1
|
Deng Q, Li Y, Sun Z, Gao X, Zhou J, Ma G, Qu WM, Li R. Sleep disturbance in rodent models and its sex-specific implications. Neurosci Biobehav Rev 2024; 164:105810. [PMID: 39009293 DOI: 10.1016/j.neubiorev.2024.105810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024]
Abstract
Sleep disturbances, encompassing altered sleep physiology or disorders like insomnia and sleep apnea, profoundly impact physiological functions and elevate disease risk. Despite extensive research, the underlying mechanisms and sex-specific differences in sleep disorders remain elusive. While polysomnography serves as a cornerstone for human sleep studies, animal models provide invaluable insights into sleep mechanisms. However, the availability of animal models of sleep disorders is limited, with each model often representing a specific sleep issue or mechanism. Therefore, selecting appropriate animal models for sleep research is critical. Given the significant sex differences in sleep patterns and disorders, incorporating both male and female subjects in studies is essential for uncovering sex-specific mechanisms with clinical relevance. This review provides a comprehensive overview of various rodent models of sleep disturbance, including sleep deprivation, sleep fragmentation, and circadian rhythm dysfunction. We evaluate the advantages and disadvantages of each model and discuss sex differences in sleep and sleep disorders, along with potential mechanisms. We aim to advance our understanding of sleep disorders and facilitate sex-specific interventions.
Collapse
Affiliation(s)
- Qi Deng
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Yuhong Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Zuoli Sun
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Xiang Gao
- Shanxi Bethune Hospital, Shanxi, China
| | | | - Guangwei Ma
- Peking University Sixth Hospital, Beijing, China
| | - Wei-Min Qu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China; Department of Pharmacology, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Rena Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Harvey-Carroll J, Stevenson TJ, Bussière LF, Spencer KA. Pre-natal exposure to glucocorticoids causes changes in developmental circadian clock gene expression and post-natal behaviour in the Japanese quail. Horm Behav 2024; 163:105562. [PMID: 38810363 DOI: 10.1016/j.yhbeh.2024.105562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024]
Abstract
The embryonic environment is critical in shaping developmental trajectories and consequently post-natal phenotypes. Exposure to elevated stress hormones during this developmental stage is known to alter a variety of post-natal phenotypic traits, and it has been suggested that pre-natal stress can have long term effects on the circadian rhythm of glucocorticoid hormone production. Despite the importance of the circadian system, the potential impact of developmental glucocorticoid exposure on circadian clock genes, has not yet been fully explored. Here, we showed that pre-natal exposure to corticosterone (CORT, a key glucocorticoid) resulted in a significant upregulation of two key hypothalamic circadian clock genes during the embryonic period in the Japanese quail (Coturnix japonica). Altered expression was still present 10 days into post-natal life for both genes, but then disappeared by post-natal day 28. At post-natal day 28, however, diel rhythms of eating and resting were influenced by exposure to pre-natal CORT. Males exposed to pre-natal CORT featured an earlier acrophase, alongside spending a higher proportion of time feeding. Females exposed to pre-natal CORT featured a less pronounced shift in acrophase and spent less time eating. Both males and females exposed to pre-natal CORT spent less time inactive during the day. Pre-natal CORT males appeared to feature a delay in peak activity levels. Our novel data suggest that these circadian clock genes and aspects of diurnal behaviours are highly susceptible to glucocorticoid disruption during embryonic development, and these effects are persistent across developmental stages, at least into early post-natal life.
Collapse
Affiliation(s)
- Jessica Harvey-Carroll
- School of Psychology and Neuroscience, University of St Andrews, Scotland; Department of Biological and Environmental Sciences & Gothenburg Global Biodiversity Centre, University of Gothenburg, Sweden.
| | - Tyler J Stevenson
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, United Kingdom of Great Britain and Northern Ireland
| | - Luc F Bussière
- Department of Biological and Environmental Sciences & Gothenburg Global Biodiversity Centre, University of Gothenburg, Sweden
| | - Karen A Spencer
- School of Psychology and Neuroscience, University of St Andrews, Scotland
| |
Collapse
|
3
|
Harvey-Carroll J, Stevenson TJ, Spencer KA. Maternal developmental history alters transfer of circadian clock genes to offspring in Japanese quail (Coturnix japonica). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:399-413. [PMID: 37589732 PMCID: PMC11106187 DOI: 10.1007/s00359-023-01666-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/25/2023] [Accepted: 08/02/2023] [Indexed: 08/18/2023]
Abstract
Maternal signals shape embryonic development, and in turn post-natal phenotypes. RNA deposition is one such method of maternal signalling and circadian rhythms are one trait thought to be maternally inherited, through this mechanism. These maternal circadian gene transcripts aid development of a functioning circadian system. There is increasing evidence that maternal signals can be modified, depending on prevailing environmental conditions to optimise offspring fitness. However, currently, it is unknown if maternal circadian gene transcripts, and consequently early embryonic gene transcription, are altered by maternal developmental conditions. Here, using avian mothers who experienced either pre-natal corticosterone exposure, and/or post-natal stress as juveniles we were able to determine the effects of the timing of stress on downstream circadian RNA deposition in offspring. We demonstrated that maternal developmental history does indeed affect transfer of offspring circadian genes, but the timing of stress was important. Avian mothers who experienced stress during the first 2 weeks of post-natal life increased maternally deposited transcript levels of two core circadian clock genes, BMAL1 and PER2. These differences in transcript levels were transient and disappeared at the point of embryonic genome transcription. Pre-natal maternal stress alone was found to elicit delayed changes in circadian gene expression. After activation of the embryonic genome, both BMAL1 and PER2 expression were significantly decreased. If both pre-natal and post-natal stress occurred, then initial maternal transcript levels of BMAL1 were significantly increased. Taken together, these results suggest that developmental stress differentially produces persistent transgenerational effects on offspring circadian genes.
Collapse
Affiliation(s)
- Jessica Harvey-Carroll
- School of Psychology and Neuroscience, University of St Andrews, South Street, St Andrews, KY16 9JP, UK.
- Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 18A, 413 90, Gothenburg, Sweden.
| | - Tyler J Stevenson
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, G36 1QH, UK
| | - Karen A Spencer
- School of Psychology and Neuroscience, University of St Andrews, South Street, St Andrews, KY16 9JP, UK
| |
Collapse
|
4
|
Ivanova N, Nenchovska Z, Atanasova M, Laudon M, Mitreva R, Tchekalarova J. Chronic Piromelatine Treatment Alleviates Anxiety, Depressive Responses and Abnormal Hypothalamic-Pituitary-Adrenal Axis Activity in Prenatally Stressed Male and Female Rats. Cell Mol Neurobiol 2022; 42:2257-2272. [PMID: 34003403 PMCID: PMC11421606 DOI: 10.1007/s10571-021-01100-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 05/07/2021] [Indexed: 12/16/2022]
Abstract
The prenatal stress (PNS) model in rodents can induce different abnormal responses that replicate the pathophysiology of depression. We applied this model to evaluate the efficacy of piromelatine (Pir), a novel melatonin analog developed for the treatment of insomnia, in male and female offspring. Adult PNS rats from both sexes showed comparable disturbance associated with high levels of anxiety and depressive responses. Both males and females with PNS demonstrated impaired feedback inhibition of the hypothalamic-pituitary-adrenal (HPA) axis compared to the intact offspring and increased glucocorticoid receptors in the hippocampus. However, opposite to female offspring, the male PNS rats showed an increased expression of mineralocorticoid receptors in the hippocampus. Piromelatine (20 mg/kg, i.p., for 21 days injected from postnatal day 60) attenuated the high anxiety level tested in the open field, elevated plus-maze and light-dark test, and depressive-like behavior in the sucrose preference and the forced swimming tests in a sex-specific manner. The drug reversed to control level stress-induced increase of plasma corticosterone 120 min later in both sexes. Piromelatine also corrected to control level the PNS-induced alterations of corticosteroid receptors only in male offspring. Our findings suggest that the piromelatine treatment exerts beneficial effects on impaired behavioral responses and dysregulated HPA axis in both sexes, while it corrects the PNS-induced changes in the hippocampal corticosteroid receptors only in male offspring.
Collapse
Affiliation(s)
- Natasha Ivanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 23, 1113, Sofia, Bulgaria.
| | - Zlatina Nenchovska
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 23, 1113, Sofia, Bulgaria
| | - Milena Atanasova
- Department of Biology, Medical University of Pleven, 5800, Pleven, Bulgaria
| | - Moshe Laudon
- Drug Discovery, Neurim Pharmaceuticals Ltd., Tel-Aviv, Israel
| | - Rumyana Mitreva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 23, 1113, Sofia, Bulgaria
| | - Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 23, 1113, Sofia, Bulgaria.
| |
Collapse
|
5
|
Tchekalarova J, Kortenska L, Marinov P, Ivanova N. Sex-Dependent Effects of Piromelatine Treatment on Sleep-Wake Cycle and Sleep Structure of Prenatally Stressed Rats. Int J Mol Sci 2022; 23:ijms231810349. [PMID: 36142262 PMCID: PMC9499655 DOI: 10.3390/ijms231810349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/27/2022] [Accepted: 09/04/2022] [Indexed: 11/24/2022] Open
Abstract
Prenatal stress (PNS) impairs the circadian rhythm of the sleep/wake cycle. The melatonin (MT) analogue Piromelatine (Pir) was designed for the treatment of insomnia. The present study aimed to explore effects of Pir on circadian rhythmicity, motor activity, and sleep structure in male and female rats with a history of prenatal stress (PNS). In addition, we elucidated the role of MT receptors and brain-derived neurotrophic factor (BDNF) to ascertain the underlying mechanism of the drug. Pregnant rats were exposed to different stressors from day seven until birth. Piromelatine (20 mg/kg/day/14 days) was administered to young adult offspring. Home-cage locomotion, electroencephalographic (EEG) and electromyographic (EMG) recordings were conducted for 24 h. Offspring treated with vehicle showed sex-and phase-dependent disturbed circadian rhythm of motor activity and sleep/wake cycle accompanied by elevated rapid eye movement (REM) pattern and theta power and diminished non-rapid eye movement (NREM) sleep and delta power. While Pir corrected the PNS-induced impaired sleep patterns, the MT receptor antagonist luzindol suppressed its effects in male and female offspring. In addition, Pir increased the BDNF expression in the hippocampus in male and female offspring with PNS. Our findings suggest that the beneficial effect of Pir on PNS-induced impairment of sleep/wake cycle circadian rhythm and sleep structure is exerted via activation of MT receptors and enhanced BDNF expression in the hippocampus in male and female offspring.
Collapse
Affiliation(s)
- Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences (BAS), 1113 Sofia, Bulgaria
- Correspondence: ; Tel.: +359-887267052
| | - Lidia Kortenska
- Institute of Neurobiology, Bulgarian Academy of Sciences (BAS), 1113 Sofia, Bulgaria
| | - Pencho Marinov
- Institute of Information and Communication Technologies, Bulgarian Academy of Sciences (BAS), 1113 Sofia, Bulgaria
| | - Natasha Ivanova
- Institute of Neurobiology, Bulgarian Academy of Sciences (BAS), 1113 Sofia, Bulgaria
| |
Collapse
|
6
|
Wang Z, Chen G. Insights about circadian clock in glioma: From molecular pathways to therapeutic drugs. CNS Neurosci Ther 2022; 28:1930-1941. [PMID: 36066207 PMCID: PMC9627379 DOI: 10.1111/cns.13966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 02/06/2023] Open
Abstract
Glioma is characterized as the most aggressive brain tumor that occurred in the central nervous system. The circadian rhythm is an essential cyclic change system generated by the endogenous circadian clock. Current studies found that the circadian clock affects glioma pathophysiology. It is still controversial whether the circadian rhythm disruption is a cause or an effect of tumorigenesis. This review discussed the association between cell cycle and circadian clock and provided a prominent molecular theoretical basis for tumor therapy. We illustrated the external factors affecting the circadian clock including thermodynamics, hypoxia, post-translation, and microRNA, while the internal characteristics concerning the circadian clock in glioma involve stemness, metabolism, radiotherapy sensitivity, and chemotherapy sensitivity. We also summarized the molecular pathways and the therapeutic drugs involved in the glioma circadian rhythm. There are still many questions in this field waiting for further investigation. The results of glioma chronotherapy in sensitizing radiation therapy and chemotherapy have shown great therapeutic potential in improving clinical outcomes. These findings will help us further understand the characteristics of glioma pathophysiology.
Collapse
Affiliation(s)
- Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouChina,Institute of Stroke ResearchSoochow UniversitySuzhouChina
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouChina,Institute of Stroke ResearchSoochow UniversitySuzhouChina
| |
Collapse
|
7
|
Ota SM, Kong X, Hut R, Suchecki D, Meerlo P. The impact of stress and stress hormones on endogenous clocks and circadian rhythms. Front Neuroendocrinol 2021; 63:100931. [PMID: 34192588 DOI: 10.1016/j.yfrne.2021.100931] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023]
Abstract
In mammals, daily rhythms in physiology and behavior are under control of a circadian pacemaker situated in the suprachiasmatic nucleus (SCN). This master clock receives photic input from the retina and coordinates peripheral oscillators present in other tissues, maintaining all rhythms in the body synchronized to the environmental light-dark cycle. In line with its function as a master clock, the SCN appears to be well protected against unpredictable stressful stimuli. However, available data indicate that stress and stress hormones at certain times of day are capable of shifting peripheral oscillators in, e.g., liver, kidney and heart, which are normally under control of the SCN. Such shifts of peripheral oscillators may represent a temporary change in circadian organization that facilitates adaptation to repeated stress. Alternatively, these shifts of internal rhythms may represent an imbalance between precisely orchestrated physiological and behavioral processes that may have severe consequences for health and well-being.
Collapse
Affiliation(s)
- Simone Marie Ota
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands; Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Xiangpan Kong
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| | - Roelof Hut
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| | - Deborah Suchecki
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Peter Meerlo
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands.
| |
Collapse
|
8
|
Maternal stress programs a demasculinization of glutamatergic transmission in stress-related brain regions of aged rats. GeroScience 2021; 44:1047-1069. [PMID: 33983623 PMCID: PMC8116647 DOI: 10.1007/s11357-021-00375-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 04/20/2021] [Indexed: 12/20/2022] Open
Abstract
Brain aging may be programmed by early-life stress. Aging affects males and females differently, but how perinatal stress (PRS) affects brain aging between sexes is unknown. We showed behavioral and neurobiological sex differences in non-stressed control rats that were strongly reduced or inverted in PRS rats. In particular, PRS decreased risk-taking behavior, spatial memory, exploratory behavior, and fine motor behavior in male aged rats. In contrast, female aged PRS rats displayed only increased risk-taking behavior and reduced exploratory behavior. PRS induced large reductions in the expression of glutamate receptors in the ventral and dorsal hippocampus and prefrontal cortex only in male rats. PRS also reduced the expression of synaptic vesicle-associated proteins, glucocorticoid receptors (GR), and mineralocorticoid receptors (MR) in the ventral hippocampus of aged male rats. In contrast, in female aged rats, PRS enhanced the expression of MRs and brain-derived neurotrophic factor (BDNF) in the ventral hippocampus and the expression of glial fibrillary acidic protein (GFAP) and BDNF in the prefrontal cortex. A common PRS effect in both sexes was a reduction in exploratory behavior and metabotropic glutamate (mGlu2/3) receptors in the ventral hippocampus and prefrontal cortex. A multidimensional analysis revealed that PRS induced a demasculinization profile in glutamate-related proteins in the ventral and dorsal hippocampus and prefrontal cortex, as well as a demasculinization profile of stress markers only in the dorsal hippocampus. In contrast, defeminization was observed only in the ventral hippocampus. Measurements of testosterone and 17-β-estradiol in the plasma and aromatase in the dorsal hippocampus were consistent with a demasculinizing action of PRS. These findings confirm that the brains of males and females differentially respond to PRS and aging suggesting that females might be more protected against early stress and age-related inflammation and neurodegeneration. Taken together, these results may contribute to understanding how early environmental factors shape vulnerability to brain aging in both sexes and may lay the groundwork for future studies aimed at identifying new treatment strategies to improve the quality of life of older individuals, which is of particular interest given that there is a high growth of aging in populations around the world.
Collapse
|
9
|
Prenatal programming of depression: cumulative risk or mismatch in the Ontario Child Health Study? J Dev Orig Health Dis 2021; 13:75-82. [PMID: 33750496 DOI: 10.1017/s2040174421000064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Consistent with cumulative risk hypotheses of psychopathology, studies examining prenatal adversity and later mental health largely suggest that pre and postnatal stress exposures have summative effects. Fewer data support that a mismatch in stress levels between pre- and postnatal life increases risk (the mismatch hypothesis). In this retrospective cohort study using data from the 1983 Ontario Child Health Study (OCHS), we examined interactions between birth weight status and childhood/adolescent stress to predict major depression in adulthood. Ninety-five participants born at low birth weight (LBW; <2500 g) and 972 normal birth weight (NBW) control participants completed the Composite International Diagnostic Interview Short-Form Major Depression module at 21-34 years of age. A youth risk scale consisting of five stressful exposures (family dysfunction, socioeconomic disadvantage, parental criminality, maternal mental illness, exposure to other life stresses) indexed child/adolescent adversity. Birth weight groups did not differ by childhood risk score nor depression levels. A significant interaction was observed between birth weight and the youth risk scale whereby exposure to increasing levels of exposure to childhood/adolescent adversity predicted increased levels of depression in the NBW group, but lower rates in those born at LBW. Consistent with the mismatch hypothesis, data from a large, longitudinally followed cohort suggest that the mental health of adults born LBW may be more resilient to the adverse effects of childhood/adolescent stress. Taken in the context of previous studies of low birth weight infants, these findings suggest that the nature of associations between gestational stress and later mental health may depend on the magnitude of prenatal stress exposure, as well as the degree of resilience and/or plasticity conferred by their early-life environment.
Collapse
|
10
|
Marrocco J, Gray JD, Kogan JF, Einhorn NR, O’Cinneide EM, Rubin TG, Carroll TS, Schmidt EF, McEwen BS. Early Life Stress Restricts Translational Reactivity in CA3 Neurons Associated With Altered Stress Responses in Adulthood. Front Behav Neurosci 2019; 13:157. [PMID: 31354448 PMCID: PMC6637287 DOI: 10.3389/fnbeh.2019.00157] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/27/2019] [Indexed: 12/27/2022] Open
Abstract
Early life experiences program brain structure and function and contribute to behavioral endophenotypes in adulthood. Epigenetic control of gene expression by those experiences affect discrete brain regions involved in mood, cognitive function and regulation of hypothalamic-pituitary-adrenal (HPA) axis. In rodents, acute restraint stress increases the expression of the repressive histone H3 lysine 9 tri-methylation (H3K9me3) in hippocampal fields, including the CA3 pyramidal neurons. These CA3 neurons are crucially involved in cognitive function and mood regulation as well as activation of glucocorticoid (CORT) secretion. CA3 neurons also exhibit structural and functional changes after early-life stress (ELS) as well as after chronic stress in adulthood. Using a protocol of chronic ELS induced by limited bedding and nesting material followed by acute-swim stress (AS) in adulthood, we show that mice with a history of ELS display a blunted CORT response to AS, despite exhibiting activation of immediate early genes after stress similar to that found in control mice. We find that ELS induced persistently increased expression of the repressive H3K9me3 histone mark in the CA3 subfield at baseline that was subsequently decreased following AS. In contrast, AS induced a transient increase of this mark in control mice. Using translating ribosome affinity purification (TRAP) method to isolate CA3 translating mRNAs, we found that expression of genes of the epigenetic gene family, GABA/glutamate family, and glucocorticoid receptors binding genes were decreased transiently in control mice by AS and showed a persistent reduction in ELS mice. In most cases, AS in ELS mice did not induce gene expression changes. A stringent filtering of genes affected by AS in control and ELS mice revealed a noteworthy decrease in gene expression change in ELS mice compared to control. Only 18 genes were selectively regulated by AS in ELS mice and encompassed pathways such as circadian rhythm, inflammatory response, opioid receptors, and more genes included in the glucocorticoid receptor binding family. Thus, ELS programs a restricted translational response to stress in stress-sensitive CA3 neurons leading to persistent changes in gene expression, some of which mimic the transient effects of AS in control mice, while leaving in operation the immediate early gene response to AS.
Collapse
Affiliation(s)
- Jordan Marrocco
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, United States
| | - Jason D. Gray
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, United States
| | - Joshua F. Kogan
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, United States
| | - Nathan R. Einhorn
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, United States
| | - Emma M. O’Cinneide
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, United States
| | - Todd G. Rubin
- Albert Einstein College of Medicine, Bronx, NY, United States
| | - Thomas S. Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, NY, United States
| | - Eric F. Schmidt
- Laboratory of Molecular Biology, The Rockefeller University, New York, NY, United States
| | - Bruce S. McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, United States
| |
Collapse
|