1
|
Naffaa MM. Neurogenesis dynamics in the olfactory bulb: deciphering circuitry organization, function, and adaptive plasticity. Neural Regen Res 2025; 20:1565-1581. [PMID: 38934393 PMCID: PMC11688548 DOI: 10.4103/nrr.nrr-d-24-00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/20/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Adult neurogenesis persists after birth in the subventricular zone, with new neurons migrating to the granule cell layer and glomerular layers of the olfactory bulb, where they integrate into existing circuitry as inhibitory interneurons. The generation of these new neurons in the olfactory bulb supports both structural and functional plasticity, aiding in circuit remodeling triggered by memory and learning processes. However, the presence of these neurons, coupled with the cellular diversity within the olfactory bulb, presents an ongoing challenge in understanding its network organization and function. Moreover, the continuous integration of new neurons in the olfactory bulb plays a pivotal role in regulating olfactory information processing. This adaptive process responds to changes in epithelial composition and contributes to the formation of olfactory memories by modulating cellular connectivity within the olfactory bulb and interacting intricately with higher-order brain regions. The role of adult neurogenesis in olfactory bulb functions remains a topic of debate. Nevertheless, the functionality of the olfactory bulb is intricately linked to the organization of granule cells around mitral and tufted cells. This organizational pattern significantly impacts output, network behavior, and synaptic plasticity, which are crucial for olfactory perception and memory. Additionally, this organization is further shaped by axon terminals originating from cortical and subcortical regions. Despite the crucial role of olfactory bulb in brain functions and behaviors related to olfaction, these complex and highly interconnected processes have not been comprehensively studied as a whole. Therefore, this manuscript aims to discuss our current understanding and explore how neural plasticity and olfactory neurogenesis contribute to enhancing the adaptability of the olfactory system. These mechanisms are thought to support olfactory learning and memory, potentially through increased complexity and restructuring of neural network structures, as well as the addition of new granule granule cells that aid in olfactory adaptation. Additionally, the manuscript underscores the importance of employing precise methodologies to elucidate the specific roles of adult neurogenesis amidst conflicting data and varying experimental paradigms. Understanding these processes is essential for gaining insights into the complexities of olfactory function and behavior.
Collapse
Affiliation(s)
- Moawiah M. Naffaa
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
2
|
Moss SE, McCurdy ES, Thomas NN, Gulick D, Poff AM, D'Agostino DP. Olfaction-based learned preference assessment without the use of motivational fear or motivational weight loss. Front Behav Neurosci 2025; 19:1521751. [PMID: 40013118 PMCID: PMC11861198 DOI: 10.3389/fnbeh.2025.1521751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 01/30/2025] [Indexed: 02/28/2025] Open
Abstract
Introduction Reliable assessments of learning ability in preclinical models are essential for studying neurodegenerative, developmental, and inflammatory disorders. However, many inbred strains of mice present background pathologies that interfere with traditional learning tests. The C57BL/6 J mouse, a widely used laboratory strain, sporadically develops auditory and visual impairments that complicate interpretation. In this study, we establish an olfaction-based learned preference protocol designed to evaluate learning ability independent of fear responses, motivational weight loss, or visual cues in C57BL/6 J mice. Methods and results Leveraging the species' natural preference for sweet flavors, we tested different sweeteners and confirmed their passive preference for sucrose was more robust than for saccharin or sucralose. We then trained mice to associate either lemon or rose scents with a sucrose paste reward, and tested whether they demonstrated a learned preference for the sucrose-associated scent over the neutral scent. Mice developed an appetitive olfactory preference for sucrose as a reward, in the absence of motivational weight loss, as measured by time spent exploring a three-chamber association box with access to both scents. We assessed whether this protocol discriminated learning deficit induced by lipopolysaccharide (LPS) administration. Conclusion We conclude that this protocol is a viable tool for assessing learning abilities in preclinical models with auditory or visual deficits, motor impairments, or an inability to tolerate motivational weight loss.
Collapse
Affiliation(s)
- Sara E. Moss
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, United States
| | - Ekaterina S. McCurdy
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, United States
| | - Natalya N. Thomas
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, United States
| | - Danielle Gulick
- Molecular Medicine, University of South Florida, Tampa, FL, United States
| | - Angela M. Poff
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, United States
| | - Dominic P. D'Agostino
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, United States
| |
Collapse
|
3
|
Stussi Y, Coppin G. Letter to the Editor: Stimulus intensities and sensory modalities constitute two major challenges for online threat conditioning research. Biol Psychol 2024; 190:108805. [PMID: 38679403 DOI: 10.1016/j.biopsycho.2024.108805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Affiliation(s)
- Yoann Stussi
- Swiss Center for Affective Sciences, Campus Biotech, University of Geneva, Geneva, Switzerland; Department of Psychology, FPSE, University of Geneva, Geneva, Switzerland.
| | - Géraldine Coppin
- Swiss Center for Affective Sciences, Campus Biotech, University of Geneva, Geneva, Switzerland; UniDistance Suisse, Brig, Switzerland
| |
Collapse
|
4
|
Chen APF, Chen L, Shi KW, Cheng E, Ge S, Xiong Q. Nigrostriatal dopamine modulates the striatal-amygdala pathway in auditory fear conditioning. Nat Commun 2023; 14:7231. [PMID: 37945595 PMCID: PMC10636191 DOI: 10.1038/s41467-023-43066-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
The auditory striatum, a sensory portion of the dorsal striatum, plays an essential role in learning and memory. In contrast to its roles and underlying mechanisms in operant conditioning, however, little is known about its contribution to classical auditory fear conditioning. Here, we reveal the function of the auditory striatum in auditory-conditioned fear memory. We find that optogenetically inhibiting auditory striatal neurons impairs fear memory formation, which is mediated through the striatal-amygdala pathway. Using calcium imaging in behaving mice, we find that auditory striatal neuronal responses to conditioned tones potentiate across memory acquisition and expression. Furthermore, nigrostriatal dopaminergic projections plays an important role in modulating conditioning-induced striatal potentiation. Together, these findings demonstrate the existence of a nigro-striatal-amygdala circuit for conditioned fear memory formation and expression.
Collapse
Affiliation(s)
- Allen P F Chen
- Department of Neurobiology and Behavior, SUNY Stony Brook, Stony Brook, NY, 11794, USA
- Medical Scientist Training Program, Renaissance School of Medicine at SUNY Stony Brook, Stony Brook, NY, 11794, USA
| | - Lu Chen
- Department of Neurobiology and Behavior, SUNY Stony Brook, Stony Brook, NY, 11794, USA
| | - Kaiyo W Shi
- Department of Neurobiology and Behavior, SUNY Stony Brook, Stony Brook, NY, 11794, USA
| | - Eileen Cheng
- Department of Neurobiology and Behavior, SUNY Stony Brook, Stony Brook, NY, 11794, USA
- Department of Physiology and Biophysics, SUNY Stony Brook, Stony Brook, NY, 11794, USA
| | - Shaoyu Ge
- Department of Neurobiology and Behavior, SUNY Stony Brook, Stony Brook, NY, 11794, USA
| | - Qiaojie Xiong
- Department of Neurobiology and Behavior, SUNY Stony Brook, Stony Brook, NY, 11794, USA.
| |
Collapse
|
5
|
Kindt M, Soeter M. A brief treatment for veterans with PTSD: an open-label case-series study. Front Psychiatry 2023; 14:1260175. [PMID: 37928919 PMCID: PMC10620904 DOI: 10.3389/fpsyt.2023.1260175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction Despite the positive outcomes observed in numerous individuals undergoing trauma-focused psychotherapy for PTSD, veterans with this condition experience notably diminished advantages from such therapeutic interventions in comparison to non-military populations. Methods In a preliminary study we investigated the efficacy of an innovative treatment approach in a small sample of veterans (n = 7). Recognizing that accessing and targeting trauma memory in veterans with PTSD may be more challenging compared to other patient populations, we employed unique and personalized retrieval cues that engaged multiple senses and were connected to the context of their trauma. This was followed by a session focused on memory reconsolidation, which incorporated both psychological techniques (i.e., imagery rescripting) and a pharmacological component (i.e., 40 mg of propranolol). Results The findings from this small-scale case series cautiously indicate that this brief intervention, typically consisting of only one or two treatment sessions, shows promise in producing significant effects on symptoms of PTSD, distress and quality of life.This is particularly noteworthy given the complex symptomatology experienced by the veterans in this study. Conclusion To summarize, there are grounds for optimism regarding this brief treatment of combat-related PTSD. It appears that the potential for positive outcomes is far greater than commonly believed, as demonstrated by the encouraging results of this pilot study.
Collapse
Affiliation(s)
- Merel Kindt
- Department of Clinical Psychology, University of Amsterdam, Amsterdam, Netherlands
| | - Marieke Soeter
- Work Health Technology, The Netherlands Organization for Applied Scientific Research TNO, Leiden, Netherlands
| |
Collapse
|
6
|
Silvas-Baltazar M, López-Oropeza G, Durán P, Martínez-Canabal A. Olfactory neurogenesis and its role in fear memory modulation. Front Behav Neurosci 2023; 17:1278324. [PMID: 37840547 PMCID: PMC10569173 DOI: 10.3389/fnbeh.2023.1278324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Olfaction is a critical sense that allows animals to navigate and understand their environment. In mammals, the critical brain structure to receive and process olfactory information is the olfactory bulb, a structure characterized by a laminated pattern with different types of neurons, some of which project to distant telencephalic structures, like the piriform cortex, the amygdala, and the hippocampal formation. Therefore, the olfactory bulb is the first structure of a complex cognitive network that relates olfaction to different types of memory, including episodic memories. The olfactory bulb continuously adds inhibitory newborn neurons throughout life; these cells locate both in the granule and glomerular layers and integrate into the olfactory circuits, inhibiting projection neurons. However, the roles of these cells modulating olfactory memories are unclear, particularly their role in fear memories. We consider that olfactory neurogenesis might modulate olfactory fear memories by a plastic process occurring in the olfactory bulb.
Collapse
Affiliation(s)
- Monserrat Silvas-Baltazar
- Licenciatura en Neurociencias, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Grecia López-Oropeza
- Licenciatura en Neurociencias, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Posgrado en Ciencias Biológicas, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Pilar Durán
- Licenciatura en Neurociencias, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Posgrado en Ciencias Biológicas, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Alonso Martínez-Canabal
- Licenciatura en Neurociencias, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Posgrado en Ciencias Biológicas, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
7
|
Rodríguez-Borillo O, Roselló-Jiménez L, Guarque-Chabrera J, Palau-Batet M, Gil-Miravet I, Pastor R, Miquel M, Font L. Neural correlates of cocaine-induced conditioned place preference in the posterior cerebellar cortex. Front Behav Neurosci 2023; 17:1174189. [PMID: 37179684 PMCID: PMC10169591 DOI: 10.3389/fnbeh.2023.1174189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/06/2023] [Indexed: 05/15/2023] Open
Abstract
Introduction Addictive drugs are potent neuropharmacological agents capable of inducing long-lasting changes in learning and memory neurocircuitry. With repeated use, contexts and cues associated with consumption can acquire motivational and reinforcing properties of abused drugs, triggering drug craving and relapse. Neuroplasticity underlying drug-induced memories takes place in prefrontal-limbic-striatal networks. Recent evidence suggests that the cerebellum is also involved in the circuitry responsible for drug-induced conditioning. In rodents, preference for cocaine-associated olfactory cues has been shown to correlate with increased activity at the apical part of the granular cell layer in the posterior vermis (lobules VIII and IX). It is important to determine if the cerebellum's role in drug conditioning is a general phenomenon or is limited to a particular sensory modality. Methods The present study evaluated the role of the posterior cerebellum (lobules VIII and IX), together with the medial prefrontal cortex (mPFC), ventral tegmental area (VTA), and nucleus accumbens (NAc) using a cocaine-induced conditioned place preference procedure with tactile cues. Cocaine CPP was tested using ascending (3, 6, 12, and 24 mg/kg) doses of cocaine in mice. Results Compared to control groups (Unpaired and Saline animals), Paired mice were able to show a preference for the cues associated with cocaine. Increased activation (cFos expression) of the posterior cerebellum was found in cocaine CPP groups and showed a positive correlation with CPP levels. Such increases in cFos activity in the posterior cerebellum significantly correlated with cFos expression in the mPFC. Discussion Our data suggest that the dorsal region of the cerebellum could be an important part of the network that mediates cocaine-conditioned behavior.
Collapse
Affiliation(s)
| | | | - Julian Guarque-Chabrera
- Área de Psicobiología, Universitat Jaume I, Castellón de la Plana, Spain
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, United States
| | - María Palau-Batet
- Área de Psicobiología, Universitat Jaume I, Castellón de la Plana, Spain
| | - Isis Gil-Miravet
- Unitat Predepartamental de Medicina, Universitat Jaume I, Castellón de la Plana, Spain
| | - Raúl Pastor
- Área de Psicobiología, Universitat Jaume I, Castellón de la Plana, Spain
| | - Marta Miquel
- Área de Psicobiología, Universitat Jaume I, Castellón de la Plana, Spain
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, United States
| | - Laura Font
- Área de Psicobiología, Universitat Jaume I, Castellón de la Plana, Spain
| |
Collapse
|
8
|
The bed nucleus of the stria terminalis in threat detection: task choice and rodent experience. Emerg Top Life Sci 2022; 6:457-466. [PMID: 36416376 PMCID: PMC9788396 DOI: 10.1042/etls20220002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/19/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022]
Abstract
Behavioural reactivity to potential threat is used to experimentally refine models of anxiety symptoms in rodents. We present a short review of the literature tying the most commonly used tasks to model anxiety symptoms to functional recruitment of bed nucleus of the stria terminalis circuits (BNST). Using a review of studies that investigated the role of the BNST in anxiety-like behaviour in rodents, we flag the certain challenges for the field. These stem from inconsistent methods of reporting the neuroanatomical BNST subregions and the interpretations of specific behaviour across a wide variety of tasks as 'anxiety-like'. Finally, to assist in interpretation of the findings, we discuss the potential interactions between typically used 'anxiety' tasks of innate behaviour that are potentially modulated by the social and individual experience of the animal.
Collapse
|
9
|
Hakim M, Beecher K, Jacques A, Chaaya N, Belmer A, Battle AR, Johnson LR, Bartlett SE, Chehrehasa F. Retrieval of olfactory fear memory alters cell proliferation and expression of pCREB and pMAPK in the corticomedial amygdala and piriform cortex. Chem Senses 2022; 47:6673813. [PMID: 35997758 PMCID: PMC9397123 DOI: 10.1093/chemse/bjac021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The brain forms robust associations between odors and emotionally salient memories, making odors especially effective at triggering fearful or traumatic memories. Using Pavlovian olfactory fear conditioning (OFC), a variant of the traditional tone-shock paradigm, this study explored the changes involved in its processing. We assessed the expression of neuronal plasticity markers phosphorylated cyclic adenosine monophosphate response element binding protein (pCREB) and phosphorylated mitogen-activated protein kinase (pMAPK) 24 h and 14 days following OFC, in newborn neurons (EdU+) and in brain regions associated with olfactory memory processing; the olfactory bulb, piriform cortex, amygdale, and hippocampus. Here, we show that all proliferating neurons in the dentate gyrus of the hippocampus and glomerular layer of the olfactory bulb were colocalized with pCREB at 24 h and 14 days post-conditioning, and the number of proliferating neurons at both time points were statistically similar. This suggests the occurrence of long-term potentiation within the neurons of this pathway. Finally, OFC significantly increased the density of pCREB- and pMAPK-positive immunoreactive neurons in the medial and cortical subnuclei of the amygdala and the posterior piriform cortex, suggesting their key involvement in its processing. Together, our investigation identifies changes in neuroplasticity within critical neural circuits responsible for olfactory fear memory.
Collapse
Affiliation(s)
- Marziah Hakim
- Addiction Neuroscience and Obesity Laboratory, School of Biomedical Sciences, Faculty of Health, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kate Beecher
- Addiction Neuroscience and Obesity Laboratory, School of Clinical Sciences, Faculty of Health, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Angela Jacques
- Addiction Neuroscience and Obesity Laboratory, School of Clinical Sciences, Faculty of Health, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Nicholas Chaaya
- Addiction Neuroscience and Obesity Laboratory, School of Clinical Sciences, Faculty of Health, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Arnauld Belmer
- Addiction Neuroscience and Obesity Laboratory, School of Clinical Sciences, Faculty of Health, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Andrew R Battle
- Addiction Neuroscience and Obesity Laboratory, School of Biomedical Sciences, Faculty of Health, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Luke R Johnson
- Addiction Neuroscience and Obesity Laboratory, School of Clinical Sciences, Faculty of Health, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia.,School of Medicine. Division of Psychology, University of Tasmania, Launceston, TAS, Australia
| | - Selena E Bartlett
- Addiction Neuroscience and Obesity Laboratory, School of Clinical Sciences, Faculty of Health, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Fatemeh Chehrehasa
- Addiction Neuroscience and Obesity Laboratory, School of Biomedical Sciences, Faculty of Health, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
10
|
Yuan Q, Qin C, Duan Y, Jiang N, Liu M, Wan H, Zhuang L, Wang P. An in vivo bioelectronic nose for possible quantitative evaluation of odor masking using M/T cell spatial response patterns. Analyst 2021; 147:178-186. [PMID: 34870643 DOI: 10.1039/d1an01569a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Odor masking is a prominent phenomenon in the biological olfactory perception system. It has been applied in industry and daily life to develop masking agents to reduce or even eliminate the adverse effects of unpleasant odors. However, it is challenging to assess the odor masking efficiency with traditional gas sensors. Here, we took advantage of the olfactory perception system of an animal to develop a system for the evaluation and quantification of odor masking based on an in vivo bioelectronic nose. The linear decomposition method was used to extract the features of the spatial response pattern of the mitral/tufted (M/T) cell population of the olfactory bulb of a rat to monomolecular odorants and their binary mixtures. Finally, the masking intensity was calculated to quantitatively measure the degree of interference of one odor to another in the biological olfactory system. Compared with the human sensory evaluation reported in a previous study, the trend of masking intensity obtained with this system positively correlated with the human olfactory system. The system could quantitatively analyze the masking efficiency of masking agents, as well as assist in the development of new masking agents or flavored food in odor or food companies.
Collapse
Affiliation(s)
- Qunchen Yuan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China. .,The MOE Frontier Science Center for Brain Science & Brain-machine Integration, Zhejiang University, Hangzhou 310027, China.
| | - Chunlian Qin
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Yan Duan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Nan Jiang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Mengxue Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Hao Wan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China. .,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, China.,Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
| | - Liujing Zhuang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China. .,The MOE Frontier Science Center for Brain Science & Brain-machine Integration, Zhejiang University, Hangzhou 310027, China. .,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China. .,The MOE Frontier Science Center for Brain Science & Brain-machine Integration, Zhejiang University, Hangzhou 310027, China. .,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, China.,Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
| |
Collapse
|