1
|
Gilardi C, Martins HC, Levone BR, Bianco AL, Bicker S, Germain PL, Gross F, Sungur AÖ, Kisko TM, Stein F, Meinert S, Schwarting RKW, Wöhr M, Dannlowski U, Kircher T, Schratt G. miR-708-5p is elevated in bipolar patients and can induce mood disorder-associated behavior in mice. EMBO Rep 2025; 26:2121-2145. [PMID: 40065182 PMCID: PMC12019553 DOI: 10.1038/s44319-025-00410-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 04/25/2025] Open
Abstract
Mood disorders (MDs) are caused by an interplay of genetic and environmental (GxE) risk factors. However, molecular pathways engaged by GxE risk factors are poorly understood. Using small-RNA sequencing in peripheral blood mononuclear cells (PBMCs), we show that the bipolar disorder (BD)-associated microRNA miR-708-5p is upregulated in healthy human subjects with a high genetic or environmental predisposition for MDs. miR-708-5p is further upregulated in the hippocampus of rats which underwent juvenile social isolation, a model of early life stress. Hippocampal overexpression of miR-708-5p in adult male mice is sufficient to elicit MD-associated behavioral endophenotypes. We further show that miR-708-5p directly targets Neuronatin (Nnat), an endoplasmic reticulum protein. Restoring Nnat expression in the hippocampus of miR-708-5p-overexpressing mice rescues miR-708-5p-dependent behavioral phenotypes. Finally, miR-708-5p is upregulated in PBMCs from patients diagnosed with MD. Peripheral miR-708-5p expression allows to differentiate male BD patients from patients suffering from major depressive disorder (MDD). In summary, we describe a potential functional role for the miR-708-5p/Nnat pathway in MD etiology and identify miR-708-5p as a potential biomarker for the differential diagnosis of MDs.
Collapse
Affiliation(s)
- Carlotta Gilardi
- Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH Zurich, 8057, Zurich, Switzerland
| | - Helena C Martins
- Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH Zurich, 8057, Zurich, Switzerland
| | - Brunno Rocha Levone
- Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH Zurich, 8057, Zurich, Switzerland
| | - Alessandra Lo Bianco
- Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH Zurich, 8057, Zurich, Switzerland
| | - Silvia Bicker
- Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH Zurich, 8057, Zurich, Switzerland
| | - Pierre-Luc Germain
- Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH Zurich, 8057, Zurich, Switzerland
- Laboratory of Molecular and Behavioural Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH Zurich, 8057, Zurich, Switzerland
- Lab of Statistical Bioinformatics, IMLS, University of Zürich, 8057, Zurich, Switzerland
| | - Fridolin Gross
- Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH Zurich, 8057, Zurich, Switzerland
- CNRS UMR5164 ImmunoConcEpT, University of Bordeaux, Bordeaux, France
| | - Ayse Özge Sungur
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University of Marburg, D-35032, Marburg, Germany
- Center for Mind, Brain and Behavior, Philipps-University Marburg, D-35032, Marburg, Germany
- Laboratory of Biological Psychology, Social and Affective Neuroscience Research Group, Research Unit Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, B-3000, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, B-3000, Leuven, Belgium
| | - Theresa M Kisko
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University of Marburg, D-35032, Marburg, Germany
- Center for Mind, Brain and Behavior, Philipps-University Marburg, D-35032, Marburg, Germany
- Laboratory of Biological Psychology, Social and Affective Neuroscience Research Group, Research Unit Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, B-3000, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, B-3000, Leuven, Belgium
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Rainer K W Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University of Marburg, D-35032, Marburg, Germany
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University of Marburg, D-35032, Marburg, Germany
- Center for Mind, Brain and Behavior, Philipps-University Marburg, D-35032, Marburg, Germany
- Laboratory of Biological Psychology, Social and Affective Neuroscience Research Group, Research Unit Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, B-3000, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, B-3000, Leuven, Belgium
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Gerhard Schratt
- Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH Zurich, 8057, Zurich, Switzerland.
| |
Collapse
|
2
|
Gupta S, Kishore A, Rishi V, Aggarwal A. Mitochondria and its epigenetic dynamics: Insight into synaptic regulation and synaptopathies. Funct Integr Genomics 2025; 25:26. [PMID: 39849126 DOI: 10.1007/s10142-025-01530-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/04/2025] [Accepted: 01/08/2025] [Indexed: 01/25/2025]
Abstract
Mitochondria, the cellular powerhouses, are pivotal to neuronal function and health, particularly through their role in regulating synaptic structure and function. Spine reprogramming, which underlies synapse development, depends heavily on mitochondrial dynamics-such as biogenesis, fission, fusion, and mitophagy as well as functions including ATP production, calcium (Ca2+) regulation, and retrograde signaling. Mitochondria supply the energy necessary for assisting synapse development and plasticity, while also regulating intracellular Ca2+ homeostasis to prevent excitotoxicity and support synaptic neurotransmission. Additionally, the dynamic processes of mitochondria ensure mitochondrial quality and adaptability, which are essential for maintaining effective synaptic activity. Emerging evidence highlights the significant role of epigenetic modifications in regulating mitochondrial dynamics and function. Epigenetic changes influence gene expression, which in turn affects mitochondrial activity, ensuring coordinated responses necessary for synapse development. Furthermore, metabolic changes within mitochondria can impact the epigenetic machinery, thereby modulating gene expression patterns that support synaptic integrity. Altered epigenetic regulation affecting mitochondrial dynamics and functions is linked to several neurological disorders, including Amyotrophic Lateral Sclerosis, Huntington's, Alzheimer's, and Parkinson's diseases, emphasizing its crucial function. The review delves into the molecular machinery involved in mitochondrial dynamics, ATP and Ca2+ regulation, highlighting the role of key proteins that facilitate the processes. Additionally, it also shed light on the emerging epigenetic factors influencing these regulations. It provides a thorough summary on the current understanding of the role of mitochondria in synapse development and emphasizes the importance of both molecular and epigenetic mechanisms in maintaining synaptic integrity.
Collapse
Affiliation(s)
- Shiwangi Gupta
- National Agri-Food and Biomanufacturing Institute, Sector-81, SAS Nagar, Knowledge City, Punjab, India
- Department of Biotechnology, Sector-25, Panjab University, BMS block I, Chandigarh, India
| | - Abhinoy Kishore
- Indian Institute of Science, Bengaluru, India
- Chandigarh Group of Colleges, Landran, Punjab, India
| | - Vikas Rishi
- National Agri-Food and Biomanufacturing Institute, Sector-81, SAS Nagar, Knowledge City, Punjab, India
| | - Aanchal Aggarwal
- National Agri-Food and Biomanufacturing Institute, Sector-81, SAS Nagar, Knowledge City, Punjab, India.
| |
Collapse
|
3
|
Mustafin RN. A hypothesis about interrelations of epigenetic factors and transposable elements in memory formation. Vavilovskii Zhurnal Genet Selektsii 2024; 28:476-486. [PMID: 39280851 PMCID: PMC11393658 DOI: 10.18699/vjgb-24-54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 09/18/2024] Open
Abstract
The review describes the hypothesis that the drivers of epigenetic regulation in memory formation are transposable elements that influence the expression of specific genes in the brain. The hypothesis is confirmed by research into transposon activation in neuronal stem cells during neuronal differentiation. These changes occur in the hippocampus dentate gyrus, where a pronounced activity of transposons and their insertion near neuron-specific genes have been detected. In experiments on changing the activity of histone acetyltransferase and inhibition of DNA methyltransferase and reverse transcriptase, the involvement of epigenetic factors and retroelements in the mechanisms of memory formation has been shown. Also, a number of studies on different animals have revealed the preservation of long-term memory without the participation of synaptic plasticity. The data obtained suggest that transposons, which are genome sensors highly sensitive to various environmental and internal influences, form memory at the nuclear coding level. Therefore, long-term memory is preserved after elimination of synaptic connections. This is confirmed by the fact that the proteins involved in memory formation, including the transfer of genetic information through synapses between neurons (Arc protein), originate from transposons. Long non-coding RNAs and microRNAs also originate from transposons; their role in memory consolidation has been described. Pathological activation of transposable elements is a likely cause of neurodegenerative diseases with memory impairment. Analysis of the scientific literature allowed us to identify changes in the expression of 40 microRNAs derived from transposons in Alzheimer's disease. For 24 of these microRNAs, the mechanisms of regulation of genes involved in the functioning of the brain have been described. It has been suggested that the microRNAs we identified could become potential tools for regulating transposon activity in the brain in order to improve memory.
Collapse
|
4
|
Baum TB, Bodnya C, Costanzo J, Gama V. Patient mutations in DRP1 perturb synaptic maturation of cortical neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609462. [PMID: 39229012 PMCID: PMC11370610 DOI: 10.1101/2024.08.23.609462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
With the advent of exome sequencing, a growing number of children are being identified with de novo loss of function mutations in the dynamin 1 like (DNM1L) gene encoding the large GTPase essential for mitochondrial fission, dynamin-related protein 1 (DRP1); these mutations result in severe neurodevelopmental phenotypes, such as developmental delay, optic atrophy, and epileptic encephalopathies. Though it is established that mitochondrial fission is an essential precursor to the rapidly changing metabolic needs of the developing cortex, it is not understood how identified mutations in different domains of DRP1 uniquely disrupt cortical development and synaptic maturation. We leveraged the power of induced pluripotent stem cells (iPSCs) harboring DRP1 mutations in either the GTPase or stalk domains to model early stages of cortical development in vitro. High-resolution time-lapse imaging of axonal transport in mutant DRP1 cortical neurons reveals mutation-specific changes in mitochondrial motility of severely hyperfused mitochondrial structures. Transcriptional profiling of mutant DRP1 cortical neurons during maturation also implicates mutation dependent alterations in synaptic development and calcium regulation gene expression. Disruptions in calcium dynamics were confirmed using live functional recordings of 100 DIV (days in vitro) mutant DRP1 cortical neurons. These findings and deficits in pre- and post-synaptic marker colocalization using super resolution microscopy, strongly suggest that altered mitochondrial morphology of DRP1 mutant neurons leads to pathogenic dysregulation of synaptic development and activity.
Collapse
Affiliation(s)
- T B Baum
- Vanderbilt University, Cell and Developmental Biology, Nashville, TN
| | - C Bodnya
- Vanderbilt University, Cell and Developmental Biology, Nashville, TN
| | - J Costanzo
- Vanderbilt University, Cell and Developmental Biology, Nashville, TN
| | - V Gama
- Vanderbilt University, Cell and Developmental Biology, Nashville, TN
- Vanderbilt University, Vanderbilt Center for Stem Cell Biology, Nashville, TN
- Vanderbilt University, Vanderbilt Brain Institute, Nashville, TN
| |
Collapse
|
5
|
Kale G, Addepalli V, Joshi S. A snapshot on introspection of autism spectrum disorder. Mol Biol Rep 2024; 51:610. [PMID: 38704762 DOI: 10.1007/s11033-024-09514-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/03/2024] [Indexed: 05/07/2024]
Abstract
Autism spectrum disorder is a neurodevelopmental condition marked by restricted interests and difficulty with social communication. ASD is characterized by heightened neuroinflammation and irregular neuronal connections. ASD is more frequent in male than female with male-female ratio of around 4:1. ASD affects 2.8% or 1 in 36 8-year-olds, based on the CDC's Morbidity and Mortality Weekly Report. Various factors like Environmental, Genetic, Epigenetic and Developmental factors are linked with genesis of ASD. Repetitive behaviors, Impaired communication skills, difficulty with social interaction are some of the clinical features of ASD. Current Pharmacotherapy of ASD limits to management of symptoms only, not cure. The stem cell therapy has a promising potential to be a breakthrough in treating ASD. Various types of stem cells have been successfully tested in children with ASD. AI has a potential to emerge as a tool for early detection of ASD. Robotics can assist the children with ASD to overcome the challenges associated with ASD.
Collapse
Affiliation(s)
- Govind Kale
- Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, 411018, Maharashtra, India
| | - Veeranjaneyulu Addepalli
- Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, 411018, Maharashtra, India.
| | - Sharvari Joshi
- Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, 411018, Maharashtra, India
| |
Collapse
|
6
|
Pandit M, Akhtar MN, Sundaram S, Sahoo S, Manjunath LE, Eswarappa SM. Termination codon readthrough of NNAT mRNA regulates calcium-mediated neuronal differentiation. J Biol Chem 2023; 299:105184. [PMID: 37611826 PMCID: PMC10506107 DOI: 10.1016/j.jbc.2023.105184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023] Open
Abstract
Termination codon readthrough (TCR) is a process in which ribosomes continue to translate an mRNA beyond a stop codon generating a C-terminally extended protein isoform. Here, we demonstrate TCR in mammalian NNAT mRNA, which encodes NNAT, a proteolipid important for neuronal differentiation. This is a programmed event driven by cis-acting RNA sequences present immediately upstream and downstream of the canonical stop codon and is negatively regulated by NONO, an RNA-binding protein known to promote neuronal differentiation. Unlike the canonical isoform NNAT, we determined that the TCR product (NNATx) does not show detectable interaction with the sarco/endoplasmic reticulum Ca2+-ATPase isoform 2 Ca2+ pump, cannot increase cytoplasmic Ca2+ levels, and therefore does not enhance neuronal differentiation in Neuro-2a cells. Additionally, an antisense oligonucleotide that targets a region downstream of the canonical stop codon reduced TCR of NNAT and enhanced the differentiation of Neuro-2a cells to cholinergic neurons. Furthermore, NNATx-deficient Neuro-2a cells, generated using CRISPR-Cas9, showed increased cytoplasmic Ca2+ levels and enhanced neuronal differentiation. Overall, these results demonstrate regulation of neuronal differentiation by TCR of NNAT. Importantly, this process can be modulated using a synthetic antisense oligonucleotide.
Collapse
Affiliation(s)
- Madhuparna Pandit
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Md Noor Akhtar
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Susinder Sundaram
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Sarthak Sahoo
- Undergraduate Program, Indian Institute of Science, Bengaluru, India
| | - Lekha E Manjunath
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Sandeep M Eswarappa
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India.
| |
Collapse
|
7
|
Choi KM, Ko CY, An SM, Cho SH, Rowland DJ, Kim JH, Fasoli A, Chaudhari AJ, Bers DM, Yoon JC. Regulation of beige adipocyte thermogenesis by the cold-repressed ER protein NNAT. Mol Metab 2023; 69:101679. [PMID: 36708951 PMCID: PMC9932177 DOI: 10.1016/j.molmet.2023.101679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE Cold stimuli trigger the conversion of white adipose tissue into beige adipose tissue, which is capable of non-shivering thermogenesis. However, what process drives this activation of thermogenesis in beige fat is not well understood. Here, we examine the ER protein NNAT as a regulator of thermogenesis in adipose tissue. METHODS We investigated the regulation of adipose tissue NNAT expression in response to changes in ambient temperature. We also evaluated the functional role of NNAT in thermogenic regulation using Nnat null mice and primary adipocytes that lack or overexpress NNAT. RESULTS Cold exposure or treatment with a β3-adrenergic agonist reduces the expression of adipose tissue NNAT in mice. Genetic disruption of Nnat in mice enhances inguinal adipose tissue thermogenesis. Nnat null mice exhibit improved cold tolerance both in the presence and absence of UCP1. Gain-of-function studies indicate that ectopic expression of Nnat abolishes adrenergic receptor-mediated respiration in beige adipocytes. NNAT physically interacts with the ER Ca2+-ATPase (SERCA) in adipocytes and inhibits its activity, impairing Ca2+ transport and heat dissipation. We further demonstrate that NHLRC1, an E3 ubiquitin protein ligase implicated in proteasomal degradation of NNAT, is induced by cold exposure or β3-adrenergic stimulation, thus providing regulatory control at the protein level. This serves to link cold stimuli to NNAT degradation in adipose tissue, which in turn leads to enhanced SERCA activity. CONCLUSIONS Our study implicates NNAT in the regulation of adipocyte thermogenesis.
Collapse
Affiliation(s)
- Kyung-Mi Choi
- Division of Endocrinology, Department of Internal Medicine, University of California Davis School of Medicine, Davis, CA 95616, USA; Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Christopher Y Ko
- Department of Pharmacology, University of California Davis School of Medicine, Davis, CA 95616, USA
| | - Sung-Min An
- Division of Endocrinology, Department of Internal Medicine, University of California Davis School of Medicine, Davis, CA 95616, USA
| | - Seung-Hee Cho
- Division of Endocrinology, Department of Internal Medicine, University of California Davis School of Medicine, Davis, CA 95616, USA
| | - Douglas J Rowland
- Center for Molecular and Genomic Imaging, Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
| | - Jung Hak Kim
- Division of Endocrinology, Department of Internal Medicine, University of California Davis School of Medicine, Davis, CA 95616, USA
| | - Anna Fasoli
- Department of Pharmacology, University of California Davis School of Medicine, Davis, CA 95616, USA
| | - Abhijit J Chaudhari
- Department of Radiology, University of California Davis School of Medicine, Sacramento, CA 95825, USA
| | - Donald M Bers
- Department of Pharmacology, University of California Davis School of Medicine, Davis, CA 95616, USA
| | - John C Yoon
- Division of Endocrinology, Department of Internal Medicine, University of California Davis School of Medicine, Davis, CA 95616, USA.
| |
Collapse
|
8
|
Klocke B, Krone K, Tornes J, Moore C, Ott H, Pitychoutis PM. Insights into the role of intracellular calcium signaling in the neurobiology of neurodevelopmental disorders. Front Neurosci 2023; 17:1093099. [PMID: 36875674 PMCID: PMC9975342 DOI: 10.3389/fnins.2023.1093099] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/27/2023] [Indexed: 02/17/2023] Open
Abstract
Calcium (Ca2+) comprises a critical ionic second messenger in the central nervous system that is under the control of a wide array of regulatory mechanisms, including organellar Ca2+ stores, membrane channels and pumps, and intracellular Ca2+-binding proteins. Not surprisingly, disturbances in Ca2+ homeostasis have been linked to neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. However, aberrations in Ca2+ homeostasis have also been implicated in neuropsychiatric disorders with a strong neurodevelopmental component including autism spectrum disorder (ASD) attention-deficit hyperactivity disorder (ADHD) and schizophrenia (SCZ). While plasma membrane Ca2+ channels and synaptic Ca2+-binding proteins have been extensively studied, increasing evidence suggests a prominent role for intracellular Ca2+ stores, such as the endoplasmic reticulum (ER), in aberrant neurodevelopment. In the context of the current mini-review, we discuss recent findings implicating critical intracellular Ca2+-handling regulators such as the sarco-ER Ca2+ ATPase 2 (SERCA2), ryanodine receptors (RyRs), inositol triphosphate receptors (IP3Rs), and parvalbumin (PVALB), in the emergence of ASD, SCZ, and ADHD.
Collapse
Affiliation(s)
- Benjamin Klocke
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Kylie Krone
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Jason Tornes
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Carter Moore
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Hayden Ott
- Department of Biology, University of Dayton, Dayton, OH, United States
| | | |
Collapse
|
9
|
Sokolov PL, Chebanenko NV, Mednaya DM. [Epigenetic influences and brain development]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:12-19. [PMID: 36946391 DOI: 10.17116/jnevro202312303112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
In recent years, the amount of scientific data on the involvement of epigenetic processes in the regulation of brain development in postnatal ontogenesis has been rapidly growing. The article provides an overview of scientific research on the mechanisms of epigenetic influences on brain development. Information was searched in the Scopus, Web of Science, MedLine, The Cochrane Library, PubMed, Pedro, Scholar, eLibrary, CyberLeninka and RSCI databases for the period 1940-2022 by keywords: brain development, epigenetics, neuroontogenesis, methylation, histone modifications, chromatin remodeling, non-coding RNAs. Today, the mechanisms of epigenetic influence on the genome include DNA and RNA methylation, covalent modification of histones, chromatin remodeling, and the influence of non-coding RNAs. Epigenetic modifications are often reversible and provide the necessary plasticity for the response of progenitor cells to environmental signals. The influence of each of these factors on the neurodevelopment is considered. The possibility of transsynaptic transmission of hereditary material by means of circular RNA is indicated. The main ways of microRNA influence on brain development are presented and their universality as an «overgenic» regulator of organism adaptation to external conditions is indicated. Data on the relationship of long non-coding RNAs with the regulation of the functional activity of oligodendroglia are presented. Also, the data presented indicate the paths to the pathogenetically determined prevention of congenital brain pathology.
Collapse
Affiliation(s)
- P L Sokolov
- Voyno-Yasenetsky Scientific and Practical Center for Specialized Assistance for Children, Moscow, Russia
| | - N V Chebanenko
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - D M Mednaya
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
10
|
Tsujimura K, Shiohama T, Takahashi E. microRNA Biology on Brain Development and Neuroimaging Approach. Brain Sci 2022; 12:1366. [PMID: 36291300 PMCID: PMC9599180 DOI: 10.3390/brainsci12101366] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/22/2022] Open
Abstract
Proper brain development requires the precise coordination and orchestration of various molecular and cellular processes and dysregulation of these processes can lead to neurological diseases. In the past decades, post-transcriptional regulation of gene expression has been shown to contribute to various aspects of brain development and function in the central nervous system. MicroRNAs (miRNAs), short non-coding RNAs, are emerging as crucial players in post-transcriptional gene regulation in a variety of tissues, such as the nervous system. In recent years, miRNAs have been implicated in multiple aspects of brain development, including neurogenesis, migration, axon and dendrite formation, and synaptogenesis. Moreover, altered expression and dysregulation of miRNAs have been linked to neurodevelopmental and psychiatric disorders. Magnetic resonance imaging (MRI) is a powerful imaging technology to obtain high-quality, detailed structural and functional information from the brains of human and animal models in a non-invasive manner. Because the spatial expression patterns of miRNAs in the brain, unlike those of DNA and RNA, remain largely unknown, a whole-brain imaging approach using MRI may be useful in revealing biological and pathological information about the brain affected by miRNAs. In this review, we highlight recent advancements in the research of miRNA-mediated modulation of neuronal processes that are important for brain development and their involvement in disease pathogenesis. Also, we overview each MRI technique, and its technological considerations, and discuss the applications of MRI techniques in miRNA research. This review aims to link miRNA biological study with MRI analytical technology and deepen our understanding of how miRNAs impact brain development and pathology of neurological diseases.
Collapse
Affiliation(s)
- Keita Tsujimura
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Group of Brain Function and Development, Nagoya University Neuroscience Institute of the Graduate School of Science, Nagoya 4648602, Japan
- Research Unit for Developmental Disorders, Institute for Advanced Research, Nagoya University, Nagoya 4648602, Japan
| | - Tadashi Shiohama
- Department of Pediatrics, Chiba University Hospital, Chiba 2608677, Japan
| | - Emi Takahashi
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
| |
Collapse
|
11
|
Wong A, Zhou A, Cao X, Mahaganapathy V, Azaro M, Gwin C, Wilson S, Buyske S, Bartlett CW, Flax JF, Brzustowicz LM, Xing J. MicroRNA and MicroRNA-Target Variants Associated with Autism Spectrum Disorder and Related Disorders. Genes (Basel) 2022; 13:1329. [PMID: 35893067 PMCID: PMC9329941 DOI: 10.3390/genes13081329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 12/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a childhood neurodevelopmental disorder with a complex and heterogeneous genetic etiology. MicroRNA (miRNA), a class of small non-coding RNAs, could regulate ASD risk genes post-transcriptionally and affect broad molecular pathways related to ASD and associated disorders. Using whole-genome sequencing, we analyzed 272 samples in 73 families in the New Jersey Language and Autism Genetics Study (NJLAGS) cohort. Families with at least one ASD patient were recruited and were further assessed for language impairment, reading impairment, and other associated phenotypes. A total of 5104 miRNA variants and 1,181,148 3' untranslated region (3' UTR) variants were identified in the dataset. After applying several filtering criteria, including population allele frequency, brain expression, miRNA functional regions, and inheritance patterns, we identified high-confidence variants in five brain-expressed miRNAs (targeting 326 genes) and 3' UTR miRNA target regions of 152 genes. Some genes, such as SCP2 and UCGC, were identified in multiple families. Using Gene Ontology overrepresentation analysis and protein-protein interaction network analysis, we identified clusters of genes and pathways that are important for neurodevelopment. The miRNAs and miRNA target genes identified in this study are potentially involved in neurodevelopmental disorders and should be considered for further functional studies.
Collapse
Affiliation(s)
- Anthony Wong
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (A.W.); (A.Z.); (X.C.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Anbo Zhou
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (A.W.); (A.Z.); (X.C.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Xiaolong Cao
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (A.W.); (A.Z.); (X.C.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Vaidhyanathan Mahaganapathy
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (A.W.); (A.Z.); (X.C.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Marco Azaro
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (A.W.); (A.Z.); (X.C.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Christine Gwin
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (A.W.); (A.Z.); (X.C.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Sherri Wilson
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (A.W.); (A.Z.); (X.C.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Steven Buyske
- Department of Statistics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA;
| | - Christopher W. Bartlett
- The Steve & Cindy Rasmussen Institute for Genomic Medicine, Battelle Center for Computational Biology, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA;
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Judy F. Flax
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (A.W.); (A.Z.); (X.C.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Linda M. Brzustowicz
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (A.W.); (A.Z.); (X.C.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jinchuan Xing
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (A.W.); (A.Z.); (X.C.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
12
|
Fonseca Cabral G, Schaan AP, Cavalcante GC, Sena-dos-Santos C, de Souza TP, Souza Port’s NM, dos Santos Pinheiro JA, Ribeiro-dos-Santos Â, Vidal AF. Nuclear and Mitochondrial Genome, Epigenome and Gut Microbiome: Emerging Molecular Biomarkers for Parkinson's Disease. Int J Mol Sci 2021; 22:9839. [PMID: 34576000 PMCID: PMC8471599 DOI: 10.3390/ijms22189839] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is currently the second most common neurodegenerative disorder, burdening about 10 million elderly individuals worldwide. The multifactorial nature of PD poses a difficult obstacle for understanding the mechanisms involved in its onset and progression. Currently, diagnosis depends on the appearance of clinical signs, some of which are shared among various neurologic disorders, hindering early diagnosis. There are no effective tools to prevent PD onset, detect the disease in early stages or accurately report the risk of disease progression. Hence, there is an increasing demand for biomarkers that may identify disease onset and progression, as treatment-based medicine may not be the best approach for PD. Over the last few decades, the search for molecular markers to predict susceptibility, aid in accurate diagnosis and evaluate the progress of PD have intensified, but strategies aimed to improve individualized patient care have not yet been established. CONCLUSIONS Genomic variation, regulation by epigenomic mechanisms, as well as the influence of the host gut microbiome seem to have a crucial role in the onset and progress of PD, thus are considered potential biomarkers. As such, the human nuclear and mitochondrial genome, epigenome, and the host gut microbiome might be the key elements to the rise of personalized medicine for PD patients.
Collapse
Affiliation(s)
- Gleyce Fonseca Cabral
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
| | - Ana Paula Schaan
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
| | - Giovanna C. Cavalcante
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
| | - Camille Sena-dos-Santos
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
| | - Tatiane Piedade de Souza
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
| | - Natacha M. Souza Port’s
- Laboratório de Neurofarmacologia Molecular, Universidade de São Paulo, São Paulo 05508-000, Brazil;
| | - Jhully Azevedo dos Santos Pinheiro
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
| | - Ândrea Ribeiro-dos-Santos
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará–R. dos Mundurucus, Belém 66073-000, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil
| | - Amanda F. Vidal
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil
- ITVDS—Instituto Tecnológico Vale Desenvolvimento Sustentável–R. Boaventura da Silva, Belém 66055-090, Brazil
| |
Collapse
|
13
|
Masini E, Loi E, Vega-Benedetti AF, Carta M, Doneddu G, Fadda R, Zavattari P. An Overview of the Main Genetic, Epigenetic and Environmental Factors Involved in Autism Spectrum Disorder Focusing on Synaptic Activity. Int J Mol Sci 2020; 21:ijms21218290. [PMID: 33167418 PMCID: PMC7663950 DOI: 10.3390/ijms21218290] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 12/11/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that affects social interaction and communication, with restricted interests, activity and behaviors. ASD is highly familial, indicating that genetic background strongly contributes to the development of this condition. However, only a fraction of the total number of genes thought to be associated with the condition have been discovered. Moreover, other factors may play an important role in ASD onset. In fact, it has been shown that parental conditions and in utero and perinatal factors may contribute to ASD etiology. More recently, epigenetic changes, including DNA methylation and micro RNA alterations, have been associated with ASD and proposed as potential biomarkers. This review aims to provide a summary of the literature regarding ASD candidate genes, mainly focusing on synapse formation and functionality and relevant epigenetic and environmental aspects acting in concert to determine ASD onset.
Collapse
Affiliation(s)
- Elena Masini
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, 09042 Cagliari, Italy; (E.M.); (E.L.); (A.F.V.-B.)
| | - Eleonora Loi
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, 09042 Cagliari, Italy; (E.M.); (E.L.); (A.F.V.-B.)
| | - Ana Florencia Vega-Benedetti
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, 09042 Cagliari, Italy; (E.M.); (E.L.); (A.F.V.-B.)
| | - Marinella Carta
- Center for Pervasive Developmental Disorders, Azienda Ospedaliera Brotzu, 09121 Cagliari, Italy;
| | - Giuseppe Doneddu
- Centro per l’Autismo e Disturbi correlati (CADc), Nuovo Centro Fisioterapico Sardo, 09131 Cagliari, Italy;
| | - Roberta Fadda
- Department of Pedagogy, Psychology, Philosophy, University of Cagliari, 09123 Cagliari, Italy;
| | - Patrizia Zavattari
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, 09042 Cagliari, Italy; (E.M.); (E.L.); (A.F.V.-B.)
- Correspondence:
| |
Collapse
|
14
|
Schultz MN, Crawley JN. Evaluation of a TrkB agonist on spatial and motor learning in the Ube3a mouse model of Angelman syndrome. Learn Mem 2020; 27:346-354. [PMID: 32817301 PMCID: PMC7433657 DOI: 10.1101/lm.051201.119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/11/2020] [Indexed: 12/21/2022]
Abstract
Angelman syndrome is a rare neurodevelopmental disorder caused by a mutation in the maternal allele of the gene Ube3a The primary symptoms of Angelman syndrome are severe cognitive deficits, impaired motor functions, and speech disabilities. Analogous phenotypes have been detected in young adult Ube3a mice. Here, we investigate cognitive phenotypes of Ube3a mice as compared to wild-type littermate controls at an older adult age. Water maze spatial learning, swim speed, and rotarod motor coordination and balance were impaired at 6 mo of age, as predicted. Based on previous findings of reduced brain-derived neurotrophic factor in Ube3a mice, a novel therapeutic target, the TrkB agonist 7,8-DHF, was interrogated. Semichronic daily treatment with 7,8-DHF, 5 mg/kg i.p., did not significantly improve the impairments in performance during the acquisition of the water maze hidden platform location in Ube3a mice, after training with either massed or spaced trials, and had no effect on the swim speed and rotarod deficits. Robust behavioral phenotypes in middle-aged Ube3a mice appear to result from continued motor decline. Our results suggest that motor deficits could offer useful outcome measures for preclinical testing of many pharmacological targets, with the goal of reducing symptoms in adults with Angelman syndrome.
Collapse
Affiliation(s)
- Maria N Schultz
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California 95821, USA
| | - Jacqueline N Crawley
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California 95821, USA
| |
Collapse
|
15
|
Maranga C, Fernandes TG, Bekman E, da Rocha ST. Angelman syndrome: a journey through the brain. FEBS J 2020; 287:2154-2175. [PMID: 32087041 DOI: 10.1111/febs.15258] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/02/2020] [Accepted: 02/21/2020] [Indexed: 12/31/2022]
Abstract
Angelman syndrome (AS) is an incurable neurodevelopmental disease caused by loss of function of the maternally inherited UBE3A gene. AS is characterized by a defined set of symptoms, namely severe developmental delay, speech impairment, uncontrolled laughter, and ataxia. Current understanding of the pathophysiology of AS relies mostly on studies using the murine model of the disease, although alternative models based on patient-derived stem cells are now emerging. Here, we summarize the literature of the last decade concerning the three major brain areas that have been the subject of study in the context of AS: hippocampus, cortex, and the cerebellum. Our comprehensive analysis highlights the major phenotypes ascribed to the different brain areas. Moreover, we also discuss the major drawbacks of current models and point out future directions for research in the context of AS, which will hopefully lead us to an effective treatment of this condition in humans.
Collapse
Affiliation(s)
- Carina Maranga
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Tiago G Fernandes
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Evguenia Bekman
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Simão Teixeira da Rocha
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
16
|
Autism Spectrum Disorder and miRNA: An Overview of Experimental Models. Brain Sci 2019; 9:brainsci9100265. [PMID: 31623367 PMCID: PMC6827020 DOI: 10.3390/brainsci9100265] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/25/2019] [Accepted: 10/02/2019] [Indexed: 12/14/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex neuropsychiatric disorder characterized by deficits in social interactions, communication, language, and in a limited repertoire of activities and interests. The etiology of ASD is very complex. Genetic, epigenetic, and environmental factors contribute to the onset of ASD. Researchers have shown that microRNAs (miRNAs) could be one of the possible causes associated with ASD. miRNAs are small noncoding mRNAs that regulate gene expression, and they are often linked to biological processes and implicated in neurodevelopment. This review aims to provide an overview of the animal models and the role of the different miRNAs involved in ASD. Therefore, the use of animal models that reproduce the ASD and the identification of miRNAs could be a useful predictive tool to study this disorder.
Collapse
|