1
|
Bustad E, Mudrock E, Nilles EM, Mcquate A, Bergado M, Gu A, Galitan L, Gleason N, Ou HC, Raible DW, Hernandez RE, Ma S. In vivo screening for toxicity-modulating drug interactions identifies antagonism that protects against ototoxicity in zebrafish. Front Pharmacol 2024; 15:1363545. [PMID: 38515847 PMCID: PMC10955247 DOI: 10.3389/fphar.2024.1363545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/15/2024] [Indexed: 03/23/2024] Open
Abstract
Introduction: Ototoxicity is a debilitating side effect of over 150 medications with diverse mechanisms of action, many of which could be taken concurrently to treat multiple conditions. Approaches for preclinical evaluation of drug-drug interactions that might impact ototoxicity would facilitate design of safer multi-drug regimens and mitigate unsafe polypharmacy by flagging combinations that potentially cause adverse interactions for monitoring. They may also identify protective agents that antagonize ototoxic injury. Methods: To address this need, we have developed a novel workflow that we call Parallelized Evaluation of Protection and Injury for Toxicity Assessment (PEPITA), which empowers high-throughput, semi-automated quantification of ototoxicity and otoprotection in zebrafish larvae via microscopy. We used PEPITA and confocal microscopy to characterize in vivo the consequences of drug-drug interactions on ototoxic drug uptake and cellular damage of zebrafish lateral line hair cells. Results and discussion: By applying PEPITA to measure ototoxic drug interaction outcomes, we discovered antagonistic interactions between macrolide and aminoglycoside antibiotics that confer protection against aminoglycoside-induced damage to lateral line hair cells in zebrafish larvae. Co-administration of either azithromycin or erythromycin in zebrafish protected against damage from a broad panel of aminoglycosides, at least in part via inhibiting drug uptake into hair cells via a mechanism independent from hair cell mechanotransduction. Conversely, combining macrolides with aminoglycosides in bacterial inhibition assays does not show antagonism of antimicrobial efficacy. The proof-of-concept otoprotective antagonism suggests that combinatorial interventions can potentially be developed to protect against other forms of toxicity without hindering on-target drug efficacy.
Collapse
Affiliation(s)
- Ethan Bustad
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Emma Mudrock
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Elizabeth M. Nilles
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Andrea Mcquate
- Department of Otolaryngology-HNS, University of Washington, Seattle, WA, United States
- Department of Biological Structure, University of Washington, Seattle, WA, United States
- Department of Biology, University of New Mexico, Albuquerque, NM, United States
| | - Monica Bergado
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Alden Gu
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Louie Galitan
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Natalie Gleason
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Henry C. Ou
- Department of Otolaryngology-HNS, University of Washington, Seattle, WA, United States
- Department of Pediatrics, Seattle Children’s Hospital, Seattle, WA, United States
| | - David W. Raible
- Department of Otolaryngology-HNS, University of Washington, Seattle, WA, United States
- Department of Biological Structure, University of Washington, Seattle, WA, United States
- VM Bloedel Hearing Research Center, University of Washington, Seattle, WA, United States
| | - Rafael E. Hernandez
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Shuyi Ma
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
- Department of Chemical Engineering, University of Washington, Seattle, WA, United States
- Pathobiology Graduate Program, Department of Global Health, University of Washington, Seattle, WA, United States
| |
Collapse
|
2
|
Bustad E, Mudrock E, Nilles EM, McQuate A, Bergado M, Gu A, Galitan L, Gleason N, Ou HC, Raible DW, Hernandez RE, Ma S. In vivo screening for toxicity-modulating drug interactions identifies antagonism that protects against ototoxicity in zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566159. [PMID: 37986751 PMCID: PMC10659329 DOI: 10.1101/2023.11.08.566159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Ototoxicity is a debilitating side effect of over 150 medications with diverse mechanisms of action, many of which could be taken concurrently to treat multiple conditions. Approaches for preclinical evaluation of drug interactions that might impact ototoxicity would facilitate design of safer multi-drug regimens and mitigate unsafe polypharmacy by flagging combinations that potentially cause adverse interactions for monitoring. They may also identify protective agents that antagonize ototoxic injury. To address this need, we have developed a novel workflow that we call Parallelized Evaluation of Protection and Injury for Toxicity Assessment (PEPITA), which empowers high-throughput, semi-automated quantification of ototoxicity and otoprotection in zebrafish larvae. By applying PEPITA to characterize ototoxic drug interaction outcomes, we have discovered antagonistic interactions between macrolide and aminoglycoside antibiotics that confer protection against aminoglycoside-induced damage to lateral line hair cells in zebrafish larvae. Co-administration of either azithromycin or erythromycin in zebrafish protected against damage from a broad panel of aminoglycosides, at least in part via inhibiting drug uptake into hair cells via a mechanism independent from hair cell mechanotransduction. Conversely, combining macrolides with aminoglycosides in bacterial inhibition assays does not show antagonism of antimicrobial efficacy. The proof-of-concept otoprotective antagonism suggests that combinatorial interventions can potentially be developed to protect against other forms of toxicity without hindering on-target drug efficacy.
Collapse
|
3
|
Meng Z, Chen H, Deng C, Meng S. Potential cellular endocrinology mechanisms underlying the effects of Chinese herbal medicine therapy on asthma. Front Endocrinol (Lausanne) 2022; 13:916328. [PMID: 36051395 PMCID: PMC9424672 DOI: 10.3389/fendo.2022.916328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/04/2022] [Indexed: 11/20/2022] Open
Abstract
Asthma is a complex syndrome with polygenetic tendency and multiple phenotypes, which has variable expiratory airflow limitation and respiratory symptoms that vary over time and in intensity. In recent years, continuous industrial development has seriously impacted the climate and air quality at a global scale. It has been verified that climate change can induce asthma in predisposed individuals and that atmospheric pollution can exacerbate asthma severity. At present, a subset of patients is resistant to the drug therapy for asthma. Hence, it is urgent to find new ideas for asthma prevention and treatment. In this review, we discuss the prescription, composition, formulation, and mechanism of traditional Chinese medicine monomer, traditional Chinese medicine monomer complex, single herbs, and traditional Chinese patent medicine in the treatment of asthma. We also discuss the effects of Chinese herbal medicine on asthma from the perspective of cellular endocrinology in the past decade, emphasizing on the roles as intracellular and extracellular messengers of three substances-hormones, substances secreted by pulmonary neuroendocrine cells, and neuroendocrine-related signaling protein-which provide the theoretical basis for clinical application and new drug development.
Collapse
Affiliation(s)
- Zeyu Meng
- The Second Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Huize Chen
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Chujun Deng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Shengxi Meng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- *Correspondence: Shengxi Meng,
| |
Collapse
|
4
|
Ghosh S, Stansak K, Walters BJ. Cannabinoid Signaling in Auditory Function and Development. Front Mol Neurosci 2021; 14:678510. [PMID: 34079440 PMCID: PMC8165240 DOI: 10.3389/fnmol.2021.678510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/15/2021] [Indexed: 12/20/2022] Open
Abstract
Plants of the genus Cannabis have been used by humans for millennia for a variety of purposes. Perhaps most notable is the use of certain Cannabis strains for their psychoactive effects. More recently, several biologically active molecules within the plants of these Cannabis strains, called phytocannabinoids or simply cannabinoids, have been identified. Furthermore, within human cells, endogenous cannabinoids, or endocannabinoids, as well as the receptors and secondary messengers that give rise to their neuromodulatory effects, have also been characterized. This endocannabinoid system (ECS) is composed of two primary ligands-anandamide and 2-arachidonyl glycerol; two primary receptors-cannabinoid receptors 1 and 2; and several enzymes involved in biosynthesis and degradation of endocannabinoid ligands including diacylglycerol lipase (DAGL) and monoacylglycerol lipase (MAGL). Here we briefly summarize cannabinoid signaling and review what has been discerned to date with regard to cannabinoid signaling in the auditory system and its roles in normal physiological function as well as pathological conditions. While much has been uncovered regarding cannabinoid signaling in the central nervous system, less attention has been paid to the auditory system specifically. Still, evidence is emerging to suggest that cannabinoid signaling is critical for the development, maturation, function, and survival of cochlear hair cells (HCs) and spiral ganglion neurons (SGNs). Furthermore, cannabinoid signaling can have profound effects on synaptic connectivity in CNS structures related to auditory processing. While clinical cases demonstrate that endogenous and exogenous cannabinoids impact auditory function, this review highlights several areas, such as SGN development, where more research is warranted.
Collapse
Affiliation(s)
- Sumana Ghosh
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| | - Kendra Stansak
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| | - Bradley J Walters
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States.,Department of Otolaryngology-Head and Neck Surgery, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
5
|
Huo L, Gao Y, Zhang D, Wang S, Han Y, Men H, Yang Z, Qin X, Wang R, Kong D, Bai H, Zhang H, Zhang W, Jia Z. Piezo2 channel in nodose ganglia neurons is essential in controlling hypertension in a pathway regulated directly by Nedd4-2. Pharmacol Res 2021; 164:105391. [PMID: 33352230 DOI: 10.1016/j.phrs.2020.105391] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/25/2020] [Accepted: 12/12/2020] [Indexed: 11/24/2022]
Abstract
Baroreflex plays a crucial role in regulation of arterial blood pressure (BP). Recently, Piezo1 and Piezo2, the mechanically-activated (MA) ion channels, have been identified as baroreceptors. However, the underlying molecular mechanism for regulating these baroreceptors in hypertension remains unknown. In this study, we used spontaneously hypertensive rats (SHR) and NG-Nitro-l-Arginine (L-NNA)- and Angiotensin II (Ang II)-induced hypertensive model rats to determine the role and mechanism of Piezo1 and Piezo2 in hypertension. We found that Piezo2 was dominantly expressed in baroreceptor nodose ganglia (NG) neurons and aortic nerve endings in Wistar-Kyoto (WKY) rats. The expression of Piezo2 not Piezo1 was significantly downregulated in these regions in SHR and hypertensive model rats. Electrophysiological results showed that the rapidly adapting mechanically-activated (RA-MA) currents and the responsive neuron numbers were significantly reduced in baroreceptor NG neurons in SHR. In WKY rats, the arterial BP was elevated by knocking down the expression of Piezo2 or inhibiting MA channel activity by GsMTx4 in NG. Knockdown of Piezo2 in NG also attenuated the baroreflex and increased serum norepinephrine (NE) concentration in WKY rats. Co-immunoprecipitation experiment suggested that Piezo2 interacted with Neural precursor cell-expressed developmentally downregulated gene 4 type 2 (Nedd4-2, also known as Nedd4L); Electrophysiological results showed that Nedd4-2 inhibited Piezo2 MA currents in co-expressed HEK293T cells. Additionally, Nedd4-2 was upregulated in NG baroreceptor neurons in SHR. Collectively, our results demonstrate that Piezo2 not Piezo1 may act as baroreceptor to regulate arterial BP in rats. Nedd4-2 induced downregulation of Piezo2 in baroreceptor NG neurons leads to hypertension in rats. Our findings provide a novel insight into the molecular mechanism for the regulation of baroreceptor Piezo2 and its critical role in the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Lifang Huo
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China; Department of Pharmacology, Center of Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Yiting Gao
- Department of Pharmacology, Center of Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Dongfang Zhang
- Department of Pharmacology, Center of Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Shengnan Wang
- Department of Pharmacology, Center of Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Yu Han
- Department of Pharmacology, Center of Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China; Department of Pharmacy, Children's Hospital of Hebei Province, China
| | - Hongchao Men
- Department of Pharmacology, Center of Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Zuxiao Yang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Xia Qin
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Ri Wang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Dezhi Kong
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Hui Bai
- Department of Cardiac Ultrasound, The Second Hospital of Hebei Medical University, China
| | - Hailin Zhang
- Department of Pharmacology, Center of Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Wei Zhang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China.
| | - Zhanfeng Jia
- Department of Pharmacology, Center of Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China.
| |
Collapse
|
6
|
Seist R, Tong M, Landegger LD, Vasilijic S, Hyakusoku H, Katsumi S, McKenna CE, Edge ASB, Stankovic KM. Regeneration of Cochlear Synapses by Systemic Administration of a Bisphosphonate. Front Mol Neurosci 2020; 13:87. [PMID: 32765216 PMCID: PMC7381223 DOI: 10.3389/fnmol.2020.00087] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
Sensorineural hearing loss (SNHL) caused by noise exposure and attendant loss of glutamatergic synapses between cochlear spiral ganglion neurons (SGNs) and hair cells is the most common sensory deficit worldwide. We show here that systemic administration of a bisphosphonate to mice 24 h after synaptopathic noise exposure regenerated synapses between inner hair cells and SGNs and restored cochlear function. We further demonstrate that this effect is mediated by inhibition of the mevalonate pathway. These results are highly significant because they suggest that bisphosphonates could reverse cochlear synaptopathy for the treatment of SNHL.
Collapse
Affiliation(s)
- Richard Seist
- Eaton-Peabody Laboratories, Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
- Department of Otorhinolaryngology-Head and Neck Surgery, Paracelsus Medical University, Salzburg, Austria
| | - Mingjie Tong
- Eaton-Peabody Laboratories, Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| | - Lukas D. Landegger
- Eaton-Peabody Laboratories, Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
- Department of Otorhinolaryngology-Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Sasa Vasilijic
- Eaton-Peabody Laboratories, Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| | - Hiroshi Hyakusoku
- Eaton-Peabody Laboratories, Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
- Department of Otorhinolaryngology, Yokosuka Kyosai Hospital, Kanagawa, Japan
| | - Sachiyo Katsumi
- Eaton-Peabody Laboratories, Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| | - Charles E. McKenna
- Department of Chemistry, University of Southern California, Los Angeles, CA, United States
| | - Albert S. B. Edge
- Eaton-Peabody Laboratories, Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
- Speech and Hearing Bioscience and Technology Program, Harvard Medical School, Boston, MA, United States
- Harvard Stem Cell Institute, Cambridge, MA, United States
| | - Konstantina M. Stankovic
- Eaton-Peabody Laboratories, Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
- Speech and Hearing Bioscience and Technology Program, Harvard Medical School, Boston, MA, United States
- Harvard Stem Cell Institute, Cambridge, MA, United States
- Program in Therapeutic Science, Harvard Medical School, Boston, MA, United States
| |
Collapse
|