1
|
Scherer SS, Svaren J. Peripheral Nervous System (PNS) Myelin Diseases. Cold Spring Harb Perspect Biol 2024; 16:a041376. [PMID: 38253417 PMCID: PMC11065170 DOI: 10.1101/cshperspect.a041376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
This is a review of inherited and acquired causes of human demyelinating neuropathies and a subset of disorders that affect axon-Schwann cell interactions. Nearly all inherited demyelinating neuropathies are caused by mutations in genes that are expressed by myelinating Schwann cells, affecting diverse functions in a cell-autonomous manner. The most common acquired demyelinating neuropathies are Guillain-Barré syndrome and chronic, inflammatory demyelinating polyneuropathy, both of which are immune-mediated. An additional group of inherited and acquired disorders affect axon-Schwann cell interactions in the nodal region. Overall, these disorders affect the formation of myelin and its maintenance, with superimposed axonal loss that is clinically important.
Collapse
Affiliation(s)
- Steven S Scherer
- Department of Neurology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - John Svaren
- Department of Comparative Biosciences, Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| |
Collapse
|
2
|
Kind L, Driver M, Raasakka A, Onck PR, Njølstad PR, Arnesen T, Kursula P. Structural properties of the HNF-1A transactivation domain. Front Mol Biosci 2023; 10:1249939. [PMID: 37908230 PMCID: PMC10613711 DOI: 10.3389/fmolb.2023.1249939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/26/2023] [Indexed: 11/02/2023] Open
Abstract
Hepatocyte nuclear factor 1α (HNF-1A) is a transcription factor with important gene regulatory roles in pancreatic β-cells. HNF1A gene variants are associated with a monogenic form of diabetes (HNF1A-MODY) or an increased risk for type 2 diabetes. While several pancreatic target genes of HNF-1A have been described, a lack of knowledge regarding the structure-function relationships in HNF-1A prohibits a detailed understanding of HNF-1A-mediated gene transcription, which is important for precision medicine and improved patient care. Therefore, we aimed to characterize the understudied transactivation domain (TAD) of HNF-1A in vitro. We present a bioinformatic approach to dissect the TAD sequence, analyzing protein structure, sequence composition, sequence conservation, and the existence of protein interaction motifs. Moreover, we developed the first protocol for the recombinant expression and purification of the HNF-1A TAD. Small-angle X-ray scattering and synchrotron radiation circular dichroism suggested a disordered conformation for the TAD. Furthermore, we present functional data on HNF-1A undergoing liquid-liquid phase separation, which is in line with in silico predictions and may be of biological relevance for gene transcriptional processes in pancreatic β-cells.
Collapse
Affiliation(s)
- Laura Kind
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Mark Driver
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
| | - Arne Raasakka
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Patrick R. Onck
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
| | - Pål Rasmus Njølstad
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Section of Endocrinology and Metabolism, Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Surgery, Haukeland University Hospital, Bergen, Norway
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
3
|
Ma X, Liu X, Duan X, Fan D. Screening for PRX mutations in a large Chinese Charcot-Marie-Tooth disease cohort and literature review. Front Neurol 2023; 14:1148044. [PMID: 37470010 PMCID: PMC10352492 DOI: 10.3389/fneur.2023.1148044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/06/2023] [Indexed: 07/21/2023] Open
Abstract
Background Periaxins (encoded by PRX) play an important role in the stabilization of peripheral nerve myelin. Mutations in PRX can lead to Charcot-Marie-Tooth disease type 4F (CMT4F). Methods In this study, we screened for PRX mutations using next-generation sequencing and whole-exome sequencing in a large Chinese CMT cohort consisting of 465 unrelated index patients and 650 healthy controls. Sanger sequencing was used for the validation of all identified variants. We also reviewed all previously reported PRX-related CMT cases and summarized the clinical manifestations and genetic features of PRX-related CMTs. Results The hit rate for biallelic PRX variants in our cohort of Chinese CMT patients was 0.43% (2/465). One patient carried a previously unreported splice-site mutation (c.25_27 + 9del) compound heterozygous with a known nonsense variant. Compiling data on CMT4F cases and PRX variants from the medical literature confirmed that early-onset (95.2%), distal amyotrophy or weakness (94.0%), feet deformity (75.0%), sensory impairment or sensory ataxia (65.5%), delayed motor milestones (60.7%), and spinal deformity (59.5%) are typical features for CMT4F. Less frequent features were auditory impairments, respiratory symptoms, late onset, dysarthria or hoarseness, ophthalmic problems, and central nervous system involvement. The two cases with biallelic missense mutations have later onset age than those with nonsense or frameshift mutations. We did not note clear correlations between the type and site of mutations and clinical severity or distinct constellations of symptoms. Conclusion Consistent with observations in other countries and ethnic groups, PRX-related CMT is rare in China. The clinical spectrum is wider than previously anticipated.
Collapse
Affiliation(s)
- Xinran Ma
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Xiaoxuan Liu
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Xiaohui Duan
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| |
Collapse
|
4
|
Kind L, Raasakka A, Molnes J, Aukrust I, Bjørkhaug L, Njølstad PR, Kursula P, Arnesen T. Structural and biophysical characterization of transcription factor HNF-1A as a tool to study MODY3 diabetes variants. J Biol Chem 2022; 298:101803. [PMID: 35257744 PMCID: PMC8988010 DOI: 10.1016/j.jbc.2022.101803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/15/2022] [Accepted: 02/20/2022] [Indexed: 11/05/2022] Open
Abstract
Hepatocyte nuclear factor 1A (HNF-1A) is a transcription factor expressed in several embryonic and adult tissues, modulating the expression of numerous target genes. Pathogenic variants in the HNF1A gene are known to cause maturity-onset diabetes of the young 3 (MODY3 or HNF1A MODY), a disease characterized by dominant inheritance, age of onset before 25 to 35 years of age, and pancreatic β-cell dysfunction. A precise diagnosis can alter management of this disease, as insulin can be exchanged with sulfonylurea tablets and genetic counseling differs from polygenic forms of diabetes. Therefore, more knowledge on the mechanisms of HNF-1A function and the level of pathogenicity of the numerous HNF1A variants is required for precise diagnostics. Here, we structurally and biophysically characterized an HNF-1A protein containing both the DNA-binding domain and the dimerization domain, and determined the folding and DNA-binding capacity of two established MODY3 HNF-1A variant proteins (P112L, R263C) and one variant of unknown significance (N266S). All three variants showed reduced functionality compared to the WT protein. Furthermore, while the R263C and N266S variants displayed reduced binding to an HNF-1A target promoter, we found the P112L variant was unstable in vitro and in cells. Our results support and mechanistically explain disease causality for these investigated variants and present a novel approach for the dissection of structurally unstable and DNA-binding defective variants. This study indicates that structural and biochemical investigation of HNF-1A is a valuable tool in reliable variant classification needed for precision diabetes diagnostics and management.
Collapse
Affiliation(s)
- Laura Kind
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| | - Arne Raasakka
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Janne Molnes
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Ingvild Aukrust
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Lise Bjørkhaug
- Department of Safety, Chemistry, and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Pål Rasmus Njølstad
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Section of Endocrinology and Metabolism, Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway.
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Bergen, Norway; Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Biological Sciences, University of Bergen, Bergen, Norway; Department of Surgery, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
5
|
Zhou Y, Cao F, Wu Q, Luo Y, Guo T, Han S, Huang M, Hu Z, Bai J, Luo F, Lin Q. Dietary Supplementation of Octacosanol Improves Exercise-Induced Fatigue and Its Molecular Mechanism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7603-7618. [PMID: 34223764 DOI: 10.1021/acs.jafc.1c01764] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Several publications report that octacosanol (OCT) has different biological functions. This study was designed to evaluate the antifatigue effect and molecular mechanism of octacosanol (200 mg/(kg day)) in forced exercise-induced fatigue models of trained male C57BL/6 mice. Results showed that octacosanol ameliorated the mice's autonomic activities, forelimb grip strength, and swimming endurance, and the levels of liver glycogen (LG), muscle glycogen (MG), blood lactic acid (BLA), lactate dehydrogenase (LDH), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) were also regulated. Gene analysis results showed that treatment with OCT upregulated 29 genes, while 38 genes were downregulated in gastrocnemius tissue. Gene ontology (GO) analyses indicated that these genes enriched functions in relation to myofibril, contractile fiber, and calcium-dependent adenosinetriphosphatase (ATPase) activity. Octacosanol supplementation significantly adjusted the messenger RNA (mRNA) and protein expression levels related to fatigue performance. Octacosanol has an observably mitigating effect in exercise-induced fatigue models, and its molecular mechanism may be related to the regulation of tripartite motif-containing 63 (Trim63), periaxin (Prx), calcium voltage-gated channel subunit α1 H (Cacna1h), and myosin-binding protein C (Mybpc3) expression.
Collapse
Affiliation(s)
- Yaping Zhou
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, No. 498, Shaoshan Road, Changsha 410004, Hunan, China
| | - Fuliang Cao
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Qiang Wu
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, No. 498, Shaoshan Road, Changsha 410004, Hunan, China
| | - Yi Luo
- Department of Clinical Medicine, Medical College of Xiangya, Central South University, Changsha 410008, Hunan, China
| | - Tianyi Guo
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, No. 498, Shaoshan Road, Changsha 410004, Hunan, China
| | - Shuai Han
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, No. 498, Shaoshan Road, Changsha 410004, Hunan, China
| | - Mengzhen Huang
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, No. 498, Shaoshan Road, Changsha 410004, Hunan, China
| | - Zuomin Hu
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, No. 498, Shaoshan Road, Changsha 410004, Hunan, China
| | - Jie Bai
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, No. 498, Shaoshan Road, Changsha 410004, Hunan, China
| | - Feijun Luo
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, No. 498, Shaoshan Road, Changsha 410004, Hunan, China
| | - Qinlu Lin
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, No. 498, Shaoshan Road, Changsha 410004, Hunan, China
| |
Collapse
|
6
|
Siems SB, Jahn O, Eichel MA, Kannaiyan N, Wu LMN, Sherman DL, Kusch K, Hesse D, Jung RB, Fledrich R, Sereda MW, Rossner MJ, Brophy PJ, Werner HB. Proteome profile of peripheral myelin in healthy mice and in a neuropathy model. eLife 2020; 9:e51406. [PMID: 32130108 PMCID: PMC7056269 DOI: 10.7554/elife.51406] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/19/2020] [Indexed: 02/07/2023] Open
Abstract
Proteome and transcriptome analyses aim at comprehending the molecular profiles of the brain, its cell-types and subcellular compartments including myelin. Despite the relevance of the peripheral nervous system for normal sensory and motor capabilities, analogous approaches to peripheral nerves and peripheral myelin have fallen behind evolving technical standards. Here we assess the peripheral myelin proteome by gel-free, label-free mass-spectrometry for deep quantitative coverage. Integration with RNA-Sequencing-based developmental mRNA-abundance profiles and neuropathy disease genes illustrates the utility of this resource. Notably, the periaxin-deficient mouse model of the neuropathy Charcot-Marie-Tooth 4F displays a highly pathological myelin proteome profile, exemplified by the discovery of reduced levels of the monocarboxylate transporter MCT1/SLC16A1 as a novel facet of the neuropathology. This work provides the most comprehensive proteome resource thus far to approach development, function and pathology of peripheral myelin, and a straightforward, accurate and sensitive workflow to address myelin diversity in health and disease.
Collapse
Affiliation(s)
- Sophie B Siems
- Department of Neurogenetics, Max Planck Institute of Experimental MedicineGöttingenGermany
| | - Olaf Jahn
- Proteomics Group, Max Planck Institute of Experimental MedicineGöttingenGermany
| | - Maria A Eichel
- Department of Neurogenetics, Max Planck Institute of Experimental MedicineGöttingenGermany
| | - Nirmal Kannaiyan
- Department of Psychiatry and Psychotherapy, University Hospital, LMU MunichMunichGermany
| | - Lai Man N Wu
- Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Diane L Sherman
- Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Kathrin Kusch
- Department of Neurogenetics, Max Planck Institute of Experimental MedicineGöttingenGermany
| | - Dörte Hesse
- Proteomics Group, Max Planck Institute of Experimental MedicineGöttingenGermany
| | - Ramona B Jung
- Department of Neurogenetics, Max Planck Institute of Experimental MedicineGöttingenGermany
| | - Robert Fledrich
- Department of Neurogenetics, Max Planck Institute of Experimental MedicineGöttingenGermany
- Institute of Anatomy, University of LeipzigLeipzigGermany
| | - Michael W Sereda
- Department of Neurogenetics, Max Planck Institute of Experimental MedicineGöttingenGermany
- Department of Clinical Neurophysiology, University Medical CenterGöttingenGermany
| | - Moritz J Rossner
- Department of Psychiatry and Psychotherapy, University Hospital, LMU MunichMunichGermany
| | - Peter J Brophy
- Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute of Experimental MedicineGöttingenGermany
| |
Collapse
|
7
|
Raasakka A, Kursula P. Flexible Players within the Sheaths: The Intrinsically Disordered Proteins of Myelin in Health and Disease. Cells 2020; 9:cells9020470. [PMID: 32085570 PMCID: PMC7072810 DOI: 10.3390/cells9020470] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/16/2020] [Accepted: 02/16/2020] [Indexed: 02/07/2023] Open
Abstract
Myelin ensheathes selected axonal segments within the nervous system, resulting primarily in nerve impulse acceleration, as well as mechanical and trophic support for neurons. In the central and peripheral nervous systems, various proteins that contribute to the formation and stability of myelin are present, which also harbor pathophysiological roles in myelin disease. Many myelin proteins have common attributes, including small size, hydrophobic segments, multifunctionality, longevity, and regions of intrinsic disorder. With recent advances in protein biophysical characterization and bioinformatics, it has become evident that intrinsically disordered proteins (IDPs) are abundant in myelin, and their flexible nature enables multifunctionality. Here, we review known myelin IDPs, their conservation, molecular characteristics and functions, and their disease relevance, along with open questions and speculations. We place emphasis on classifying the molecular details of IDPs in myelin, and we correlate these with their various functions, including susceptibility to post-translational modifications, function in protein–protein and protein–membrane interactions, as well as their role as extended entropic chains. We discuss how myelin pathology can relate to IDPs and which molecular factors are potentially involved.
Collapse
Affiliation(s)
- Arne Raasakka
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, NO-5009 Bergen, Norway;
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, NO-5009 Bergen, Norway;
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Aapistie 7A, FI-90220 Oulu, Finland
- Correspondence:
| |
Collapse
|
8
|
Ezrin interacts with L-periaxin by the "head to head and tail to tail" mode and influences the location of L-periaxin in Schwann cell RSC96. Biochim Biophys Acta Gen Subj 2020; 1864:129520. [PMID: 31931020 DOI: 10.1016/j.bbagen.2020.129520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 12/31/2019] [Accepted: 01/09/2020] [Indexed: 01/01/2023]
Abstract
In the peripheral nervous system (PNS), Schwann cells (SCs) are required for the myelination of axons. Periaxin (PRX), one of the myelination proteins expressed in SCs, is critical for the normal development and maintenance of PNS. As a member of the ERM (ezrin-radxin-moesin) protein family, ezrin holds our attention since their link to the formation of the nodes of Ranvier. Furthermore, PRX and ezrin are co-expressed in cytoskeletal complexes with periplakin and desmoyokin in lens fiber cells. In the present study, we observed that L-periaxin and ezrin interacted in a "head to head and tail to tail" mode in SC RSC96 through NLS3 region of L-periaxin with F3 subdomain of ezrin interaction, and the region of L-periaxin (residues 1368-1461) with ezrin (residues 475-557) interaction. A phosphorylation-mimicking mutation of ezrin resulted in L-periaxin accumulation on SC RSC96 membrane. Ezrin could inhibit the self-association of L-periaxin, and ezrin overexpression in sciatic nerve injury rats could facilitate the repair of impaired myelin sheath. Therefore, the interaction between L-periaxin and ezrin may adopt a close form to complete protein accumulation and to participate in myelin sheath maintenance.
Collapse
|
9
|
Belmonte KCD, Harman JC, Lanson NA, Gidday JM. Intra- and intergenerational changes in the cortical DNA methylome in response to therapeutic intermittent hypoxia in mice. Physiol Genomics 2019; 52:20-34. [PMID: 31762411 DOI: 10.1152/physiolgenomics.00094.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent evidence from our laboratory documents functional resilience to retinal ischemic injury in untreated mice derived from parents exposed to repetitive hypoxic conditioning (RHC) before breeding. To begin to understand the epigenetic basis of this intergenerational protection, we used methylated DNA immunoprecipitation and sequencing to identify genes with differentially methylated promoters (DMGPs) in the prefrontal cortex of mice treated directly with the same RHC stimulus (F0-RHC) and in the prefrontal cortex of their untreated F1-generation offspring (F1-*RHC). Subsequent bioinformatic analyses provided key mechanistic insights into how changes in gene expression secondary to promoter hypo- and hypermethylation might afford such protection within and across generations. We found extensive changes in DNA methylation in both generations consistent with the expression of many survival-promoting genes, with twice the number of DMGPs in the cortex of F1*RHC mice relative to their F0 parents that were directly exposed to RHC. In contrast to our hypothesis that similar epigenetic modifications would be realized in the cortices of both F0-RHC and F1-*RHC mice, we instead found relatively few DMGPs common to both generations; in fact, each generation manifested expected injury resilience via distinctly unique gene expression profiles. Whereas in the cortex of F0-RHC mice, predicted protein-protein interactions reflected activation of an anti-ischemic phenotype, networks activated in F1-*RHC cortex comprised networks indicative of a much broader cytoprotective phenotype. Altogether, our results suggest that the intergenerational transfer of an acquired phenotype to offspring does not necessarily require the faithful recapitulation of the conditioning-modified DNA methylome of the parent.
Collapse
Affiliation(s)
- Krystal Courtney D Belmonte
- Department of Ophthalmology, Louisiana State University School of Medicine, Health Sciences Center, New Orleans, Louisiana.,Department of Physiology, Louisiana State University School of Medicine, Health Sciences Center, New Orleans, Louisiana
| | - Jarrod C Harman
- Department of Ophthalmology, Louisiana State University School of Medicine, Health Sciences Center, New Orleans, Louisiana.,Neuroscience Center of Excellence, Louisiana State University School of Medicine, Health Sciences Center, New Orleans, Louisiana
| | - Nicholas A Lanson
- Department of Ophthalmology, Louisiana State University School of Medicine, Health Sciences Center, New Orleans, Louisiana
| | - Jeffrey M Gidday
- Department of Ophthalmology, Louisiana State University School of Medicine, Health Sciences Center, New Orleans, Louisiana.,Department of Physiology, Louisiana State University School of Medicine, Health Sciences Center, New Orleans, Louisiana.,Neuroscience Center of Excellence, Louisiana State University School of Medicine, Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|