1
|
Masand VH, Al-Hussain S, Masand GS, Samad A, Gawali R, Jadhav S, Zaki MEA. e-QSAR (Explainable AI-QSAR), molecular docking, and ADMET analysis of structurally diverse GSK3-beta modulators to identify concealed modulatory features vindicated by X-ray. Comput Biol Chem 2025; 115:108324. [PMID: 39740643 DOI: 10.1016/j.compbiolchem.2024.108324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 12/21/2024] [Indexed: 01/02/2025]
Abstract
Glycogen Synthase Kinase-3 beta (GSK-3β) is a crucial enzyme linked to various cellular processes, including neurodegeneration, autophagy, and diabetes. A structurally diverse set of 1293 molecules having GSK-3β modulatory activity has been used. Molecular docking and eXplainable Artificial Intelligence (XAI) have been used concomitantly. The approach involves using GA for feature selection and XGBoost for in-depth analysis, yielding strong statistical validation with R2tr = 0.9075, R2L10 %O = 0.9116, and Q2F3 = 0.7841. Molecular docking provided complementary and similar results. Machine learning model interpretation using SHapley Additive exPlanations (SHAP) revealed that specific structural features like aromatic carbon with specific partial charges, non-ring nitrogen atoms, sp3-hybrid carbon atoms, and the topological distance between carbon and nitrogen atoms, among others, significantly influence the modulatory profile. The results are also supported by reported X-ray resolved structures. In addition, in-silico ADMET analysis is also accomplished. This research underscores the value of advanced machine learning techniques in understanding complex biological phenomena and supporting rational drug design.
Collapse
Affiliation(s)
- Vijay H Masand
- Department of Chemistry, Vidya Bharati Mahavidyalaya, Amravati, Maharashtra 444 602, India.
| | - Sami Al-Hussain
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.
| | - Gaurav S Masand
- Department of Artificial Intelligence and Data Science, Dr. D. Y. Patil Institute of Engineering and Technology, Sant Tukaram Nagar, Pimpri, Pune, Maharashtra, India
| | - Abdul Samad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq..
| | - Rakhi Gawali
- Department of Chemistry, D.B.F. Dayanand College of Arts & Science, Solapur, 413002 India
| | - Shravan Jadhav
- Department of Chemistry, D.B.F. Dayanand College of Arts & Science, Solapur, 413002 India
| | - Magdi E A Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.
| |
Collapse
|
2
|
Zhao Z, Yuan Y, Li S, Wang X, Yang X. Natural compounds from herbs and nutraceuticals as glycogen synthase kinase-3β inhibitors in Alzheimer's disease treatment. CNS Neurosci Ther 2024; 30:e14885. [PMID: 39129397 PMCID: PMC11317746 DOI: 10.1111/cns.14885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/21/2024] [Accepted: 07/09/2024] [Indexed: 08/13/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) pathogenesis is complex. The pathophysiology is not fully understood, and safe and effective treatments are needed. Glycogen synthase kinase 3β (GSK-3β) mediates AD progression through several signaling pathways. Recently, several studies have found that various natural compounds from herbs and nutraceuticals can significantly improve AD symptoms. AIMS This review aims to provide a comprehensive summary of the potential neuroprotective impacts of natural compounds as inhibitors of GSK-3β in the treatment of AD. MATERIALS AND METHODS We conducted a systematic literature search on PubMed, ScienceDirect, Web of Science, and Google Scholar, focusing on in vitro and in vivo studies that investigated natural compounds as inhibitors of GSK-3β in the treatment of AD. RESULTS The mechanism may be related to GSK-3β activation inhibition to regulate amyloid beta production, tau protein hyperphosphorylation, cell apoptosis, and cellular inflammation. By reviewing recent studies on GSK-3β inhibition in phytochemicals and AD intervention, flavonoids including oxyphylla A, quercetin, morin, icariin, linarin, genipin, and isoorientin were reported as potent GSK-3β inhibitors for AD treatment. Polyphenols such as schisandrin B, magnolol, and dieckol have inhibitory effects on GSK-3β in AD models, including in vivo models. Sulforaphene, ginsenoside Rd, gypenoside XVII, falcarindiol, epibrassinolides, 1,8-Cineole, and andrographolide are promising GSK-3β inhibitors. CONCLUSIONS Natural compounds from herbs and nutraceuticals are potential candidates for AD treatment. They may qualify as derivatives for development as promising compounds that provide enhanced pharmacological characteristics.
Collapse
Affiliation(s)
- Zheng Zhao
- Department of Emergency MedicineShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Ye Yuan
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Shuang Li
- Department of Emergency MedicineShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Xiaofeng Wang
- Department of Emergency MedicineShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Xue Yang
- Department of NeurologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
3
|
Yang J, Zhi W, Wang L. Role of Tau Protein in Neurodegenerative Diseases and Development of Its Targeted Drugs: A Literature Review. Molecules 2024; 29:2812. [PMID: 38930877 PMCID: PMC11206543 DOI: 10.3390/molecules29122812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Tau protein is a microtubule-associated protein that is widely distributed in the central nervous system and maintains and regulates neuronal morphology and function. Tau protein aggregates abnormally and forms neurofibrillary tangles in neurodegenerative diseases, disrupting the structure and function of neurons and leading to neuronal death, which triggers the initiation and progression of neurological disorders. The aggregation of tau protein in neurodegenerative diseases is associated with post-translational modifications, which may affect the hydrophilicity, spatial conformation, and stability of tau protein, promoting tau protein aggregation and the formation of neurofibrillary tangles. Therefore, studying the role of tau protein in neurodegenerative diseases and the mechanism of aberrant aggregation is important for understanding the mechanism of neurodegenerative diseases and finding therapeutic approaches. This review describes the possible mechanisms by which tau protein promotes neurodegenerative diseases, the post-translational modifications of tau protein and associated influencing factors, and the current status of drug discovery and development related to tau protein, which may contribute to the development of new therapeutic approaches to alleviate or treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiakai Yang
- Graduate Collaborative Training Base of Academy of Military Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China;
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Weijia Zhi
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Lifeng Wang
- Graduate Collaborative Training Base of Academy of Military Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China;
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| |
Collapse
|
4
|
Liang J, Yu M, Li Y, Zhao L, Wei Q. Glycogen synthase kinase-3: A potential immunotherapeutic target in tumor microenvironment. Biomed Pharmacother 2024; 173:116377. [PMID: 38442671 DOI: 10.1016/j.biopha.2024.116377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 03/07/2024] Open
Abstract
Glycogen synthase kinase-3(GSK-3) is a protein kinase that can phosphorylate over a hundred substrates and regulate cell differentiation, proliferation, and death. Researchers have acknowledged the pivotal role of abnormal activation of GSK-3 in the progression of various diseases over the past few decades. Recent studies have mostly concentrated on investigating the function of GSK-3 in the tumor microenvironment, specifically examining the interaction between TAM, NK cells, B cells, and T cells. Furthermore, GSK-3 exhibits a strong association with immunological checkpoints, such as programmed cell death protein 1. Novel GSK-3 inhibitors have potential in tumor immunotherapy, exerting beneficial effects on hematologic diseases and solid tumors. Nevertheless, there is a lack of reviews about the correlation between tumor-associated immune cells and GSK-3. This study intends to analyze the function and mechanism of GSK-3 comprehensively and systematically in the tumor microenvironment, with a special focus on its influence on various immune cells. The objective is to present novel perspectives for GSK-3 immunotherapy.
Collapse
Affiliation(s)
- Jingyi Liang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China; Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning Province 110122, China.
| | - Meng Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Yunong Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China; Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning Province 110122, China.
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China; Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning Province 110122, China.
| | - Qian Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China; Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning Province 110122, China.
| |
Collapse
|
5
|
Congdon EE, Ji C, Tetlow AM, Jiang Y, Sigurdsson EM. Tau-targeting therapies for Alzheimer disease: current status and future directions. Nat Rev Neurol 2023; 19:715-736. [PMID: 37875627 PMCID: PMC10965012 DOI: 10.1038/s41582-023-00883-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/26/2023]
Abstract
Alzheimer disease (AD) is the most common cause of dementia in older individuals. AD is characterized pathologically by amyloid-β (Aβ) plaques and tau neurofibrillary tangles in the brain, with associated loss of synapses and neurons, which eventually results in dementia. Many of the early attempts to develop treatments for AD focused on Aβ, but a lack of efficacy of these treatments in terms of slowing disease progression led to a change of strategy towards targeting of tau pathology. Given that tau shows a stronger correlation with symptom severity than does Aβ, targeting of tau is more likely to be efficacious once cognitive decline begins. Anti-tau therapies initially focused on post-translational modifications, inhibition of tau aggregation and stabilization of microtubules. However, trials of many potential drugs were discontinued because of toxicity and/or lack of efficacy. Currently, the majority of tau-targeting agents in clinical trials are immunotherapies. In this Review, we provide an update on the results from the initial immunotherapy trials and an overview of new therapeutic candidates that are in clinical development, as well as considering future directions for tau-targeting therapies.
Collapse
Affiliation(s)
- Erin E Congdon
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Changyi Ji
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Amber M Tetlow
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Yixiang Jiang
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Einar M Sigurdsson
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA.
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
6
|
Yu SP, Jiang MQ, Shim SS, Pourkhodadad S, Wei L. Extrasynaptic NMDA receptors in acute and chronic excitotoxicity: implications for preventive treatments of ischemic stroke and late-onset Alzheimer's disease. Mol Neurodegener 2023; 18:43. [PMID: 37400870 DOI: 10.1186/s13024-023-00636-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 06/01/2023] [Indexed: 07/05/2023] Open
Abstract
Stroke and late-onset Alzheimer's disease (AD) are risk factors for each other; the comorbidity of these brain disorders in aging individuals represents a significant challenge in basic research and clinical practice. The similarities and differences between stroke and AD in terms of pathogenesis and pathophysiology, however, have rarely been comparably reviewed. Here, we discuss the research background and recent progresses that are important and informative for the comorbidity of stroke and late-onset AD and related dementia (ADRD). Glutamatergic NMDA receptor (NMDAR) activity and NMDAR-mediated Ca2+ influx are essential for neuronal function and cell survival. An ischemic insult, however, can cause rapid increases in glutamate concentration and excessive activation of NMDARs, leading to swift Ca2+ overload in neuronal cells and acute excitotoxicity within hours and days. On the other hand, mild upregulation of NMDAR activity, commonly seen in AD animal models and patients, is not immediately cytotoxic. Sustained NMDAR hyperactivity and Ca2+ dysregulation lasting from months to years, nevertheless, can be pathogenic for slowly evolving events, i.e. degenerative excitotoxicity, in the development of AD/ADRD. Specifically, Ca2+ influx mediated by extrasynaptic NMDARs (eNMDARs) and a downstream pathway mediated by transient receptor potential cation channel subfamily M member (TRPM) are primarily responsible for excitotoxicity. On the other hand, the NMDAR subunit GluN3A plays a "gatekeeper" role in NMDAR activity and a neuroprotective role against both acute and chronic excitotoxicity. Thus, ischemic stroke and AD share an NMDAR- and Ca2+-mediated pathogenic mechanism that provides a common receptor target for preventive and possibly disease-modifying therapies. Memantine (MEM) preferentially blocks eNMDARs and was approved by the Federal Drug Administration (FDA) for symptomatic treatment of moderate-to-severe AD with variable efficacy. According to the pathogenic role of eNMDARs, it is conceivable that MEM and other eNMDAR antagonists should be administered much earlier, preferably during the presymptomatic phases of AD/ADRD. This anti-AD treatment could simultaneously serve as a preconditioning strategy against stroke that attacks ≥ 50% of AD patients. Future research on the regulation of NMDARs, enduring control of eNMDARs, Ca2+ homeostasis, and downstream events will provide a promising opportunity to understand and treat the comorbidity of AD/ADRD and stroke.
Collapse
Affiliation(s)
- Shan P Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA.
| | - Michael Q Jiang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA
| | - Seong S Shim
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA
| | - Soheila Pourkhodadad
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
7
|
Fenech RK, Hamstra SI, Finch MS, Ryan CR, Marko DM, Roy BD, Fajardo VA, MacPherson REK. Low-Dose Lithium Supplementation Influences GSK3β Activity in a Brain Region Specific Manner in C57BL6 Male Mice. J Alzheimers Dis 2023; 91:615-626. [PMID: 36463453 DOI: 10.3233/jad-220813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
BACKGROUND Lithium, a commonly used treatment for bipolar disorder, has been shown to have neuroprotective effects for other conditions including Alzheimer's disease via the inhibition of the enzyme glycogen synthase kinase-3 (GSK3). However, dose-dependent adverse effects of lithium are well-documented, highlighting the need to determine if low doses of lithium can reliably reduce GSK3 activity. OBJECTIVE The purpose of this study was to evaluate the effects of a low-dose lithium supplementation on GSK3 activity in the brain of an early, diet-induced Alzheimer's disease model. METHODS Male C57BL/6J mice were divided into either a 6-week or 12-week study. In the 6-week study, mice were fed a chow diet or a chow diet with lithium-supplemented drinking water (10 mg/kg/day) for 6 weeks. Alternatively, in the 12-week study, mice were fed a chow diet, a high-fat diet (HFD), or a HFD with lithium-supplemented drinking water for 12 weeks. Prefrontal cortex and hippocampal tissues were collected for analysis. RESULTS Results demonstrated reduced GSK3 activity in the prefrontal cortex as early as 6 weeks of lithium supplementation, in the absence of inhibitory phosphorylation changes. Further, lithium supplementation in an obese model reduced prefrontal cortex GSK3 activity as well as improved insulin sensitivity. CONCLUSION Collectively, these data provide evidence for low-dose lithium supplementation to inhibit GSK3 activity in the brain. Moreover, these results indicate that GSK3 activity can be inhibited despite any changes in phosphorylation. These findings contribute to an overall greater understanding of low-dose lithium's ability to influence GSK3 activity in the brain and its potential as an Alzheimer's disease prophylactic.
Collapse
Affiliation(s)
- Rachel K Fenech
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Sophie I Hamstra
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | - Michael S Finch
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Chantal R Ryan
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Daniel M Marko
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Brian D Roy
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | - Val A Fajardo
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | - Rebecca E K MacPherson
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada.,Centre for Neuroscience, Brock University, St Catharines, ON, Canada
| |
Collapse
|
8
|
Chen J, Liu Y, Zhou K, Zhang W, Wen B, Xu K, Liu Y, Chen L, Huang Y, He B, Hang W, Chen J. DISC1 inhibits GSK3β activity to prevent tau hyperphosphorylation under diabetic encephalopathy. Biofactors 2023; 49:173-184. [PMID: 36070513 DOI: 10.1002/biof.1884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/01/2022] [Indexed: 11/10/2022]
Abstract
Diabetic encephalopathy (DE) is a common complication of type 2 diabetes (T2D), especially in those patients with long T2D history. Persistent high glucose (HG) stimulation leads to neuron damage and manifests like Alzheimer's disease's pathological features such as neurofilament tangle. However, the precise mechanism of high-glucose-induced tau hyperphosphorylation is not fully revealed. We here gave evidence that Disrupted in schizophrenia 1 protein (DISC1) could interact with glycogen synthase kinase 3β (GSK3β) and inhibit its activity to prevent tau hyperphosphorylation. By using DB/DB mice as animal model and HG-treated N2a cell as cell model, we found that DISC1 was downregulated both in vivo and in vitro, complicated with Tau hyperphosphorylation and GSK3β activation. Further, we identified DISC1 interacted with GSK3β by its 198th-237th amino acid residues. Overexpression of full length DISC1 but not mutated DISC1 lacking this domain could prevent HG induced tau hyperphosphorylation. Taken together, our work revealed DISC1 could be an important negative modulators of tau phosphorylation, and suggested that preservation of DISC1 could prevent HG induced neuron damage.
Collapse
Affiliation(s)
- Jiehui Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yong Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Keru Zhou
- Neonatal Intensive Care Unit, Department of Pediatric, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Bin Wen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kai Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yazhou Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ling Chen
- Neonatal Intensive Care Unit, Department of Pediatric, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Huang
- Department of Cardiovascular Medicine, Lichuan People's Hospital, Lichuan, China
| | - Benhong He
- Department of Cardiovascular Medicine, Lichuan People's Hospital, Lichuan, China
| | - Weijian Hang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Neonatal Intensive Care Unit, Department of Pediatric, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
9
|
Fei‐Sun Y, Huang M, Qin H, Campos de SouzaHan S, Xue H, Wang Y, Wang Y. Protective effect of isoflurane preconditioning on neurological function in rats with HIE. IBRAIN 2022; 8:500-515. [PMID: 37786586 PMCID: PMC10528772 DOI: 10.1002/ibra.12081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 10/04/2023]
Abstract
Hypoxic-ischemic encephalopathy (HIE) is an important cause of neonatal death and disability, which can lead to long-term neurological and motor dysfunction. Currently, inhalation anesthetics are widely used in surgery, and some studies have found that isoflurane (ISO) may have a positive effect on neuroprotection. In this paper, we investigated whether ISO pretreatment has a neuroprotective effect on the neurological function of HIE rats. Here, 7-day-old neonatal rats were randomly divided into a sham group, a hypoxic-ischemic (HI) group, and an ISO pretreatment (pretreatment) group. The pretreatment group was pretreated with 2% ISO for 1 h, followed by the HI group to establish an HI animal model. The HI‑induced neurological injury was evaluated by Zea‑Longa scores and triphenyltetrazolium (TTC) staining. Neuronal number and histomorphological changes were observed with Nissl staining and Hematoxylin-eosin (HE) staining. In addition, motor learning memory function was evaluated by the Morris water maze (MWM), the Y-maze, and the rotarod tests. HI induced severe neurological dysfunction, brain infarction, and cell apoptosis as well as obvious neuron loss in neonatal rats. In the MWM, the rats in the pretreatment group showed a decrease in escape latency (p = 0.042), indicating that pretreatment with ISO could improve the learning ability of HI rats. The results of Nissl staining showed that in the HI group, there was an irregular arrangement of neurons and nuclear fixation; however, the cell damage was significantly reduced and the total number of neurons was increased after ISO pretreatment (p < 0.001). In conclusion, ISO pretreatment improved cognitive function and attenuated HI-induced reduction of Nissl-positive cells and spatial memory impairment, suggesting that pretreatment with ISO before HI modeling could reduce neuronal cell death in the hippocampus after HI.
Collapse
Affiliation(s)
- Yi Fei‐Sun
- Institute of Neurological Disease, National‐Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China HospitalSichuan UniversityChengduSichuanChina
- Center for Epigenetics and Induced Pluripotent Stem Cells, Kennedy Krieger InstituteJohns Hopkins UniversityBaltimoreUSA
| | - Miao Huang
- Department of AnesthesiologySouthwest Medical UniversityLuzhouSichuanChina
| | - Hao‐Yue Qin
- Department of AnesthesiologySouthwest Medical UniversityLuzhouSichuanChina
| | - Senio Campos de SouzaHan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauMacau SARChina
| | - Han Xue
- School of Basic Medical SciencesJinzhou Medical UniversityJinzhouLiaoningChina
| | - Yu‐Ying Wang
- School of Basic Medical SciencesJinzhou Medical UniversityJinzhouLiaoningChina
| | - Yi‐Bo Wang
- School of Basic Medical SciencesJinzhou Medical UniversityJinzhouLiaoningChina
| |
Collapse
|
10
|
Gianferrara T, Cescon E, Grieco I, Spalluto G, Federico S. Glycogen Synthase Kinase 3β Involvement in Neuroinflammation and Neurodegenerative Diseases. Curr Med Chem 2022; 29:4631-4697. [PMID: 35170406 DOI: 10.2174/0929867329666220216113517] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/24/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND GSK-3β activity has been strictly related to neuroinflammation and neurodegeneration. Alzheimer's disease is the most studied neurodegenerative disease, but GSK-3β seems to be involved in almost all neurodegenerative diseases including Parkinson's disease, amyotrophic lateral sclerosis, frontotemporal dementia, Huntington's disease and the autoimmune disease multiple sclerosis. OBJECTIVE The aim of this review is to help researchers both working on this research topic or not to have a comprehensive overview on GSK-3β in the context of neuroinflammation and neurodegeneration. METHOD Literature has been searched using PubMed and SciFinder databases by inserting specific keywords. A total of more than 500 articles have been discussed. RESULTS First of all, the structure and regulation of the kinase were briefly discussed and then, specific GSK-3β implications in neuroinflammation and neurodegenerative diseases were illustrated also with the help of figures, to conclude with a comprehensive overview on the most important GSK-3β and multitarget inhibitors. For all discussed compounds, the structure and IC50 values at the target kinase have been reported. CONCLUSION GSK-3β is involved in several signaling pathways both in neurons as well as in glial cells and immune cells. The fine regulation and interconnection of all these pathways are at the base of the rationale use of GSK-3β inhibitors in neuroinflammation and neurodegeneration. In fact, some compounds are now under clinical trials. Despite this, pharmacodynamic and ADME/Tox profiles of the compounds were often not fully characterized and this is deleterious in such a complex system.
Collapse
Affiliation(s)
- Teresa Gianferrara
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Eleonora Cescon
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Ilenia Grieco
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Giampiero Spalluto
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Stephanie Federico
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
11
|
Zhuo C, Tian H, Zhou C, Sun Y, Chen X, Li R, Chen J, Yang L, Li Q, Zhang Q, Xu Y, Song X. Transcranial direct current stimulation of the occipital lobes with adjunct lithium attenuates the progression of cognitive impairment in patients with first episode schizophrenia. Front Psychiatry 2022; 13:962918. [PMID: 36177219 PMCID: PMC9513041 DOI: 10.3389/fpsyt.2022.962918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/02/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND There is no standard effective treatment for schizophrenia-associated cognitive impairment. Efforts to use non-invasive brain stimulation for this purpose have been focused mostly on the frontal cortex, with little attention being given to the occipital lobe. MATERIALS AND METHODS We compared the effects of nine intervention strategies on cognitive performance in psychometric measures and brain connectivity measured obtained from functional magnetic resonance imaging analyses. The strategies consisted of transcranial direct current stimulation (t-DCS) or repetitive transcranial magnetic stimulation (r-TMS) of the frontal lobe or of the occipital alone or with adjunct lithium, or lithium monotherapy. We measured global functional connectivity density (gFCD) voxel-wise. RESULTS Although all nine patient groups showed significant improvements in global disability scores (GDSs) following the intervention period (vs. before), the greatest improvement in GDS was observed for the group that received occipital lobe-targeted t-DCS with adjunct lithium therapy. tDCS of the occipital lobe improved gFCD throughout the brain, including in the frontal lobes, whereas stimulation of the frontal lobes had less far-reaching benefits on gFCD in the brain. Adverse secondary effects (ASEs) such as heading, dizziness, and nausea, were commonly experienced by patients treated with t-DCS and r-TMS, with or without lithium, whereas ASEs were rare with lithium alone. CONCLUSION The most effective treatment strategy for impacting cognitive impairment and brain communication was t-DCS stimulation of the occipital lobe with adjunct lithium therapy, though patients often experienced headache with dizziness and nausea after treatment sessions.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Key Laboratory of Real Time Brain Circuit Tracing in Neurology and Psychiatry (RTBNP_Lab), Tianjin Fourth Center Hospital, Tianjin Fourth Central Hospital of Tianjin Medical University, Tianjin, China.,Key Laboratory of Multiple Organ Damages of Major Psychoses (MODMP_Lab), Tianjin Fourth Center Hospital, Tianjin Medical Affiliated Tianjin Fourth Central Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin, China.,Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, Henan, China.,Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, Henan, China.,t-DCS and r-TMS Center of Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin, China.,Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongjun Tian
- Key Laboratory of Multiple Organ Damages of Major Psychoses (MODMP_Lab), Tianjin Fourth Center Hospital, Tianjin Medical Affiliated Tianjin Fourth Central Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin, China
| | - Chunhua Zhou
- Department of Pharmacology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yun Sun
- t-DCS and r-TMS Center of Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin, China
| | - Xinying Chen
- t-DCS and r-TMS Center of Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin, China
| | - Ranli Li
- t-DCS and r-TMS Center of Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin, China
| | - Jiayue Chen
- Key Laboratory of Real Time Brain Circuit Tracing in Neurology and Psychiatry (RTBNP_Lab), Tianjin Fourth Center Hospital, Tianjin Fourth Central Hospital of Tianjin Medical University, Tianjin, China
| | - Lei Yang
- Key Laboratory of Real Time Brain Circuit Tracing in Neurology and Psychiatry (RTBNP_Lab), Tianjin Fourth Center Hospital, Tianjin Fourth Central Hospital of Tianjin Medical University, Tianjin, China
| | - Qianchen Li
- Key Laboratory of Real Time Brain Circuit Tracing in Neurology and Psychiatry (RTBNP_Lab), Tianjin Fourth Center Hospital, Tianjin Fourth Central Hospital of Tianjin Medical University, Tianjin, China
| | - Qiuyu Zhang
- Key Laboratory of Real Time Brain Circuit Tracing in Neurology and Psychiatry (RTBNP_Lab), Tianjin Fourth Center Hospital, Tianjin Fourth Central Hospital of Tianjin Medical University, Tianjin, China
| | - Yong Xu
- Department of Psychiatry, The First Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Xueqin Song
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
12
|
Ishii N, Terao T, Hirakawa H. The Present State of Lithium for the Prevention of Dementia Related to Alzheimer's Dementia in Clinical and Epidemiological Studies: A Critical Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18157756. [PMID: 34360049 PMCID: PMC8345730 DOI: 10.3390/ijerph18157756] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 12/16/2022]
Abstract
Despite the unavailability of essential anti-dementia drugs, lithium may inhibit glycogen synthase kinase-3 (GSK-3) and decrease beta-amyloid and hyper-phosphorylated tau. In this review, we hypothesized that trace to standard levels of lithium (i.e., corresponding to the therapeutic levels for bipolar disorder) may be effective for dementia prevention. Excluding three insufficient level studies, we obtained two and one excellent clinical studies on standard and trace lithium levels, respectively, all of which supported the effects of lithium for dementia prevention. In addition, we identified good clinical and epidemiological studies (four each) on standard lithium levels, of which six studies supported the effects of lithium. Moreover, of three good epidemiological studies on trace lithium levels, two supported the aforementioned effects of lithium. The number of studies were substantially small, particularly those on trace lithium levels. Moreover, studies on standard lithium levels were insufficient to establish the efficacy of lithium for dementia prevention. This necessitates accumulating good or excellent clinical evidence for the effects of trace to standard lithium levels on dementia prevention.
Collapse
|
13
|
Vignaux P, Minerali E, Foil DH, Puhl AC, Ekins S. Machine Learning for Discovery of GSK3β Inhibitors. ACS OMEGA 2020; 5:26551-26561. [PMID: 33110983 PMCID: PMC7581251 DOI: 10.1021/acsomega.0c03302] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/25/2020] [Indexed: 05/08/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, affecting approximately 35 million people worldwide. The current treatment options for people with AD consist of drugs designed to slow the rate of decline in memory and cognition, but these treatments are not curative, and patients eventually suffer complete cognitive injury. With the substantial amounts of published data on targets for this disease, we proposed that machine learning software could be used to find novel small-molecule treatments that can supplement the AD drugs currently on the market. In order to do this, we used publicly available data in ChEMBL to build and validate Bayesian machine learning models for AD target proteins. The first AD target that we have addressed with this method is the serine-threonine kinase glycogen synthase kinase 3 beta (GSK3β), which is a proline-directed serine-threonine kinase that phosphorylates the microtubule-stabilizing protein tau. This phosphorylation prompts tau to dissociate from the microtubule and form insoluble oligomers called paired helical filaments, which are one of the components of the neurofibrillary tangles found in AD brains. Using our Bayesian machine learning model for GSK3β consisting of 2368 molecules, this model produced a five-fold cross validation ROC of 0.905. This model was also used for virtual screening of large libraries of FDA-approved drugs and clinical candidates. Subsequent testing of selected compounds revealed a selective small-molecule inhibitor, ruboxistaurin, with activity against GSK3β (avg IC50 = 97.3 nM) and GSK3α (IC50 = 695.9 nM). Several other structurally diverse inhibitors were also identified. We are now applying this machine learning approach to additional AD targets to identify approved drugs or clinical trial candidates that can be repurposed as AD therapeutics. This represents a viable approach to accelerate drug discovery and do so at a fraction of the cost of traditional high throughput screening.
Collapse
Affiliation(s)
- Patricia
A. Vignaux
- Collaborations Pharmaceuticals,
Inc., 840 Main Campus
Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Eni Minerali
- Collaborations Pharmaceuticals,
Inc., 840 Main Campus
Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Daniel H. Foil
- Collaborations Pharmaceuticals,
Inc., 840 Main Campus
Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Ana C. Puhl
- Collaborations Pharmaceuticals,
Inc., 840 Main Campus
Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Sean Ekins
- Collaborations Pharmaceuticals,
Inc., 840 Main Campus
Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| |
Collapse
|
14
|
Roca C, Campillo NE. Glycogen synthase kinase 3 (GSK-3) inhibitors: a patent update (2016–2019). Expert Opin Ther Pat 2020; 30:863-872. [DOI: 10.1080/13543776.2020.1815706] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Carlos Roca
- Structural and Chemical Biology, Centro De Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| | - Nuria E. Campillo
- Structural and Chemical Biology, Centro De Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| |
Collapse
|
15
|
GSK3: A Kinase Balancing Promotion and Resolution of Inflammation. Cells 2020; 9:cells9040820. [PMID: 32231133 PMCID: PMC7226814 DOI: 10.3390/cells9040820] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/11/2022] Open
Abstract
GSK3 has been implicated for years in the regulation of inflammation and addressed in a plethora of scientific reports using a variety of experimental (disease) models and approaches. However, the specific role of GSK3 in the inflammatory process is still not fully understood and controversially discussed. Following a detailed overview of structure, function, and various regulatory levels, this review focusses on the immunoregulatory functions of GSK3, including the current knowledge obtained from animal models. Its impact on pro-inflammatory cytokine/chemokine profiles, bacterial/viral infections, and the modulation of associated pro-inflammatory transcriptional and signaling pathways is discussed. Moreover, GSK3 contributes to the resolution of inflammation on multiple levels, e.g., via the regulation of pro-resolving mediators, the clearance of apoptotic immune cells, and tissue repair processes. The influence of GSK3 on the development of different forms of stimulation tolerance is also addressed. Collectively, the role of GSK3 as a kinase balancing the initiation/perpetuation and the amelioration/resolution of inflammation is highlighted.
Collapse
|
16
|
Anti-angiogenic effects of VEGF stimulation on endothelium deficient in phosphoinositide recycling. Nat Commun 2020; 11:1204. [PMID: 32139674 PMCID: PMC7058007 DOI: 10.1038/s41467-020-14956-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/08/2020] [Indexed: 01/09/2023] Open
Abstract
Anti-angiogenic therapies have generated significant interest for their potential to combat tumor growth. However, tumor overproduction of pro-angiogenic ligands can overcome these therapies, hampering success of this approach. To circumvent this problem, we target the resynthesis of phosphoinositides consumed during intracellular transduction of pro-angiogenic signals in endothelial cells (EC), thus harnessing the tumor’s own production of excess stimulatory ligands to deplete adjacent ECs of the capacity to respond to these signals. Using zebrafish and human endothelial cells in vitro, we show ECs deficient in CDP-diacylglycerol synthase 2 are uniquely sensitive to increased vascular endothelial growth factor (VEGF) stimulation due to a reduced capacity to re-synthesize phosphoinositides, including phosphatidylinositol-(4,5)-bisphosphate (PIP2), resulting in VEGF-exacerbated defects in angiogenesis and angiogenic signaling. Using murine tumor allograft models, we show that systemic or EC specific suppression of phosphoinositide recycling results in reduced tumor growth and tumor angiogenesis. Our results suggest inhibition of phosphoinositide recycling provides a useful anti-angiogenic approach. Tumors can overproduce pro-angiogenic ligands overcoming currently approved anti-angiogenic therapies and hindering their success. Here, the authors show that targeting phosphoinositide recycling during tumor angiogenesis harnesses the tumor’s own production of angiogenic ligands to deplete adjacent endothelial cells of the capacity to respond to these signals.
Collapse
|