Republic of Korea
| | - Hi-Joon Park
- Acupuncture and Meridian Science Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
14
|
Ibrahim KS, Abd-Elrahman KS, El Mestikawy S, Ferguson SSG. Targeting Vesicular Glutamate Transporter Machinery: Implications on Metabotropic Glutamate Receptor 5 Signaling and Behavior. Mol Pharmacol 2020; 98:314-327. [PMID: 32873747 DOI: 10.1124/molpharm.120.000089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/10/2020] [Indexed: 11/22/2022] Open
Abstract
Cross talk between both pre- and postsynaptic components of glutamatergic neurotransmission plays a crucial role in orchestrating a multitude of brain functions, including synaptic plasticity and motor planning. Metabotropic glutamate receptor (mGluR) 5 exhibits promising therapeutic potential for many neurodevelopmental and neurodegenerative disorders as a consequence of its modulatory control over diverse neuronal networks required for memory, motor coordination, neuronal survival, and differentiation. Given these crucial roles, mGluR5 signaling is under the tight control of glutamate release machinery mediated through vesicular glutamate transporters (VGLUTs) that ultimately dictate glutamatergic output. A particular VGLUT isoform, VGLUT3, exhibits an overlapping, but unique, distribution with mGluR5, and the dynamic cross talk between mGluR5 and VGLUT3 is key for the function of specific neuronal networks involved in motor coordination, emotions, and cognition. Thus, aberrant signaling of the VGLUT3-mGluR5 axis is linked to various pathologies including, but not limited to, Parkinson disease, anxiety disorders, and drug addiction. We argue that a comprehensive profiling of how coordinated VGLUT3-mGluR5 signaling influences overall glutamatergic neurotransmission is warranted. SIGNIFICANCE STATEMENT: Vesicular glutamate receptor (VGLUT) 3 machinery orchestrates glutamate release, and its distribution overlaps with metabotropic glutamate receptor (mGluR) 5 in regional brain circuitries, including striatum, hippocampus, and raphe nucleus. Therefore, VGLUT3-mGluR5 cross talk can significantly influence both physiologic and pathophysiologic glutamatergic neurotransmission. Pathological signaling of the VGLUT3-mGluR5 axis is linked to Parkinson disease, anxiety disorders, and drug addiction. However, it is also predicted to contribute to other motor and cognitive disorders.
Collapse
Affiliation(s)
- Karim S Ibrahim
- University of Ottawa Brain and Mind Institute (K.S.I., K.S.A.-E., S.S.G.F.) and Department of Cellular and Molecular Medicine (K.S.I., K.S.A.-E., S.S.G.F.), University of Ottawa, Ottawa, Ontario, Canada; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (K.S.I., K.S.A.-E.); Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS) INSERM, CNRS, Sorbonne Université, Paris, France (S.E.M.); and Department of Psychiatry, Douglas Hospital Research Center, McGill University, Verdun, Quebec, Canada (S.E.M.)
| | - Khaled S Abd-Elrahman
- University of Ottawa Brain and Mind Institute (K.S.I., K.S.A.-E., S.S.G.F.) and Department of Cellular and Molecular Medicine (K.S.I., K.S.A.-E., S.S.G.F.), University of Ottawa, Ottawa, Ontario, Canada; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (K.S.I., K.S.A.-E.); Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS) INSERM, CNRS, Sorbonne Université, Paris, France (S.E.M.); and Department of Psychiatry, Douglas Hospital Research Center, McGill University, Verdun, Quebec, Canada (S.E.M.)
| | - Salah El Mestikawy
- University of Ottawa Brain and Mind Institute (K.S.I., K.S.A.-E., S.S.G.F.) and Department of Cellular and Molecular Medicine (K.S.I., K.S.A.-E., S.S.G.F.), University of Ottawa, Ottawa, Ontario, Canada; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (K.S.I., K.S.A.-E.); Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS) INSERM, CNRS, Sorbonne Université, Paris, France (S.E.M.); and Department of Psychiatry, Douglas Hospital Research Center, McGill University, Verdun, Quebec, Canada (S.E.M.)
| | - Stephen S G Ferguson
- University of Ottawa Brain and Mind Institute (K.S.I., K.S.A.-E., S.S.G.F.) and Department of Cellular and Molecular Medicine (K.S.I., K.S.A.-E., S.S.G.F.), University of Ottawa, Ottawa, Ontario, Canada; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (K.S.I., K.S.A.-E.); Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS) INSERM, CNRS, Sorbonne Université, Paris, France (S.E.M.); and Department of Psychiatry, Douglas Hospital Research Center, McGill University, Verdun, Quebec, Canada (S.E.M.)
| |
Collapse
|
15
|
Nagahama K, Sakoori K, Watanabe T, Kishi Y, Kawaji K, Koebis M, Nakao K, Gotoh Y, Aiba A, Uesaka N, Kano M. Setd1a Insufficiency in Mice Attenuates Excitatory Synaptic Function and Recapitulates Schizophrenia-Related Behavioral Abnormalities. Cell Rep 2020; 32:108126. [PMID: 32937141 DOI: 10.1016/j.celrep.2020.108126] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/17/2020] [Accepted: 08/19/2020] [Indexed: 12/26/2022] Open
Abstract
SETD1A encodes a histone methyltransferase whose de novo mutations are identified in schizophrenia (SCZ) patients and confer a large increase in disease risk. Here, we generate Setd1a mutant mice carrying the frameshift mutation that closely mimics a loss-of-function variant of SCZ. Our Setd1a (+/-) mice display various behavioral abnormalities relevant to features of SCZ, impaired excitatory synaptic transmission in layer 2/3 (L2/3) pyramidal neurons of the medial prefrontal cortex (mPFC), and altered expression of diverse genes related to neurodevelopmental disorders and synaptic functions in the mPFC. RNAi-mediated Setd1a knockdown (KD) specifically in L2/3 pyramidal neurons of the mPFC only recapitulates impaired sociality among multiple behavioral abnormalities of Setd1a (+/-) mice. Optogenetics-assisted selective stimulation of presynaptic neurons combined with Setd1a KD reveals that Setd1a at postsynaptic site is essential for excitatory synaptic transmission. Our findings suggest that reduced SETD1A may attenuate excitatory synaptic function and contribute to the pathophysiology of SCZ.
Collapse
Affiliation(s)
- Kenichiro Nagahama
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kazuto Sakoori
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takaki Watanabe
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yusuke Kishi
- Laboratory of Molecular Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Keita Kawaji
- Laboratory of Molecular Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Michinori Koebis
- Laboratory of Animal Resources, Center for Disease Biology and Integrated Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kazuki Nakao
- Laboratory of Animal Resources, Center for Disease Biology and Integrated Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yukiko Gotoh
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo 113-0033, Japan; Laboratory of Molecular Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Atsu Aiba
- Laboratory of Animal Resources, Center for Disease Biology and Integrated Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Naofumi Uesaka
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo 113-0033, Japan; Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan.
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
16
|
Dhangar RR, Kale PP, Kadu PK, Prabhavalkar K. Possible Benefits of Considering Glutamate with Melatonin or Orexin or Oxytocin as a Combination Approach in the Treatment of Anxiety. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s40495-019-00207-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|