1
|
Wang X, Hu S, Ouyang S, Pan X, Fu Y, Chen X, Wu S. TsMS combined with EA promotes functional recovery and axonal regeneration via mediating the miR-539-5p/Sema3A/PlexinA1 signalling axis in sciatic nerve-injured rats. Neurosci Lett 2024; 824:137691. [PMID: 38373630 DOI: 10.1016/j.neulet.2024.137691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Enhancing axonal regeneration is one of the most important processes in treating nerve injuries. Both magnetic and electrical stimulation have the effect of promoting nerve axon regeneration. But few study has investigated the effects of trans-spinal magnetic stimulation (TsMS) combined with electroacupuncture (EA) on nerve regeneration in rats with sciatic nerve injury. In this study, we compared the improvement of neurological function in rats with sciatic nerve crush injuries after 4 weeks of different interventions (EA, TsMS, or TsMS combined with EA). We further explored the morphological and molecular biological alterations following sciatic nerve injury by HE, Masson, RT-PCR, western blotting, immunofluorescence staining and small RNA transcriptome sequencing. The results showed that TsMS combined with EA treatment significantly promoted axonal regeneration, increased the survival rate of neurons, and suppressed denervation atrophy of the gastrocnemius muscle. Subsequent experiments suggested that the combination treatment may play an active role by mediating the miR-539-5p/Sema3A/PlexinA1 signaling axis.
Collapse
Affiliation(s)
- Xianbin Wang
- Affiliated Hospital of Guizhou Medical University, 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, China; Guizhou Medical University, 9 Beijing Street, Yunyan District, Guiyang, Guizhou, China
| | - Shouxing Hu
- Guizhou Medical University, 9 Beijing Street, Yunyan District, Guiyang, Guizhou, China
| | - Shuai Ouyang
- Guizhou Medical University, 9 Beijing Street, Yunyan District, Guiyang, Guizhou, China
| | - Xiao Pan
- Guizhou Medical University, 9 Beijing Street, Yunyan District, Guiyang, Guizhou, China
| | - Yingxue Fu
- Guizhou Medical University, 9 Beijing Street, Yunyan District, Guiyang, Guizhou, China
| | - Xingyu Chen
- Guizhou Medical University, 9 Beijing Street, Yunyan District, Guiyang, Guizhou, China
| | - Shuang Wu
- Affiliated Hospital of Guizhou Medical University, 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, China; Guizhou Medical University, 9 Beijing Street, Yunyan District, Guiyang, Guizhou, China.
| |
Collapse
|
2
|
Winkler I, Engler JB, Vieira V, Bauer S, Liu YH, Di Liberto G, Grochowska KM, Wagner I, Bier J, Bal LC, Rothammer N, Meurs N, Egervari K, Schattling B, Salinas G, Kreutz MR, Huang YS, Pless O, Merkler D, Friese MA. MicroRNA-92a-CPEB3 axis protects neurons against inflammatory neurodegeneration. SCIENCE ADVANCES 2023; 9:eadi6855. [PMID: 38000031 PMCID: PMC10672163 DOI: 10.1126/sciadv.adi6855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023]
Abstract
Neuroinflammation causes neuronal injury in multiple sclerosis (MS) and other neurological diseases. MicroRNAs (miRNAs) are important modulators of neuronal stress responses, but knowledge about their contribution to neuronal protection or damage during inflammation is limited. Here, we constructed a regulatory miRNA-mRNA network of inflamed motor neurons by leveraging cell type-specific miRNA and mRNA sequencing of mice undergoing experimental autoimmune encephalomyelitis (EAE). We found robust induction of miR-92a in inflamed spinal cord neurons and identified cytoplasmic polyadenylation element-binding protein 3 (Cpeb3) as a key target of miR-92a-mediated posttranscriptional silencing. We detected CPEB3 repression in inflamed neurons in murine EAE and human MS. Moreover, both miR-92a delivery and Cpeb3 deletion protected neuronal cultures against excitotoxicity. Supporting a detrimental effect of Cpeb3 in vivo, neuron-specific deletion in conditional Cpeb3 knockout animals led to reduced inflammation-induced clinical disability in EAE. Together, we identified a neuroprotective miR-92a-Cpeb3 axis in neuroinflammation that might serve as potential treatment target to limit inflammation-induced neuronal damage.
Collapse
Affiliation(s)
- Iris Winkler
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Jan Broder Engler
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Vanessa Vieira
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Simone Bauer
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Yi-Hsiang Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Giovanni Di Liberto
- Department of Pathology and Immunology, Division of Clinical Pathology, Geneva Faculty of Medicine, University of Geneva and University Hospital of Geneva, Geneva 1211, Switzerland
| | - Katarzyna M. Grochowska
- Leibniz Group ‘Dendritic Organelles and Synaptic Function’, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg 39118, Germany
| | - Ingrid Wagner
- Department of Pathology and Immunology, Division of Clinical Pathology, Geneva Faculty of Medicine, University of Geneva and University Hospital of Geneva, Geneva 1211, Switzerland
| | - Jasmina Bier
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Lukas C. Bal
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Nicola Rothammer
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Nina Meurs
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Kristof Egervari
- Department of Pathology and Immunology, Division of Clinical Pathology, Geneva Faculty of Medicine, University of Geneva and University Hospital of Geneva, Geneva 1211, Switzerland
| | - Benjamin Schattling
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Gabriela Salinas
- Institut of Human Genetics, NGS Integrative Genomics, University Medical Center Göttingen, Göttingen 37077, Germany
| | - Michael R. Kreutz
- Leibniz Group ‘Dendritic Organelles and Synaptic Function’, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg 39118, Germany
| | - Yi-Shuian Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Ole Pless
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Hamburg 22525, Germany
| | - Doron Merkler
- Department of Pathology and Immunology, Division of Clinical Pathology, Geneva Faculty of Medicine, University of Geneva and University Hospital of Geneva, Geneva 1211, Switzerland
| | - Manuel A. Friese
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| |
Collapse
|
3
|
Unkovič A, Boštjančič E, Belič A, Perše M. Selection and Evaluation of mRNA and miRNA Reference Genes for Expression Studies (qPCR) in Archived Formalin-Fixed and Paraffin-Embedded (FFPE) Colon Samples of DSS-Induced Colitis Mouse Model. BIOLOGY 2023; 12:190. [PMID: 36829468 PMCID: PMC9952917 DOI: 10.3390/biology12020190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023]
Abstract
The choice of appropriate reference genes is essential for correctly interpreting qPCR data and results. However, the majority of animal studies use a single reference gene without any prior evaluation. Therefore, many qPCR results from rodent studies can be misleading, affecting not only reproducibility but also translatability. In this study, the expression stability of reference genes for mRNA and miRNA in archived FFPE samples of 117 C57BL/6JOlaHsd mice (males and females) from 9 colitis experiments (dextran sulfate sodium; DSS) were evaluated and their expression analysis was performed. In addition, we investigated whether normalization reduced/neutralized the influence of inter/intra-experimental factors which we systematically included in the study. Two statistical algorithms (NormFinder and Bestkeeper) were used to determine the stability of reference genes. Multivariate analysis was made to evaluate the influence of normalization with different reference genes on target gene expression in regard to inter/intra-experimental factors. Results show that archived FFPE samples are a reliable source of RNA and imply that the FFPE procedure does not change the ranking of stability of reference genes obtained in fresh tissues. Multivariate analysis showed that the histological picture is an important factor affecting the expression levels of target genes.
Collapse
Affiliation(s)
- Ana Unkovič
- Medical Experimental Centre, Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Emanuela Boštjančič
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Aleš Belič
- Statistics and Modelling, Technical Development Biologics, Novartis Technical Research & Development, Lek Pharmaceuticals d.d., 1000 Ljubljana, Slovenia
| | - Martina Perše
- Medical Experimental Centre, Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
4
|
MicroRNA Profiling of Cell Lines and Xenografts by Quantitative PCR : MicroRNA Expression Level Determination by qPCR. Methods Mol Biol 2023; 2595:101-114. [PMID: 36441457 DOI: 10.1007/978-1-0716-2823-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that play essential roles in regulating gene expression at the post-transcriptional level, possibly at any level of the cellular physiology. Furthermore, their deregulation has been observed in a myriad of human diseases including cancer. Therefore, miRNA-based therapies are directed to inhibit the function of oncogenic miRNA or to restore the function of tumor-suppressive miRNAs. Here, we describe how to analyze miRNA levels after the transfection of miRNAs of interest using different transfection reagents or intravenous administration of miRNAs conjugated to lipid nanoparticles in cell lines and in mouse xenograft models.
Collapse
|
5
|
miRNA Expression Profiling in Subcutaneous Adipose Tissue of Monozygotic Twins Discordant for HIV Infection: Validation of Differentially Expressed miRNA and Bioinformatic Analysis. Int J Mol Sci 2022; 23:ijms23073486. [PMID: 35408847 PMCID: PMC8998861 DOI: 10.3390/ijms23073486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023] Open
Abstract
Combined AntiRetroviral Treatments (cARTs) used for HIV infection may result in varied metabolic complications, which in some cases, may be related to patient genetic factors, particularly microRNAs. The use of monozygotic twins, differing only for HIV infection, presents a unique and powerful model for the controlled analysis of potential alterations of miRNAs regulation consequent to cART treatment. Profiling of 2578 mature miRNA in the subcutaneous (SC) adipose tissue and plasma of monozygotic twins was investigated by the GeneChip® miRNA 4.1 array. Real-time PCR and ddPCR experiments were performed in order to validate differentially expressed miRNAs. Target genes of deregulated miRNAs were predicted by the miRDB database (prediction score > 70) and enrichment analysis was carried out with g:Profiler. Processes in SC adipose tissue most greatly affected by miRNA up-regulation included (i) macromolecular metabolic processes, (ii) regulation of neurogenesis, and (iii) protein phosphorylation. Furthermore, KEGG analysis revealed miRNA up-regulation involvement in (i) insulin signaling pathways, (ii) neurotrophin signaling pathways, and (iii) pancreatic cancer. By contrast, miRNA up-regulation in plasma was involved in (i) melanoma, (ii) p53 signaling pathways, and (iii) focal adhesion. Our findings suggest a mechanism that may increase the predisposition of HIV+ patients to insulin resistance and cancer.
Collapse
|
6
|
Kalpachidou T, Kummer K, Kress M. Non-coding RNAs in neuropathic pain. Neuronal Signal 2020; 4:NS20190099. [PMID: 32587755 PMCID: PMC7306520 DOI: 10.1042/ns20190099] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 02/07/2023] Open
Abstract
Neuro-immune alterations in the peripheral and central nervous system play a role in the pathophysiology of chronic pain in general, and members of the non-coding RNA (ncRNA) family, specifically the short, 22 nucleotide microRNAs (miRNAs) and the long non-coding RNAs (lncRNAs) act as master switches orchestrating both immune as well as neuronal processes. Several chronic disorders reveal unique ncRNA expression signatures, which recently generated big hopes for new perspectives for the development of diagnostic applications. lncRNAs may offer perspectives as candidates indicative of neuropathic pain in liquid biopsies. Numerous studies have provided novel mechanistic insight into the role of miRNAs in the molecular sequelae involved in the pathogenesis of neuropathic pain along the entire pain pathway. Specific processes within neurons, immune cells, and glia as the cellular components of the neuropathic pain triad and the communication paths between them are controlled by specific miRNAs. Therefore, nucleotide sequences mimicking or antagonizing miRNA actions can provide novel therapeutic strategies for pain treatment, provided their human homologues serve the same or similar functions. Increasing evidence also sheds light on the function of lncRNAs, which converge so far mainly on purinergic signalling pathways both in neurons and glia, and possibly even other ncRNA species that have not been explored so far.
Collapse
Affiliation(s)
| | - Kai K. Kummer
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michaela Kress
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|