1
|
Lara CO, Burgos CF, Fariña-Oliva K, Marileo AM, Martín VPS, Flaig D, Soto-Ortega P, Contreras OV, Sazo A, Gaete-Riquelme K, Corradi J, Muñoz-Montesino C, Fuentealba J, Castro PA, Aguayo LG, Bouzat C, Moraga-Cid G, Yévenes GE. Allosteric modulation and direct activation of glycine receptors by a tricyclic sulfonamide. Sci Rep 2025; 15:5515. [PMID: 39953280 PMCID: PMC11828983 DOI: 10.1038/s41598-025-90209-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/11/2025] [Indexed: 02/17/2025] Open
Abstract
Ionotropic glycine receptors (GlyRs) are chloride-permeable ligand-gated ion channels expressed in the nervous system. Alterations to glycinergic inhibition and the generation of dysfunctional GlyRs have been linked to chronic pain, a widely prevalent disease. Positive allosteric modulators (PAMs) targeting GlyRs exerted analgesic effects, motivating research on glycinergic PAMs as potential pain therapies. Rationally designed tricyclic sulfonamides are novel glycinergic PAMs with analgesic activity. However, detailed electrophysiological studies on these PAMs are still limited, and the GlyR binding site structural data has not been yet validated by mutational studies. Here, we combined electrophysiology and bioinformatics to systematically study the AM-1488 actions, a prototypical tricyclic sulfonamide, on recombinant GlyRs. We determined that AM-1488 is a potent, non-selective PAM of mammalian GlyR subtypes. In addition, the compound displayed agonistic activity, with partial preference for α1GlyRs. Single channel assays revealed that the compound increased the channel open probability without changing conductance. Mutational analyses on the tricyclic sulfonamide site confirm the molecular determinants contributing to functional activity. Our findings further define the mechanistic framework underlying the GlyR modulation by this PAM class, suggesting that further structure-driven exploration within the tricyclic sulfonamide site may originate novel glycinergic modulators for future development.
Collapse
Affiliation(s)
- César O Lara
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepción, Chile
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Carlos F Burgos
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepción, Chile
| | - Katherine Fariña-Oliva
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepción, Chile
| | - Ana M Marileo
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepción, Chile
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Victoria P San Martín
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepción, Chile
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - David Flaig
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepción, Chile
| | - Paul Soto-Ortega
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepción, Chile
| | - Omayra V Contreras
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepción, Chile
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Anggelo Sazo
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepción, Chile
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Krishna Gaete-Riquelme
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepción, Chile
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Jeremías Corradi
- Departament of Biology, Biochemistry and Pharmacy, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Carola Muñoz-Montesino
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepción, Chile
| | - Jorge Fuentealba
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepción, Chile
| | - Patricio A Castro
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepción, Chile
| | - Luis G Aguayo
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepción, Chile
| | - Cecilia Bouzat
- Departament of Biology, Biochemistry and Pharmacy, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Gustavo Moraga-Cid
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepción, Chile.
| | - Gonzalo E Yévenes
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepción, Chile.
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile.
| |
Collapse
|
2
|
Wang G, Peng S, Reyes Mendez M, Keramidas A, Castellano D, Wu K, Han W, Tian Q, Dong L, Li Y, Lu W. The TMEM132B-GABA A receptor complex controls alcohol actions in the brain. Cell 2024; 187:6649-6668.e35. [PMID: 39357522 DOI: 10.1016/j.cell.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 07/19/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024]
Abstract
Alcohol is the most consumed and abused psychoactive drug globally, but the molecular mechanisms driving alcohol action and its associated behaviors in the brain remain enigmatic. Here, we have discovered a transmembrane protein TMEM132B that is a GABAA receptor (GABAAR) auxiliary subunit. Functionally, TMEM132B promotes GABAAR expression at the cell surface, slows receptor deactivation, and enhances the allosteric effects of alcohol on the receptor. In TMEM132B knockout (KO) mice or TMEM132B I499A knockin (KI) mice in which the TMEM132B-GABAAR interaction is specifically abolished, GABAergic transmission is decreased and alcohol-induced potentiation of GABAAR-mediated currents is diminished in hippocampal neurons. Behaviorally, the anxiolytic and sedative/hypnotic effects of alcohol are markedly reduced, and compulsive, binge-like alcohol consumption is significantly increased. Taken together, these data reveal a GABAAR auxiliary subunit, identify the TMEM132B-GABAAR complex as a major alcohol target in the brain, and provide mechanistic insights into alcohol-related behaviors.
Collapse
Affiliation(s)
- Guohao Wang
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shixiao Peng
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Miriam Reyes Mendez
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Angelo Keramidas
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, St Lucia, Brisbane, QLD 4072, Australia
| | - David Castellano
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kunwei Wu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wenyan Han
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Qingjun Tian
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lijin Dong
- Genetic Engineering Core, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yan Li
- Proteomics Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Lu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
Gat A, Pechuk V, Peedikayil-Kurien S, Karimi S, Goldman G, Sela S, Lubliner J, Krieg M, Oren-Suissa M. Integration of spatially opposing cues by a single interneuron guides decision-making in C. elegans. Cell Rep 2023; 42:113075. [PMID: 37691148 DOI: 10.1016/j.celrep.2023.113075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/11/2023] [Accepted: 08/16/2023] [Indexed: 09/12/2023] Open
Abstract
The capacity of animals to respond to hazardous stimuli in their surroundings is crucial for their survival. In mammals, complex evaluations of the environment require large numbers and different subtypes of neurons. The nematode C. elegans avoids hazardous chemicals they encounter by reversing their direction of movement. How does the worms' compact nervous system process the spatial information and direct motion change? We show here that a single interneuron, AVA, receives glutamatergic excitatory and inhibitory signals from head and tail sensory neurons, respectively. AVA integrates the spatially distinct and opposing cues, whose output instructs the animal's behavioral decision. We further find that the differential activation of AVA stems from distinct localization of inhibitory and excitatory glutamate-gated receptors along AVA's process and from different threshold sensitivities of the sensory neurons. Our results thus uncover a cellular mechanism that mediates spatial computation of nociceptive cues for efficient decision-making in C. elegans.
Collapse
Affiliation(s)
- Asaf Gat
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Vladyslava Pechuk
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sonu Peedikayil-Kurien
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Shadi Karimi
- Neurophotonics and Mechanical Systems Biology, ICFO (Institut de Ciencies Fot'oniques), The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Gal Goldman
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sapir Sela
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jazz Lubliner
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michael Krieg
- Neurophotonics and Mechanical Systems Biology, ICFO (Institut de Ciencies Fot'oniques), The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Meital Oren-Suissa
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
4
|
Breitinger U, Breitinger HG. Excitatory and inhibitory neuronal signaling in inflammatory and diabetic neuropathic pain. Mol Med 2023; 29:53. [PMID: 37069517 PMCID: PMC10111846 DOI: 10.1186/s10020-023-00647-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/27/2023] [Indexed: 04/19/2023] Open
Abstract
Pain, although unpleasant, is an essential warning mechanism against injury and damage of the organism. An intricate network of specialised sensors and transmission systems contributes to reception, transmission and central sensitization of pain. Here, we briefly introduce some of the main aspects of pain signal transmission, including nociceptors and nociceptive signals, mechanisms of inflammatory and neuropathic pain, and the situation of diabetes-associated neuropathic pain. The role of glia-astrocytes, microglia, satellite glia cells-and their specific channels, transporters and signaling pathways is described. A focus is on the contribution of inhibitory synaptic signaling to nociception and a possible role of glycine receptors in glucose-mediated analgesia and treatment-induced diabetic neuropathy. Inhibitory receptors such as GABAA- and glycine receptors are important contributors to nociceptive signaling; their contribution to altered pain sensation in diabetes may be of clinical relevance, and they could be promising therapeutic targets towards the development of novel analgesics.
Collapse
Affiliation(s)
- Ulrike Breitinger
- Department of Biochemistry, German University in Cairo, New Cairo, 11835, Egypt
| | | |
Collapse
|
5
|
Gallagher CI, Ha DA, Harvey RJ, Vandenberg RJ. Positive Allosteric Modulators of Glycine Receptors and Their Potential Use in Pain Therapies. Pharmacol Rev 2022; 74:933-961. [PMID: 36779343 PMCID: PMC9553105 DOI: 10.1124/pharmrev.122.000583] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/26/2022] [Accepted: 05/13/2022] [Indexed: 11/22/2022] Open
Abstract
Glycine receptors are ligand-gated ion channels that mediate synaptic inhibition throughout the mammalian spinal cord, brainstem, and higher brain regions. They have recently emerged as promising targets for novel pain therapies due to their ability to produce antinociception by inhibiting nociceptive signals within the dorsal horn of the spinal cord. This has greatly enhanced the interest in developing positive allosteric modulators of glycine receptors. Several pharmaceutical companies and research facilities have attempted to identify new therapeutic leads by conducting large-scale screens of compound libraries, screening new derivatives from natural sources, or synthesizing novel compounds that mimic endogenous compounds with antinociceptive activity. Advances in structural techniques have also led to the publication of multiple high-resolution structures of the receptor, highlighting novel allosteric binding sites and providing additional information for previously identified binding sites. This has greatly enhanced our understanding of the functional properties of glycine receptors and expanded the structure activity relationships of novel pharmacophores. Despite this, glycine receptors are yet to be used as drug targets due to the difficulties in obtaining potent, selective modulators with favorable pharmacokinetic profiles that are devoid of side effects. This review presents a summary of the structural basis for how current compounds cause positive allosteric modulation of glycine receptors and discusses their therapeutic potential as analgesics. SIGNIFICANCE STATEMENT: Chronic pain is a major cause of disability, and in Western societies, this will only increase as the population ages. Despite the high level of prevalence and enormous socioeconomic burden incurred, treatment of chronic pain remains limited as it is often refractory to current analgesics, such as opioids. The National Institute for Drug Abuse has set finding effective, safe, nonaddictive strategies to manage chronic pain as their top priority. Positive allosteric modulators of glycine receptors may provide a therapeutic option.
Collapse
Affiliation(s)
- Casey I Gallagher
- Molecular Biomedicine, School of Medical Sciences, University of Sydney, Sydney, Australia (C.I.G., D.A.H., R.J.V.) and Biomedical Science, School of Health and Behavioural Sciences and Sunshine Coast Health Institute, University of the Sunshine Coast, Maroochydore, Australia (R.J.H.)
| | - Damien A Ha
- Molecular Biomedicine, School of Medical Sciences, University of Sydney, Sydney, Australia (C.I.G., D.A.H., R.J.V.) and Biomedical Science, School of Health and Behavioural Sciences and Sunshine Coast Health Institute, University of the Sunshine Coast, Maroochydore, Australia (R.J.H.)
| | - Robert J Harvey
- Molecular Biomedicine, School of Medical Sciences, University of Sydney, Sydney, Australia (C.I.G., D.A.H., R.J.V.) and Biomedical Science, School of Health and Behavioural Sciences and Sunshine Coast Health Institute, University of the Sunshine Coast, Maroochydore, Australia (R.J.H.)
| | - Robert J Vandenberg
- Molecular Biomedicine, School of Medical Sciences, University of Sydney, Sydney, Australia (C.I.G., D.A.H., R.J.V.) and Biomedical Science, School of Health and Behavioural Sciences and Sunshine Coast Health Institute, University of the Sunshine Coast, Maroochydore, Australia (R.J.H.)
| |
Collapse
|
6
|
Baron-Flores V, Diaz-Ruiz A, Manzanares J, Rios C, Burelo M, Jardon-Guadarrama G, Martínez-Cárdenas MDLÁ, Mata-Bermudez A. Cannabidiol attenuates hypersensitivity and oxidative stress after traumatic spinal cord injury in rats. Neurosci Lett 2022; 788:136855. [PMID: 36028005 DOI: 10.1016/j.neulet.2022.136855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/08/2022] [Accepted: 08/19/2022] [Indexed: 10/15/2022]
Abstract
Neuropathic pain (NP) arises as a direct consequence of traumatic spinal cord injury (SCI), which leads to devastating consequences for people suffering from this condition since no specific treatment has been defined. One relevant mechanism in generating painful stimuli involves the direct participation of reactive oxygen species (ROS) at the cellular and subcellular levels. Cannabidiol (CBD) is one of the two most crucial cannabinoid components of the cannabis plant and has been proposed as a potential treatment for NP. Its antioxidant, neuroprotective and anti-inflammatory properties have been documented. However, there is insufficient evidence regarding CBD as treatment of NP induced by SCI or the mechanisms that underlie this effect. In this study, we evaluated the antinociceptive effect of CBD as an acute treatment after the nociceptive behaviors characteristic of NP were established (hypersensitivity threshold and hypersensitivity response). Furthermore, the participation of oxidative stress was determined by lipid peroxidation (LP) and glutathione concentration (GSH) in female Wistar rats with SCI. Acute treatment with CBD (2.5-20 mg/kg, i.p.) decreased nociceptive behaviors in a dose-dependent manner, decreased LP, and increased GSH concentration in injured tissue 15 days after injury. The findings of this study suggest that the antinociceptive effect induced by CBD is regulated by reducing oxidative stress by decreasing the LP and increasing the concentration of antioxidant (GSH) defenses.
Collapse
Affiliation(s)
- Verónica Baron-Flores
- Laboratorio de Neurofarmacología Molecular, Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Ciudad de México, Mexico
| | - Araceli Diaz-Ruiz
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Ciudad de México, Mexico
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Camilo Rios
- Laboratorio de Neurofarmacología Molecular, Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Ciudad de México, Mexico; Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Ciudad de México, Mexico
| | - Masha Burelo
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Ciudad de México, Mexico
| | - Gustavo Jardon-Guadarrama
- Departamento de Atención a la Salud, Universidad Autónoma Metropolitana Unidad Xochimilco, Ciudad de México, Mexico
| | | | - Alfonso Mata-Bermudez
- Departamento de Atención a la Salud, Universidad Autónoma Metropolitana Unidad Xochimilco, Ciudad de México, Mexico.
| |
Collapse
|
7
|
Zhu H. Structure and Mechanism of Glycine Receptor Elucidated by Cryo-Electron Microscopy. Front Pharmacol 2022; 13:925116. [PMID: 36016557 PMCID: PMC9395720 DOI: 10.3389/fphar.2022.925116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
Glycine receptors (GlyRs) are pentameric ion channels that mediate fast inhibitory neurotransmission. GlyRs are found in the central nervous system including the spinal cord, brain stem, and cerebellum, as well as in the retina, sperm, macrophages, hippocampus, cochlea, and liver. Due to their crucial roles in counter-balancing excitatory signals and pain signal transmission, GlyR dysfunction can lead to severe diseases, and as a result, compounds that modify GlyR activity may have tremendous therapeutic potential. Despite this potential, the development of GlyR-specific small-molecule ligands is lacking. Over the past few years, high-resolution structures of both homomeric and heteromeric GlyRs structures in various conformations have provided unprecedented details defining the pharmacology of ligand binding, subunit composition, and mechanisms of channel gating. These high-quality structures will undoubtedly help with the development of GlyR-targeted therapies.
Collapse
|
8
|
Solorza J, Oliva CA, Castillo K, Amestica G, Maldifassi MC, López-Cortés XA, Barra R, Stehberg J, Piesche M, Sáez-Briones P, González W, Arenas-Salinas M, Mariqueo TA. Effects of Interleukin-1β in Glycinergic Transmission at the Central Amygdala. Front Pharmacol 2021; 12:613105. [PMID: 33746753 PMCID: PMC7973117 DOI: 10.3389/fphar.2021.613105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/19/2021] [Indexed: 01/22/2023] Open
Abstract
Interleukin-1β (IL-1β) is an important cytokine that modulates peripheral and central pain sensitization at the spinal level. Among its effects, it increases spinal cord excitability by reducing inhibitory Glycinergic and GABAergic neurotransmission. In the brain, IL-1β is released by glial cells in regions associated with pain processing during neuropathic pain. It also has important roles in neuroinflammation and in regulating NMDA receptor activity required for learning and memory. The modulation of glycine-mediated inhibitory activity via IL-1β may play a critical role in the perception of different levels of pain. The central nucleus of the amygdala (CeA) participates in receiving and processing pain information. Interestingly, this nucleus is enriched in the regulatory auxiliary glycine receptor (GlyR) β subunit (βGlyR); however, no studies have evaluated the effect of IL-1β on glycinergic neurotransmission in the brain. Hence, we hypothesized that IL-1β may modulate GlyR-mediated inhibitory activity via interactions with the βGlyR subunit. Our results show that the application of IL-1β (10 ng/ml) to CeA brain slices has a biphasic effect; transiently increases and then reduces sIPSC amplitude of CeA glycinergic currents. Additionally, we performed molecular docking, site-directed mutagenesis, and whole-cell voltage-clamp electrophysiological experiments in HEK cells transfected with GlyRs containing different GlyR subunits. These data indicate that IL-1β modulates GlyR activity by establishing hydrogen bonds with at least one key amino acid residue located in the back of the loop C at the ECD domain of the βGlyR subunit. The present results suggest that IL-1β in the CeA controls glycinergic neurotransmission, possibly via interactions with the βGlyR subunit. This effect could be relevant for understanding how IL-1β released by glia modulates central processing of pain, learning and memory, and is involved in neuroinflammation.
Collapse
Affiliation(s)
- Jocelyn Solorza
- Center for Medical Research, Laboratory of Neuropharmacology, School of Medicine, Universidad de Talca, Talca, Chile.,Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Talca, Chile
| | - Carolina A Oliva
- Institute of Biomedical Sciences, Faculty of Medicine, Universidad Andrés Bello, Santiago, Chile
| | - Karen Castillo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Gabriela Amestica
- Center for Medical Research, Laboratory of Neuropharmacology, School of Medicine, Universidad de Talca, Talca, Chile
| | - María Constanza Maldifassi
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Xaviera A López-Cortés
- Department of Computer Science and Industries, Faculty of Engineering Science, Universidad Católica del Maule, Talca, Chile
| | - Rafael Barra
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Jimmy Stehberg
- Faculty of Biological Sciences and Faculty of Medicine, Instituto de Ciencias Biomédicas, Universidad Andres Bello, Santiago, Chile
| | - Matthias Piesche
- Laboratory of Biomedical Research, Medicine Faculty, Universidad Católica del Maule, Talca, Chile.,Oncology Center, Medicine Faculty, Universidad Católica del Maule, Talca, Chile
| | - Patricio Sáez-Briones
- Laboratory of Neuropharmacology and Behavior, School of Medicine, Faculty of Medical Sciences, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Wendy González
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Talca, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Talca, Talca, Chile
| | - Mauricio Arenas-Salinas
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Talca, Chile
| | - Trinidad A Mariqueo
- Center for Medical Research, Laboratory of Neuropharmacology, School of Medicine, Universidad de Talca, Talca, Chile
| |
Collapse
|
9
|
Hussein RA, Ahmed M, Sticht H, Breitinger HG, Breitinger U. Fine-Tuning of Neuronal Ion Channels-Mapping of Residues Involved in Glucose Sensitivity of Recombinant Human Glycine Receptors. ACS Chem Neurosci 2020; 11:3474-3483. [PMID: 33007159 DOI: 10.1021/acschemneuro.0c00566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The inhibitory glycine receptor (GlyR) mediates synaptic inhibition in the spinal cord, brain stem, and other regions of the mammalian central nervous system. Glucose was shown to potentiate α1 GlyRs by interacting with K143. Here, additional amino acids involved in glucose modulation were identified using a structure-based approach of site-directed mutagenesis followed by whole-cell patch-clamp analysis. We identified two additional lysine residues in the α1 GlyR extracellular domain, K16 and K281, that were involved in glucose modulation. Mutation of either residue to alanine abolished glucose potentiation. Residue K281 is located in the same pocket as K143 and could thus contribute to glucose binding. The double mutant K143A-K281A showed a 6-fold increase of EC50, while EC50 of both single mutants K143A and K281A was only slightly increased (1.7- and 1.3-fold, respectively). K16 is located at an analgesic binding site that is distant from the agonist or glucose sites, and the K16A mutation may generate a receptor species that is not potentiated. GlyR position α1-S267 is close to the postulated glucose binding site and known for interactions with ethanol and anesthetics. In the presence of glucose, GlyR α1 mutants S267A, S267I, and S267R showed potentiation, no effect, and reduction of current responses, respectively. This pattern follows that of ethanol modulation and suggests that the interaction sites of glucose and ethanol are identical or located close to each other. Our results support the presence of a distinct binding site for glucose on the glycine receptor, overlapping with the ivermectin/ethanol binding pocket near the transmembrane region and the TM2-3 loop.
Collapse
Affiliation(s)
- Rama Ashraf Hussein
- Department of Biochemistry, The German University in Cairo, Main Entrance of Al Tagamoa Al Khames, New Cairo 11835, Egypt
| | - Marwa Ahmed
- Department of Biochemistry, The German University in Cairo, Main Entrance of Al Tagamoa Al Khames, New Cairo 11835, Egypt
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstrasse 17, D-91054 Erlangen, Germany
| | - Hans-Georg Breitinger
- Department of Biochemistry, The German University in Cairo, Main Entrance of Al Tagamoa Al Khames, New Cairo 11835, Egypt
| | - Ulrike Breitinger
- Department of Biochemistry, The German University in Cairo, Main Entrance of Al Tagamoa Al Khames, New Cairo 11835, Egypt
| |
Collapse
|
10
|
Dynamic regulation of the cholinergic system in the spinal central nervous system. Sci Rep 2020; 10:15338. [PMID: 32948826 PMCID: PMC7501295 DOI: 10.1038/s41598-020-72524-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/18/2020] [Indexed: 11/22/2022] Open
Abstract
While the role of cholinergic neurotransmission from motoneurons is well established during neuromuscular development, whether it regulates central nervous system development in the spinal cord is unclear. Zebrafish presents a powerful model to investigate how the cholinergic system is set up and evolves during neural circuit formation. In this study, we carried out a detailed spatiotemporal analysis of the cholinergic system in embryonic and larval zebrafish. In 1-day-old embryos, we show that spinal motoneurons express presynaptic cholinergic genes including choline acetyltransferase (chata), vesicular acetylcholine transporters (vachta, vachtb), high-affinity choline transporter (hacta) and acetylcholinesterase (ache), while nicotinic acetylcholine receptor (nAChR) subunits are mainly expressed in interneurons. However, in 3-day-old embryos, we found an unexpected decrease in presynaptic cholinergic transcript expression in a rostral to caudal gradient in the spinal cord, which continued during development. On the contrary, nAChR subunits remained highly expressed throughout the spinal cord. We found that protein and enzymatic activities of presynaptic cholinergic genes were also reduced in the rostral spinal cord. Our work demonstrating that cholinergic genes are initially expressed in the embryonic spinal cord, which is dynamically downregulated during development suggests that cholinergic signaling may play a pivotal role during the formation of intra-spinal locomotor circuit.
Collapse
|
11
|
Abstract
The inhibitory glycine receptor is a member of the Cys-loop superfamily of ligand-gated ion channels. It is the principal mediator of rapid synaptic inhibition in the spinal cord and brainstem and plays an important role in the modulation of higher brain functions including vision, hearing, and pain signaling. Glycine receptor function is controlled by only a few agonists, while the number of antagonists and positive or biphasic modulators is steadily increasing. These modulators are important for the study of receptor activation and regulation and have found clinical interest as potential analgesics and anticonvulsants. High-resolution structures of the receptor have become available recently, adding to our understanding of structure-function relationships and revealing agonistic, inhibitory, and modulatory sites on the receptor protein. This Review presents an overview of compounds that activate, inhibit, or modulate glycine receptor function in vitro and in vivo.
Collapse
Affiliation(s)
- Ulrike Breitinger
- Department of Biochemistry, German University in Cairo, New Cairo 11835, Egypt
| | | |
Collapse
|