1
|
Balendra R, Sreedharan J, Hallegger M, Luisier R, Lashuel HA, Gregory JM, Patani R. Amyotrophic lateral sclerosis caused by TARDBP mutations: from genetics to TDP-43 proteinopathy. Lancet Neurol 2025; 24:456-470. [PMID: 40252666 DOI: 10.1016/s1474-4422(25)00109-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/07/2025] [Accepted: 03/20/2025] [Indexed: 04/21/2025]
Abstract
Mutations in the TARDBP gene, which encodes the TDP-43 protein, account for only 3-5% of familial cases of amyotrophic lateral sclerosis and less than 1% of cases that are apparently idiopathic. However, the discovery of neuronal inclusions of TDP-43 as the neuropathological hallmark in the majority of cases of amyotrophic lateral sclerosis has transformed our understanding of the pathomechanisms underlying neurodegeneration. An individual TARDBP mutation can cause phenotypic heterogeneity. Most mutations lie within the C-terminus of the TDP-43 protein. In pathological conditions, TDP-43 is mislocalised from the nucleus to the cytoplasm, where it can be phosphorylated, cleaved, and form insoluble aggregates. This mislocalisation leads to dysfunction of downstream pathways of RNA metabolism, proteostasis, mitochondrial function, oxidative stress, axonal transport, and local translation. Biomarkers for TDP-43 dysfunction and targeted therapies are being developed, justifying cautious optimism for personalised medicine approaches that could rescue the downstream effects of TDP-43 pathology.
Collapse
Affiliation(s)
- Rubika Balendra
- Human Stem Cells and Neurodegeneration Laboratory, The Francis Crick Institute, London, UK; UK Dementia Research Institute at UCL, London, UK.
| | - Jemeen Sreedharan
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Martina Hallegger
- UK Dementia Research Institute at King's, London, UK; The Francis Crick Institute, London, UK; Oxford-GSK Institute of Molecular and Computational Medicine, Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Raphaëlle Luisier
- Genomics and Health Informatics Group, Idiap Research Institute, Martigny, Switzerland
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Qatar Foundation, Doha, Qatar
| | | | - Rickie Patani
- Human Stem Cells and Neurodegeneration Laboratory, The Francis Crick Institute, London, UK; Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
2
|
Chong ZZ, Souayah N. Pathogenic TDP-43 in amyotrophic lateral sclerosis. Drug Discov Today 2025; 30:104351. [PMID: 40188980 DOI: 10.1016/j.drudis.2025.104351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 03/23/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025]
Abstract
The aberrant expression of the transactive response DNA-binding protein of 43 kDa (TDP-43) has been closely associated with amyotrophic lateral sclerosis (ALS). Cytoplasmic inclusions containing TDP-43 can be found in the brain and spinal cord in up to 97% of ALS cases. Mutations in the TARDBP gene promote the nuclear export of TDP-43, increase cytoplasmic aggregation, and predispose TDP-43 to post-translational modifications. Cleavage of TDP-43 and the resulting C- and N-terminal fragments also contribute to the development of ALS. Cellularly, the resulting impairment of autophagy and mitochondria aggravates cellular damage and neurodegeneration. Given the contribution of pathogenic TDP-43 to the development of ALS, elucidating the mechanisms related to TDP-43 will facilitate finding therapeutic targets for the disease.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Department of Neurology, Rutgers University, New Jersey Medical School, Newark, NJ, USA.
| | - Nizar Souayah
- Department of Neurology, Rutgers University, New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
3
|
Wu J, Xu W, Su Y, Wang GH, Ma JJ. Targeting chaperone-mediated autophagy in neurodegenerative diseases: mechanisms and therapeutic potential. Acta Pharmacol Sin 2025; 46:816-828. [PMID: 39548290 PMCID: PMC11950187 DOI: 10.1038/s41401-024-01416-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024]
Abstract
The pathological hallmarks of various neurodegenerative diseases including Parkinson's disease and Alzheimer's disease prominently feature the accumulation of misfolded proteins and neuroinflammation. Chaperone-mediated autophagy (CMA) has emerged as a distinct autophagic process that coordinates the lysosomal degradation of specific proteins bearing the pentapeptide motif Lys-Phe-Glu-Arg-Gln (KFERQ), a recognition target for the cytosolic chaperone HSC70. Beyond its role in protein quality control, recent research underscores the intimate interplay between CMA and immune regulation in neurodegeneration. In this review, we illuminate the molecular mechanisms and regulatory pathways governing CMA. We further discuss the potential roles of CMA in maintaining neuronal proteostasis and modulating neuroinflammation mediated by glial cells. Finally, we summarize the recent advancements in CMA modulators, emphasizing the significance of activating CMA for the therapeutic intervention in neurodegenerative diseases.
Collapse
Affiliation(s)
- Jin Wu
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215123, China.
| | - Wan Xu
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215123, China
| | - Ying Su
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215123, China
| | - Guang-Hui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| | - Jing-Jing Ma
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
4
|
Anderson AJ, Dopler MB, Arezoumandan S, Osei-Kankam D, Davis SA, Ajroud K, Lilek J, Bambakadis E, Shapiro R, Flanagan ME, Cairns NJ, Gitcho MA. Cytoplasmic expression of trans-active response DNA-binding protein-43 in aged mice display hippocampal sclerosis-like degeneration and neuronal loss with reduced lifespan. J Neuropathol Exp Neurol 2025; 84:293-304. [PMID: 39864404 PMCID: PMC11923740 DOI: 10.1093/jnen/nlae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025] Open
Abstract
Trans-active response DNA-binding protein-43 (TDP-43) is the major pathological protein in motor neuron disease and TDP-43 pathology has been described in the brains of up to 50% of patients with Alzheimer disease (AD). Hippocampal sclerosis of aging (HS-A), an age-related neuropathology characterized by severe neuronal loss and gliosis in CA1 and/or subiculum, is found in ∼80% of cases that are positive for phosphorylated TDP-43. HS-A is seen as a co-pathology in cases with AD, limbic-predominant age-related TDP-43 encephalopathy neuropathologic changes (LATE-NC), and frontotemporal degeneration. To understand the pathogenetic relationships between HS-A and LATE-NC, mice that selectively express human TDP-43 and TDP-43 with a defective nuclear localization signal (ΔNLS) in the hippocampus, alone or in an APP/PSEN1 background, were evaluated using histology, HALO software's object recognition algorithms, and protein expression assays. Twenty-four-month-old mice expressing cytosolic TDP-43 displayed marked neuronal loss and atrophy in the hippocampus, decreased β-amyloid plaque deposition and modulation of microglia and intermediate filament activation. TDP-43ΔNLS-expressing mice survived to only ∼24 months of age whether or not they had an APP/PSEN1 background. This HS-A-like model may provide insights into the pathogenesis of neurodegeneration seen in HS-A and in other TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Ashley J Anderson
- Department of Biological Sciences, Delaware State University, Dover, DE, United States
- Delaware Center for Neuroscience Research, Dover, DE, United States
| | - Matthew B Dopler
- Department of Biological Sciences, Delaware State University, Dover, DE, United States
- Delaware Center for Neuroscience Research, Dover, DE, United States
| | - Sanaz Arezoumandan
- Department of Biological Sciences, Delaware State University, Dover, DE, United States
- Delaware Center for Neuroscience Research, Dover, DE, United States
| | - Damian Osei-Kankam
- Department of Biological Sciences, Delaware State University, Dover, DE, United States
- Delaware Center for Neuroscience Research, Dover, DE, United States
| | - Stephani A Davis
- Department of Biological Sciences, Delaware State University, Dover, DE, United States
- Delaware Center for Neuroscience Research, Dover, DE, United States
| | - Kaouther Ajroud
- Bigg's Institute for Alzheimer's Disease and Dementia, University of Texas Health San Antonio, San Antonio, TX, United States
- Department of Pathology, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Jaclyn Lilek
- Bigg's Institute for Alzheimer's Disease and Dementia, University of Texas Health San Antonio, San Antonio, TX, United States
- Department of Pathology, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Eva Bambakadis
- Bigg's Institute for Alzheimer's Disease and Dementia, University of Texas Health San Antonio, San Antonio, TX, United States
- Department of Pathology, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Rachel Shapiro
- Bigg's Institute for Alzheimer's Disease and Dementia, University of Texas Health San Antonio, San Antonio, TX, United States
- Department of Pathology, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Margaret E Flanagan
- Bigg's Institute for Alzheimer's Disease and Dementia, University of Texas Health San Antonio, San Antonio, TX, United States
- Department of Pathology, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Nigel J Cairns
- Living Systems Institute, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Michael A Gitcho
- Department of Biological Sciences, Delaware State University, Dover, DE, United States
- Delaware Center for Neuroscience Research, Dover, DE, United States
| |
Collapse
|
5
|
Dang M, Wu L, Zhang X. Structural insights and milestones in TDP-43 research: A comprehensive review of its pathological and therapeutic advances. Int J Biol Macromol 2025; 306:141677. [PMID: 40032118 DOI: 10.1016/j.ijbiomac.2025.141677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
Transactive response (TAR) DNA-binding protein 43 (TDP-43) is a critical RNA/DNA-binding protein involved in various cellular processes, including RNA splicing, transcription regulation, and RNA stability. Mislocalization and aggregation of TDP-43 in the cytoplasm are key features of the pathogenesis of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and Alzheimer's disease (AD). This review provides a comprehensive retrospective and prospective analysis of TDP-43 research, highlighting structural insights, significant milestones, and the evolving understanding of its physiological and pathological functions. We delineate five major stages in TDP-43 research, from its initial discovery as a pathological hallmark in neurodegeneration to the recent advances in understanding its liquid-liquid phase separation (LLPS) behavior and interactions with cellular processes. Furthermore, we assess therapeutic strategies targeting TDP-43 pathology, categorizing approaches into direct and indirect interventions, alongside modulating aberrant TDP-43 LLPS. We propose that future research will focus on three critical areas: targeting TDP-43 structural polymorphisms for disease-specific therapeutics, exploring dual temporal-spatial modulation of TDP-43, and advancing nano-therapy. More importantly, we emphasize the importance of understanding TDP-43's functional repertoire at the mesoscale, which bridges its molecular functions with broader cellular processes. This review offers a foundational framework for advancing TDP-43 research and therapeutic development.
Collapse
Affiliation(s)
- Mei Dang
- Chinese-German Joint Institute for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China; Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore
| | - Longjiang Wu
- Chinese-German Joint Institute for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China
| | - Xiaoying Zhang
- Chinese-German Joint Institute for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China; Centre of Molecular & Environmental Biology, Department of Biology, University of Minho, 4710-057 Braga, Portugal; Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, N1G 2W1 Guelph, Ontario, Canada.
| |
Collapse
|
6
|
Huang J, Wang J. Selective protein degradation through chaperone‑mediated autophagy: Implications for cellular homeostasis and disease (Review). Mol Med Rep 2025; 31:13. [PMID: 39513615 PMCID: PMC11542157 DOI: 10.3892/mmr.2024.13378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/03/2024] [Indexed: 11/15/2024] Open
Abstract
Cells rely on autophagy for the degradation and recycling of damaged proteins and organelles. Chaperone-mediated autophagy (CMA) is a selective process targeting proteins for degradation through the coordinated function of molecular chaperones and the lysosome‑associated membrane protein‑2A receptor (LAMP2A), pivotal in various cellular processes from signal transduction to the modulation of cellular responses under stress. In the present review, the intricate regulatory mechanisms of CMA were elucidated through multiple signaling pathways such as retinoic acid receptor (RAR)α, AMP‑activated protein kinase (AMPK), p38‑TEEB‑NLRP3, calcium signaling‑NFAT and PI3K/AKT, thereby expanding the current understanding of CMA regulation. A comprehensive exploration of CMA's versatile roles in cellular physiology were further provided, including its involvement in maintaining protein homeostasis, regulating ferroptosis, modulating metabolic diversity and influencing cell cycle and proliferation. Additionally, the impact of CMA on disease progression and therapeutic outcomes were highlighted, encompassing neurodegenerative disorders, cancer and various organ‑specific diseases. Therapeutic strategies targeting CMA, such as drug development and gene therapy were also proposed, providing valuable directions for future clinical research. By integrating recent research findings, the present review aimed to enhance the current understanding of cellular homeostasis processes and emphasize the potential of targeting CMA in therapeutic strategies for diseases marked by CMA dysfunction.
Collapse
Affiliation(s)
- Jiahui Huang
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province and Education Ministry of People's Republic of China, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
- College of Traditional Chinese Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| | - Jiazhen Wang
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province and Education Ministry of People's Republic of China, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| |
Collapse
|
7
|
Zhang H, Tian Y, Ma S, Ji Y, Wang Z, Xiao P, Xu Y. Chaperone-Mediated Autophagy in Brain Injury: A Double-Edged Sword with Therapeutic Potentials. Mol Neurobiol 2024; 61:10671-10683. [PMID: 38775879 DOI: 10.1007/s12035-024-04230-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 05/10/2024] [Indexed: 11/24/2024]
Abstract
Autophagy is an intracellular recycling process that maintains cellular homeostasis by degrading excess or defective macromolecules and organelles. Chaperone-mediated autophagy (CMA) is a highly selective form of autophagy in which a substrate containing a KFERQ-like motif is recognized by a chaperone protein, delivered to the lysosomal membrane, and then translocated to the lysosome for degradation with the assistance of lysosomal membrane protein 2A. Normal CMA activity is involved in the regulation of cellular proteostasis, metabolism, differentiation, and survival. CMA dysfunction disturbs cellular homeostasis and directly participates in the pathogenesis of human diseases. Previous investigations on CMA in the central nervous system have primarily focus on neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease. Recently, mounting evidence suggested that brain injuries involve a wider range of types and severities, making the involvement of CMA in the bidirectional processes of damage and repair even more crucial. In this review, we summarize the basic processes of CMA and its associated regulatory mechanisms and highlight the critical role of CMA in brain injury such as cerebral ischemia, traumatic brain injury, and other specific brain injuries. We also discuss the potential of CMA as a therapeutic target to treat brain injury and provide valuable insights into clinical strategies.
Collapse
Affiliation(s)
- Huiyi Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ye Tian
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuai Ma
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yichen Ji
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhihang Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peilun Xiao
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ying Xu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
8
|
Ho PC, Hsieh TC, Tsai KJ. TDP-43 proteinopathy in frontotemporal lobar degeneration and amyotrophic lateral sclerosis: From pathomechanisms to therapeutic strategies. Ageing Res Rev 2024; 100:102441. [PMID: 39069095 DOI: 10.1016/j.arr.2024.102441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/12/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Proteostasis failure is a common pathological characteristic in neurodegenerative diseases. Revitalizing clearance systems could effectively mitigate these diseases. The transactivation response (TAR) DNA-binding protein 43 (TDP-43) plays a critical role as an RNA/DNA-binding protein in RNA metabolism and synaptic function. Accumulation of TDP-43 aggregates in the central nervous system is a hallmark of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Autophagy, a major and highly conserved degradation pathway, holds the potential for degrading aggregated TDP-43 and alleviating FTLD/ALS. This review explores the causes of TDP-43 aggregation, FTLD/ALS-related genes, key autophagy factors, and autophagy-based therapeutic strategies targeting TDP-43 proteinopathy. Understanding the underlying pathological mechanisms of TDP-43 proteinopathy can facilitate therapeutic interventions.
Collapse
Affiliation(s)
- Pei-Chuan Ho
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tsung-Chi Hsieh
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuen-Jer Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
9
|
Erwin AL, Chang ML, Fernandez MG, Attili D, Russ JE, Sutanto R, Pinarbasi ES, Bekier M, Brant TS, Hahn T, Dykstra M, Thomas D, Li X, Baldridge RD, Tank EMH, Barmada SJ, Mosalaganti S. Molecular Visualization of Neuronal TDP43 Pathology In Situ. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608477. [PMID: 39229019 PMCID: PMC11370468 DOI: 10.1101/2024.08.19.608477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Nuclear exclusion and cytoplasmic accumulation of the RNA-binding protein TDP43 are characteristic of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Despite this, the origin and ultrastructure of cytosolic TDP43 deposits remain unknown. Accumulating evidence suggests that abnormal RNA homeostasis can drive pathological TDP43 mislocalization, enhancing RNA misprocessing due to loss of nuclear TDP43 and engendering a cycle that ends in cell death. Here, we show that adding small monovalent oligonucleotides successfully recapitulates pathological TDP43 mislocalization and aggregation in iPSC-derived neurons (iNeurons). By employing a multimodal in situ cryo-correlative light and electron microscopy pipeline, we examine how RNA influences the localization and aggregation of TDP43 in near-native conditions. We find that mislocalized TDP43 forms ordered fibrils within lysosomes and autophagosomes in iNeurons as well as in patient tissue, and provide the first high-resolution snapshots of TDP43 aggregates in situ. In so doing, we provide a cellular model for studying initial pathogenic events underlying ALS, FTLD, and related TDP43-proteinopathies.
Collapse
Affiliation(s)
- Amanda L. Erwin
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, United States
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Matthew L. Chang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, United States
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Martin G. Fernandez
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, United States
- Department of Biophysics, College of Literature, Science and the Arts, University of Michigan, 48109, United States
| | - Durga Attili
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, United States
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, United States
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Jennifer E. Russ
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Renaldo Sutanto
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, United States
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Emile S. Pinarbasi
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, United States
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Michael Bekier
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Tyler S. Brant
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, United States
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Terry Hahn
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Megan Dykstra
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, United States
| | - Dafydd Thomas
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Xingli Li
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Ryan D. Baldridge
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, United States
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, 48109, United States
| | - Elizabeth M. H. Tank
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Sami J. Barmada
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Shyamal Mosalaganti
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, United States
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, United States
- Department of Biophysics, College of Literature, Science and the Arts, University of Michigan, 48109, United States
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, United States
| |
Collapse
|
10
|
Wang H, Zeng R. Aberrant protein aggregation in amyotrophic lateral sclerosis. J Neurol 2024; 271:4826-4851. [PMID: 38869826 DOI: 10.1007/s00415-024-12485-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease. As its pathological mechanisms are not well understood, there are no efficient therapeutics for it at present. While it is highly heterogenous both etiologically and clinically, it has a common salient hallmark, i.e., aberrant protein aggregation (APA). The upstream pathogenesis and the downstream effects of APA in ALS are sophisticated and the investigation of this pathology would be of consequence for understanding ALS. In this paper, the pathomechanism of APA in ALS and the candidate treatment strategies for it are discussed.
Collapse
Affiliation(s)
- Huaixiu Wang
- Department Neurology, Shanxi Provincial Peoples Hospital: Fifth Hospital of Shanxi Medical University, Taiyuan, 030012, China.
- Beijing Ai-Si-Kang Medical Technology Co. Ltd., No. 18 11th St Economical & Technological Development Zone, Beijing, 100176, China.
| | - Rong Zeng
- Department Neurology, Shanxi Provincial Peoples Hospital: Fifth Hospital of Shanxi Medical University, Taiyuan, 030012, China
| |
Collapse
|
11
|
Kinger S, Jagtap YA, Kumar P, Choudhary A, Prasad A, Prajapati VK, Kumar A, Mehta G, Mishra A. Proteostasis in neurodegenerative diseases. Adv Clin Chem 2024; 121:270-333. [PMID: 38797543 DOI: 10.1016/bs.acc.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Proteostasis is essential for normal function of proteins and vital for cellular health and survival. Proteostasis encompasses all stages in the "life" of a protein, that is, from translation to functional performance and, ultimately, to degradation. Proteins need native conformations for function and in the presence of multiple types of stress, their misfolding and aggregation can occur. A coordinated network of proteins is at the core of proteostasis in cells. Among these, chaperones are required for maintaining the integrity of protein conformations by preventing misfolding and aggregation and guide those with abnormal conformation to degradation. The ubiquitin-proteasome system (UPS) and autophagy are major cellular pathways for degrading proteins. Although failure or decreased functioning of components of this network can lead to proteotoxicity and disease, like neuron degenerative diseases, underlying factors are not completely understood. Accumulating misfolded and aggregated proteins are considered major pathomechanisms of neurodegeneration. In this chapter, we have described the components of three major branches required for proteostasis-chaperones, UPS and autophagy, the mechanistic basis of their function, and their potential for protection against various neurodegenerative conditions, like Alzheimer's, Parkinson's, and Huntington's disease. The modulation of various proteostasis network proteins, like chaperones, E3 ubiquitin ligases, proteasome, and autophagy-associated proteins as therapeutic targets by small molecules as well as new and unconventional approaches, shows promise.
Collapse
Affiliation(s)
- Sumit Kinger
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Yuvraj Anandrao Jagtap
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Prashant Kumar
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Akash Choudhary
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Amit Prasad
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, India
| | - Gunjan Mehta
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India.
| |
Collapse
|
12
|
Han M, Saxton A, Currey H, Waldherr SM, Liachko NF, Kraemer BC. Transgenic Dendra2::tau expression allows in vivo monitoring of tau proteostasis in Caenorhabditis elegans. Dis Model Mech 2024; 17:dmm050473. [PMID: 38469687 PMCID: PMC10985736 DOI: 10.1242/dmm.050473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/04/2024] [Indexed: 03/13/2024] Open
Abstract
Protein homeostasis is perturbed in aging-related neurodegenerative diseases called tauopathies, which are pathologically characterized by aggregation of the microtubule-associated protein tau (encoded by the human MAPT gene). Transgenic Caenorhabditis elegans serve as a powerful model organism to study tauopathy disease mechanisms, but moderating transgenic expression level has proven problematic. To study neuronal tau proteostasis, we generated a suite of transgenic strains expressing low, medium or high levels of Dendra2::tau fusion proteins by comparing integrated multicopy transgene arrays with single-copy safe-harbor locus strains generated by recombinase-mediated cassette exchange. Multicopy Dendra2::tau strains exhibited expression level-dependent neuronal dysfunction that was modifiable by known genetic suppressors or an enhancer of tauopathy. Single-copy Dendra2::tau strains lacked distinguishable phenotypes on their own but enabled detection of enhancer-driven neuronal dysfunction. We used multicopy Dendra2::tau strains in optical pulse-chase experiments measuring tau turnover in vivo and found that Dendra2::tau turned over faster than the relatively stable Dendra2. Furthermore, Dendra2::tau turnover was dependent on the protein expression level and independent of co-expression with human TDP-43 (officially known as TARDBP), an aggregating protein interacting with pathological tau. We present Dendra2::tau transgenic C. elegans as a novel tool for investigating molecular mechanisms of tau proteostasis.
Collapse
Affiliation(s)
- Marina Han
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
| | - Aleen Saxton
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Heather Currey
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Sarah M Waldherr
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Nicole F Liachko
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Brian C Kraemer
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
13
|
Babazadeh A, Rayner SL, Lee A, Chung RS. TDP-43 as a therapeutic target in neurodegenerative diseases: Focusing on motor neuron disease and frontotemporal dementia. Ageing Res Rev 2023; 92:102085. [PMID: 37813308 DOI: 10.1016/j.arr.2023.102085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
A common feature of adult-onset neurodegenerative diseases is the presence of characteristic pathological accumulations of specific proteins. These pathological protein depositions can vary in their protein composition, cell-type distribution, and intracellular (or extracellular) location. For example, abnormal cytoplasmic protein deposits which consist of the TDP-43 protein are found within motor neurons in patients with amyotrophic lateral sclerosis (ALS, a common form of motor neuron disease) and frontotemporal dementia (FTD). The presence of these insoluble intracellular TDP-43 inclusions suggests that restoring TDP-43 homeostasis represents a potential therapeutical strategy, which has been demonstrated in alleviating neurodegenerative symptoms in cell and animal models of ALS/FTD. We have reviewed the mechanisms that lead to disrupted TDP-43 homeostasis and discussed how small molecule-based therapies could be applied in modulating these mechanisms. This review covers recent advancements and challenges in small molecule-based therapies that could be used to clear pathological forms of TDP-43 through various protein homeostasis mechanisms and advance the way towards finding effective therapeutical drug discoveries for neurodegenerative diseases characterized by TDP-43 proteinopathies, especially ALS and FTD. We also consider the wider insight of these therapeutic strategies for other neurodegenerative diseases.
Collapse
Affiliation(s)
- Afshin Babazadeh
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Stephanie L Rayner
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Albert Lee
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Roger S Chung
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
14
|
Liu Y, Tan L, Tan MS. Chaperone-mediated autophagy in neurodegenerative diseases: mechanisms and therapy. Mol Cell Biochem 2023; 478:2173-2190. [PMID: 36695937 DOI: 10.1007/s11010-022-04640-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/09/2022] [Indexed: 01/26/2023]
Abstract
Chaperone-mediated autophagy (CMA) is the selective degradation process of intracellular components by lysosomes, which is required for the degradation of aggregate-prone proteins and contributes to proteostasis maintenance. Proteostasis is essential for normal cell function and survival, and it is determined by the balance of protein synthesis and degradation. Because postmitotic neurons are highly susceptible to proteostasis disruption, CMA is vital for the nervous system. Since Parkinson's disease (PD) was first linked to CMA dysfunction, an increasing number of studies have shown that CMA loss, as seen during aging, occurs in the pathogenetic process of neurodegenerative diseases. Here, we review the molecular mechanisms of CMA, as well as the physiological function and regulation of this autophagy pathway. Following, we highlight its potential role in neurodegenerative diseases, and the latest advances and challenges in targeting CMA in therapy of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yi Liu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| | - Meng-Shan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| |
Collapse
|
15
|
Grochowska KM, Sperveslage M, Raman R, Failla AV, Głów D, Schulze C, Laprell L, Fehse B, Kreutz MR. Chaperone-mediated autophagy in neuronal dendrites utilizes activity-dependent lysosomal exocytosis for protein disposal. Cell Rep 2023; 42:112998. [PMID: 37590146 DOI: 10.1016/j.celrep.2023.112998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/16/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023] Open
Abstract
The complex morphology of neurons poses a challenge for proteostasis because the majority of lysosomal degradation machinery is present in the cell soma. In recent years, however, mature lysosomes were identified in dendrites, and a fraction of those appear to fuse with the plasma membrane and release their content to the extracellular space. Here, we report that dendritic lysosomes are heterogeneous in their composition and that only those containing lysosome-associated membrane protein (LAMP) 2A and 2B fuse with the membrane and exhibit activity-dependent motility. Exocytotic lysosomes dock in close proximity to GluN2B-containing N-methyl-D-aspartate-receptors (NMDAR) via an association of LAMP2B to the membrane-associated guanylate kinase family member SAP102/Dlg3. NMDAR-activation decreases lysosome motility and promotes membrane fusion. We find that chaperone-mediated autophagy is a supplier of content that is released to the extracellular space via lysosome exocytosis. This mechanism enables local disposal of aggregation-prone proteins like TDP-43 and huntingtin.
Collapse
Affiliation(s)
- Katarzyna M Grochowska
- Leibniz Group "Dendritic Organelles and Synaptic Function," Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany.
| | - Marit Sperveslage
- Leibniz Group "Dendritic Organelles and Synaptic Function," Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Rajeev Raman
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Antonio V Failla
- UKE Microscopic Imaging Facility (umif), University Medical Center Eppendorf, 20251 Hamburg, Germany
| | - Dawid Głów
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| | - Christian Schulze
- Institute of Synaptic Physiology, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Laura Laprell
- Institute of Synaptic Physiology, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| | - Michael R Kreutz
- Leibniz Group "Dendritic Organelles and Synaptic Function," Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto von Guericke University, 39120 Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany.
| |
Collapse
|
16
|
Idera A, Sharkey LM, Kurauchi Y, Kadoyama K, Paulson HL, Katsuki H, Seki T. Wild-type and pathogenic forms of ubiquilin 2 differentially modulate components of the autophagy-lysosome pathways. J Pharmacol Sci 2023; 152:182-192. [PMID: 37257946 DOI: 10.1016/j.jphs.2023.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/14/2023] [Accepted: 05/08/2023] [Indexed: 06/02/2023] Open
Abstract
Missense mutations of ubiquilin 2 (UBQLN2) have been identified to cause X-linked amyotrophic lateral sclerosis (ALS). Proteasome-mediated protein degradation is reported to be impaired by ALS-associated mutations of UBQLN2. However, it remains unknown how these mutations affect autophagy-lysosome protein degradation, which consists of macroautophagy (MA), microautophagy (mA), and chaperone-mediated autophagy (CMA). Using a CMA/mA fluorescence reporter we found that overexpression of wild-type UBQLN2 impairs CMA. Conversely, knockdown of endogenous UBQLN2 increases CMA activity, suggesting that normally UBQLN2 negatively regulates CMA. ALS-associated mutant forms of UBQLN2 exacerbate this impairment of CMA. Using cells stably transfected with wild-type or ALS-associated mutant UBQLN2, we further determined that wild-type UBQLN2 increased the ratio of LAMP2A (a CMA-related protein) to LAMP1 (a lysosomal protein). This could represent a compensatory reaction to the impairment of CMA by wild-type UBQLN2. However, ALS-associated mutant UBQLN2 failed to show this compensation, exacerbating the impairment of CMA by mutant UBQLN2. We further demonstrated that ALS-associated mutant forms of UBQLN2 also impair MA, but wild-type UBQLN2 does not. These results support the view that ALS-associated mutant forms of UBQLN2 impair both CMA and MA which may contribute to the neurodegeneration observed in patients with UBQLN2-mediated ALS.
Collapse
Affiliation(s)
- Akiko Idera
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Lisa M Sharkey
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Yuki Kurauchi
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Keiichi Kadoyama
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Japan
| | - Henry L Paulson
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Hiroshi Katsuki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takahiro Seki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan; Department of Pharmacology, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Japan.
| |
Collapse
|
17
|
Ionescu A, Altman T, Perlson E. Looking for answers far away from the soma-the (un)known axonal functions of TDP-43, and their contribution to early NMJ disruption in ALS. Mol Neurodegener 2023; 18:35. [PMID: 37259156 DOI: 10.1186/s13024-023-00623-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/01/2023] [Indexed: 06/02/2023] Open
Abstract
Axon degeneration and Neuromuscular Junction (NMJ) disruption are key pathologies in the fatal neurodegenerative disease Amyotrophic Lateral Sclerosis (ALS). Despite accumulating evidence that axons and NMJs are impacted at a very early stage of the disease, current knowledge about the mechanisms leading to their degeneration remains elusive. Cytoplasmic mislocalization and accumulation of the protein TDP-43 are considered key pathological hallmarks of ALS, as they occur in ~ 97% of ALS patients, both sporadic and familial. Recent studies have identified pathological accumulation of TDP-43 in intramuscular nerves of muscle biopsies collected from pre-diagnosed, early symptomatic ALS patients. These findings suggest a gain of function for TDP-43 in axons, which might facilitate early NMJ disruption. In this review, we dissect the process leading to axonal TDP-43 accumulation and phosphorylation, discuss the known and hypothesized roles TDP-43 plays in healthy axons, and review possible mechanisms that connect TDP-43 pathology to the axon and NMJ degeneration in ALS.
Collapse
Affiliation(s)
- Ariel Ionescu
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Room 605, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Topaz Altman
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Room 605, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Eran Perlson
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Room 605, Ramat Aviv, 69978, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
18
|
Elia L, Herting B, Alijagic A, Buselli C, Wong L, Morrison G, Prado MA, Paulo JA, Gygi SP, Finley D, Finkbeiner S. Frontotemporal Dementia Patient Neurons With Progranulin Deficiency Display Protein Dyshomeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524611. [PMID: 36712069 PMCID: PMC9882405 DOI: 10.1101/2023.01.18.524611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Haploinsufficiency of progranulin (PGRN) causes frontotemporal dementia (FTD), a devastating neurodegenerative disease with no effective treatment. PGRN is required for efficient proteostasis, as loss of neuronal PGRN results in dysfunctional lysosomes and impaired clearance and cytoplasmic aggregation of TDP-43, a protein involved in neurodegeneration in FTD. These and other events lead to neurodegeneration and neuroinflammation. However, the detailed mechanisms leading to protein dyshomeostasis in PGRN-deficient cells remain unclear. We report here the development of human cell models of FTD with PGRN-deficiency to explore the molecular mechanisms underlying proteostasis breakdown and TDP-43 aggregation in FTD. Neurons differentiated from FTD patient induced pluripotent stem cells (iPSCs) have reduced PGRN levels, and the neurons recapitulate key disease features, including impaired lysosomal function, defective TDP-43 turnover and accumulation, neurodegeneration, and death. Proteomic analysis revealed altered levels of proteins linked to the autophagy-lysosome pathway (ALP) and the ubiquitin-proteasome system (UPS) in FTD patient neurons, providing new mechanistic insights into the link between PGRN-deficiency and disease pathobiology.
Collapse
|
19
|
Włodarczyk P, Witczak M, Gajewska A, Chady T, Piotrowski I. The role of TDP-43 protein in amyotrophic lateral sclerosis. JOURNAL OF MEDICAL SCIENCE 2022. [DOI: 10.20883/medical.e710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease where both upper and lower motoneurons are damaged. Even though the pathogenesis of ALS is unclear, the TDP-43 aggregations and non-nuclear localization may be crucial to understanding this process. Despite intensive research on ALS therapies, only two lifespan-prolonging medications have been approved: Riluzole and Edaravone. Unravelling the TDP-43 pathology could help develop new ALS therapies using mechanisms such as inhibition of nuclear export, autophagy, chaperones, or antisense oligonucleotides. Selective inhibitors of nuclear export (SINEs) are drugs that block Exportin 1 (XPO1) and cause the accumulation of not exported molecules inside the nucleus. SINEs that target XPO1 are shown to slightly extend the survival of neurons and soften motor symptoms. Dysfunctional proteins, including TDP-43, can be eliminated through autophagocytosis, which is regulated by the mTOR kinase. Stimulating the elimination of protein deposits may be an effective ALS therapy. Antisense oligonucleotides (ASO) are single-stranded, synthetic oligonucleotides that can bind and modulate specific RNA: via ribonuclease H, inducing their degradation or inducing alternative splicing via blocking primary RNA transcripts. Current ASOs therapies used in ALS focus on SOD1, C9ORF72, FUS, and ATXN2, and they may be used to slow the ALS progression. Reversing the aggregation is a promising therapeutic strategy. Chaperones control other proteins' quality and protect them against stress factors. Due to the irreversible character of ALS, it is essential to understand its complicated pathology better and to seek new therapies.
Collapse
|
20
|
Pan Y, Kagawa Y, Sun J, Turner BJ, Huang C, Shah AD, Schittenhelm RB, Nicolazzo JA. Altered Blood-Brain Barrier Dynamics in the C9orf72 Hexanucleotide Repeat Expansion Mouse Model of Amyotrophic Lateral Sclerosis. Pharmaceutics 2022; 14:pharmaceutics14122803. [PMID: 36559296 PMCID: PMC9783795 DOI: 10.3390/pharmaceutics14122803] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
For peripherally administered drugs to reach the central nervous system (CNS) and treat amyotrophic lateral sclerosis (ALS), they must cross the blood-brain barrier (BBB). As mounting evidence suggests that the ultrastructure of the BBB is altered in individuals with ALS and in animal models of ALS (e.g., SOD1G93A mice), we characterized BBB transporter expression and function in transgenic C9orf72 BAC (C9-BAC) mice expressing a hexanucleotide repeat expansion, the most common genetic cause of ALS. Using an in situ transcardiac brain perfusion technique, we identified a 1.4-fold increase in 3H-2-deoxy-D-glucose transport across the BBB in C9-BAC transgenic (C9) mice, relative to wild-type (WT) mice, which was associated with a 1.3-fold increase in brain microvascular glucose transporter 1 expression, while other general BBB permeability processes (passive diffusion, efflux transporter function) remained unaffected. We also performed proteomic analysis on isolated brain microvascular endothelial cells, in which we noted a mild (14.3%) reduction in zonula occludens-1 abundance in C9 relative to WT mice. Functional enrichment analysis highlighted trends in changes to various BBB transporters and cellular metabolism. To our knowledge, this is the first study to demonstrate altered BBB function in a C9orf72 repeat expansion model of ALS, which has implications on how therapeutics may access the brain in this mouse model.
Collapse
Affiliation(s)
- Yijun Pan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC 3052, Australia
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, 2-1 Seiryomachi, Aobaku, Sendai 980-0872, Miyagi, Japan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia
- Correspondence: (Y.P.); (J.A.N.); Tel.: +61-3-8344-4000 (Y.P.); +61-3-9903-9605 (J.A.N.); Fax: +61-3-9903-9583 (J.A.N.)
| | - Yoshiteru Kagawa
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC 3052, Australia
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, 2-1 Seiryomachi, Aobaku, Sendai 980-0872, Miyagi, Japan
| | - Jiaqi Sun
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC 3052, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia
| | - Bradley J. Turner
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia
- Perron Institute for Neurological and Translational Science, Queen Elizabeth Medical Centre, Nedlands, WA 6009, Australia
| | - Cheng Huang
- Monash Proteomics & Metabolomics Facility, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Anup D. Shah
- Monash Proteomics & Metabolomics Facility, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Monash Bioinformatics Platform, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Ralf B. Schittenhelm
- Monash Proteomics & Metabolomics Facility, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Joseph A. Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC 3052, Australia
- Correspondence: (Y.P.); (J.A.N.); Tel.: +61-3-8344-4000 (Y.P.); +61-3-9903-9605 (J.A.N.); Fax: +61-3-9903-9583 (J.A.N.)
| |
Collapse
|
21
|
Tedesco B, Ferrari V, Cozzi M, Chierichetti M, Casarotto E, Pramaggiore P, Mina F, Piccolella M, Cristofani R, Crippa V, Rusmini P, Galbiati M, Poletti A. The role of autophagy-lysosomal pathway in motor neuron diseases. Biochem Soc Trans 2022; 50:1489-1503. [PMID: 36111809 PMCID: PMC9704526 DOI: 10.1042/bst20220778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 10/22/2023]
Abstract
Motor neuron diseases (MNDs) include a broad group of diseases in which neurodegeneration mainly affects upper and/or lower motor neurons (MNs). Although the involvement of specific MNs, symptoms, age of onset, and progression differ in MNDs, the main pathogenic mechanism common to most MNDs is represented by proteostasis alteration and proteotoxicity. This pathomechanism may be directly related to mutations in genes encoding proteins involved in the protein quality control system, particularly the autophagy-lysosomal pathway (ALP). Alternatively, proteostasis alteration can be caused by aberrant proteins that tend to misfold and to aggregate, two related processes that, over time, cannot be properly handled by the ALP. Here, we summarize the main ALP features, focusing on different routes utilized to deliver substrates to the lysosome and how the various ALP pathways intersect with the intracellular trafficking of membranes and vesicles. Next, we provide an overview of the mutated genes that have been found associated with MNDs, how these gene products are involved in different steps of ALP and related processes. Finally, we discuss how autophagy can be considered a valid therapeutic target for MNDs treatment focusing on traditional autophagy modulators and on emerging approaches to overcome their limitations.
Collapse
Affiliation(s)
- Barbara Tedesco
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Veronica Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| | - Marta Cozzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| | - Marta Chierichetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| | - Elena Casarotto
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| | - Paola Pramaggiore
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| | - Francesco Mina
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| | - Margherita Piccolella
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| | - Riccardo Cristofani
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| | - Valeria Crippa
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| | - Paola Rusmini
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| | - Mariarita Galbiati
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
22
|
Stress induced TDP-43 mobility loss independent of stress granules. Nat Commun 2022; 13:5480. [PMID: 36123343 PMCID: PMC9485239 DOI: 10.1038/s41467-022-32939-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022] Open
Abstract
TAR DNA binding protein 43 (TDP-43) is closely related to the pathogenesis of amyotrophic lateral sclerosis (ALS) and translocates to stress granules (SGs). The role of SGs as aggregation-promoting “crucibles” for TDP-43, however, is still under debate. We analyzed TDP-43 mobility and localization under different stress and recovery conditions using live cell single-molecule tracking and super-resolution microscopy. Besides reduced mobility within SGs, a stress induced decrease of TDP-43 mobility in the cytoplasm and the nucleus was observed. Stress removal led to a recovery of TDP-43 mobility, which strongly depended on the stress duration. ‘Stimulated-emission depletion microscopy’ (STED) and ‘tracking and localization microscopy’ (TALM) revealed not only TDP-43 substructures within stress granules but also numerous patches of slow TDP-43 species throughout the cytoplasm. This work provides insights into the aggregation of TDP-43 in living cells and provide evidence suggesting that TDP-43 oligomerization and aggregation takes place in the cytoplasm separate from SGs. Amyotrophic Lateral Sclerosis related TDP-43 protein translocates to stress granules with a concomitant reduction in mobility. Here, the authors use single molecule tracking and find a stress-induced reduction in TDP-43 mobility also in the cytoplasm potentially relevant for TDP-43 aggregation.
Collapse
|
23
|
Yin P, Bai D, Deng F, Zhang C, Jia Q, Zhu L, Chen L, Li B, Guo X, Ye J, Tan Z, Wang L, Li S, Li XJ. SQSTM1-mediated clearance of cytoplasmic mutant TARDBP/TDP-43 in the monkey brain. Autophagy 2022; 18:1955-1968. [PMID: 34936539 PMCID: PMC9466617 DOI: 10.1080/15548627.2021.2013653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022] Open
Abstract
The cytoplasmic accumulation and aggregates of TARDBP/TDP-43 (TAR DNA binding protein) are a pathological hallmark in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. We previously reported that the primate specific cleavage of TARDBP accounts for its cytoplasmic mislocalization in the primate brains, prompting us to further investigate how the cytoplasmic TARDBP mediates neuropathology. Here we reported that cytoplasmic mutant TARDBP reduced SQSTM1 expression selectively in the monkey brain, when compared with the mouse brain, by inducing SQSTM1 mRNA instability via its binding to the unique 3'UTR sequence (GU/UG)n of the primate SQSTM1 transcript. Overexpression of SQSTM1 could diminish the cytoplasmic C-terminal TARDBP accumulation in the monkey brain by augmenting macroautophagy/autophagy activity. Our findings provide additional clues for the pathogenesis of cytoplasmic TARDBP and a potential therapy for mutant TARDBP-mediated neuropathology.
Collapse
Affiliation(s)
- Peng Yin
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Dazhang Bai
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Fuyu Deng
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Chen Zhang
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Qingqing Jia
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Longhong Zhu
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Laiqiang Chen
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Bang Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Xiangyu Guo
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Jianmeng Ye
- Guangdong Landao Biotechnology Co. Ltd, Guangzhou, China
| | - Zhiqiang Tan
- Department of Medical Imaging, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lu Wang
- Department of Medical Imaging, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shihua Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| |
Collapse
|
24
|
Hayes LR, Kalab P. Emerging Therapies and Novel Targets for TDP-43 Proteinopathy in ALS/FTD. Neurotherapeutics 2022; 19:1061-1084. [PMID: 35790708 PMCID: PMC9587158 DOI: 10.1007/s13311-022-01260-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2022] [Indexed: 10/17/2022] Open
Abstract
Nuclear clearance and cytoplasmic mislocalization of the essential RNA binding protein, TDP-43, is a pathologic hallmark of amyotrophic lateral sclerosis, frontotemporal dementia, and related neurodegenerative disorders collectively termed "TDP-43 proteinopathies." TDP-43 mislocalization causes neurodegeneration through both loss and gain of function mechanisms. Loss of TDP-43 nuclear RNA processing function destabilizes the transcriptome by multiple mechanisms including disruption of pre-mRNA splicing, the failure of repression of cryptic exons, and retrotransposon activation. The accumulation of cytoplasmic TDP-43, which is prone to aberrant liquid-liquid phase separation and aggregation, traps TDP-43 in the cytoplasm and disrupts a host of downstream processes including the trafficking of RNA granules, local translation within axons, and mitochondrial function. In this review, we will discuss the TDP-43 therapy development pipeline, beginning with therapies in current and upcoming clinical trials, which are primarily focused on accelerating the clearance of TDP-43 aggregates. Then, we will look ahead to emerging strategies from preclinical studies, first from high-throughput genetic and pharmacologic screens, and finally from mechanistic studies focused on the upstream cause(s) of TDP-43 disruption in ALS/FTD. These include modulation of stress granule dynamics, TDP-43 nucleocytoplasmic shuttling, RNA metabolism, and correction of aberrant splicing events.
Collapse
Affiliation(s)
- Lindsey R Hayes
- Johns Hopkins School of Medicine, Dept. of Neurology, Baltimore, MD, USA.
| | - Petr Kalab
- Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
25
|
Ojaimi YA, Dangoumau A, Alarcan H, Hergesheimer R, Vourc'h P, Corcia P, Lanznaster D, Blasco H. TAR DNA-binding protein of 43 kDa (TDP-43) and amyotrophic lateral sclerosis (ALS): a promising therapeutic target. Expert Opin Ther Targets 2022; 26:575-592. [PMID: 35652285 DOI: 10.1080/14728222.2022.2083958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease that lacks an effective treatment. Aggregates of the TAR DNA-binding protein-43 (TDP-43) are observed in 97% of all ALS cases, thus making this protein a major therapeutic target in ALS. . AREAS COVERED The authors describe the major cellular functions of TDP-43 and the features and consequences of TDP-43 proteinopathy. Drawing from fundamental and preclinical studies on cellular and animal TDP-43 models of ALS and selected clinical trials, the major pathways that have been targeted for the mitigation of TDP-43 pathology in ALS are discussed. The authors provide insights on the approaches targeting the tendency of TDP-43 for aggregation, defective nucleocytoplasmic transport, dysfunctional proteostasis, abnormal stress granule dynamics, and pathological post-translational modifications of TDP-43. EXPERT OPINION The complexity of ALS and TDP-43 proteinopathy generates challenges for the development of novel therapeutic approaches. However, the critical involvement of TDP-43 in the initiation and progression of ALS, makes it a promising therapeutic target. Further research should be centered on the development of precision strategies, consideration of patient subgroups, the prevention of the mislocalization of TDP-43 and restoration of the lost functions of TPD-43. .
Collapse
Affiliation(s)
| | | | - Hugo Alarcan
- UMR 1253 iBrain, Université de Tours, Tours, France.,Laboratoire de biochimie et biologie moléculaire, CHRU Bretonneau, Tours, France
| | | | - Patrick Vourc'h
- UMR 1253 iBrain, Université de Tours, Tours, France.,Laboratoire de biochimie et biologie moléculaire, CHRU Bretonneau, Tours, France
| | - Philippe Corcia
- Laboratoire de biochimie et biologie moléculaire, CHRU Bretonneau, Tours, France.,Service de neurologie, CHRU Bretonneau, Tours, France
| | | | - Hélène Blasco
- UMR 1253 iBrain, Université de Tours, Tours, France.,Laboratoire de biochimie et biologie moléculaire, CHRU Bretonneau, Tours, France
| |
Collapse
|
26
|
Chaperone-Mediated Autophagy in Neurodegenerative Diseases and Acute Neurological Insults in the Central Nervous System. Cells 2022; 11:cells11071205. [PMID: 35406769 PMCID: PMC8997510 DOI: 10.3390/cells11071205] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/27/2022] [Accepted: 03/30/2022] [Indexed: 12/12/2022] Open
Abstract
Autophagy is an important function that mediates the degradation of intracellular proteins and organelles. Chaperone-mediated autophagy (CMA) degrades selected proteins and has a crucial role in cellular proteostasis under various physiological and pathological conditions. CMA dysfunction leads to the accumulation of toxic protein aggregates in the central nervous system (CNS) and is involved in the pathogenic process of neurodegenerative diseases, including Parkinson’s disease and Alzheimer’s disease. Previous studies have suggested that the activation of CMA to degrade aberrant proteins can provide a neuroprotective effect in the CNS. Recent studies have shown that CMA activity is upregulated in damaged neural tissue following acute neurological insults, such as cerebral infarction, traumatic brain injury, and spinal cord injury. It has been also suggested that various protein degradation mechanisms are important for removing toxic aberrant proteins associated with secondary damage after acute neurological insults in the CNS. Therefore, enhancing the CMA pathway may induce neuroprotective effects not only in neurogenerative diseases but also in acute neurological insults. We herein review current knowledge concerning the biological mechanisms involved in CMA and highlight the role of CMA in neurodegenerative diseases and acute neurological insults. We also discuss the possibility of developing CMA-targeted therapeutic strategies for effective treatments.
Collapse
|
27
|
Espinosa R, Gutiérrez K, Rios J, Ormeño F, Yantén L, Galaz-Davison P, Ramírez-Sarmiento CA, Parra V, Albornoz A, Alfaro IE, Burgos PV, Morselli E, Criollo A, Budini M. Palmitic and Stearic Acids Inhibit Chaperone-Mediated Autophagy (CMA) in POMC-like Neurons In Vitro. Cells 2022; 11:cells11060920. [PMID: 35326371 PMCID: PMC8945987 DOI: 10.3390/cells11060920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/09/2022] [Accepted: 02/22/2022] [Indexed: 12/28/2022] Open
Abstract
The intake of food with high levels of saturated fatty acids (SatFAs) is associated with the development of obesity and insulin resistance. SatFAs, such as palmitic (PA) and stearic (SA) acids, have been shown to accumulate in the hypothalamus, causing several pathological consequences. Autophagy is a lysosomal-degrading pathway that can be divided into macroautophagy, microautophagy, and chaperone-mediated autophagy (CMA). Previous studies showed that PA impairs macroautophagy function and insulin response in hypothalamic proopiomelanocortin (POMC) neurons. Here, we show in vitro that the exposure of POMC neurons to PA or SA also inhibits CMA, possibly by decreasing the total and lysosomal LAMP2A protein levels. Proteomics of lysosomes from PA- and SA-treated cells showed that the inhibition of CMA could impact vesicle formation and trafficking, mitochondrial components, and insulin response, among others. Finally, we show that CMA activity is important for regulating the insulin response in POMC hypothalamic neurons. These in vitro results demonstrate that CMA is inhibited by PA and SA in POMC-like neurons, giving an overview of the CMA-dependent cellular pathways that could be affected by such inhibition and opening a door for in vivo studies of CMA in the context of the hypothalamus and obesity.
Collapse
Affiliation(s)
- Rodrigo Espinosa
- Molecular and Cellular Pathology Laboratory, Institute in Dentistry Sciences, Dentistry Faculty, University of Chile, Santiago 8380544, Chile; (R.E.); (K.G.); (J.R.); (F.O.)
| | - Karla Gutiérrez
- Molecular and Cellular Pathology Laboratory, Institute in Dentistry Sciences, Dentistry Faculty, University of Chile, Santiago 8380544, Chile; (R.E.); (K.G.); (J.R.); (F.O.)
| | - Javiera Rios
- Molecular and Cellular Pathology Laboratory, Institute in Dentistry Sciences, Dentistry Faculty, University of Chile, Santiago 8380544, Chile; (R.E.); (K.G.); (J.R.); (F.O.)
| | - Fernando Ormeño
- Molecular and Cellular Pathology Laboratory, Institute in Dentistry Sciences, Dentistry Faculty, University of Chile, Santiago 8380544, Chile; (R.E.); (K.G.); (J.R.); (F.O.)
| | - Liliana Yantén
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Avda. Zañartu 1482, Ñuñoa, Santiago 7780272, Chile; (L.Y.); (A.A.); (I.E.A.); (P.V.B.)
| | - Pablo Galaz-Davison
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (P.G.-D.); (C.A.R.-S.)
| | - César A. Ramírez-Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (P.G.-D.); (C.A.R.-S.)
| | - Valentina Parra
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago 8380544, Chile; (V.P.); (A.C.)
- Autophagy Research Center (ARC), Santiago 8380544, Chile;
| | - Amelina Albornoz
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Avda. Zañartu 1482, Ñuñoa, Santiago 7780272, Chile; (L.Y.); (A.A.); (I.E.A.); (P.V.B.)
- Departamento de Ciencias Básicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago 7510157, Chile
| | - Iván E. Alfaro
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Avda. Zañartu 1482, Ñuñoa, Santiago 7780272, Chile; (L.Y.); (A.A.); (I.E.A.); (P.V.B.)
- Programa de Comunicación Celular en Cáncer, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile
| | - Patricia V. Burgos
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Avda. Zañartu 1482, Ñuñoa, Santiago 7780272, Chile; (L.Y.); (A.A.); (I.E.A.); (P.V.B.)
- Autophagy Research Center (ARC), Santiago 8380544, Chile;
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago 7510157, Chile
- Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica, Santiago 8331150, Chile
| | - Eugenia Morselli
- Autophagy Research Center (ARC), Santiago 8380544, Chile;
- Departamento de Ciencias Básicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago 7510157, Chile
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago 8331150, Chile
| | - Alfredo Criollo
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago 8380544, Chile; (V.P.); (A.C.)
- Autophagy Research Center (ARC), Santiago 8380544, Chile;
- Cellular and Molecular Biology Laboratory, Institute in Dentistry Sciences, Dentistry Faculty, University of Chile, Santiago 8380544, Chile
| | - Mauricio Budini
- Molecular and Cellular Pathology Laboratory, Institute in Dentistry Sciences, Dentistry Faculty, University of Chile, Santiago 8380544, Chile; (R.E.); (K.G.); (J.R.); (F.O.)
- Autophagy Research Center (ARC), Santiago 8380544, Chile;
- Correspondence:
| |
Collapse
|
28
|
Neurodegenerative Disease-Associated TDP-43 Fragments Are Extracellularly Secreted with CASA Complex Proteins. Cells 2022; 11:cells11030516. [PMID: 35159325 PMCID: PMC8833957 DOI: 10.3390/cells11030516] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 02/04/2023] Open
Abstract
Extracellular vesicles (EVs) play a central role in neurodegenerative diseases (NDs) since they may either spread the pathology or contribute to the intracellular protein quality control (PQC) system for the cellular clearance of NDs-associated proteins. Here, we investigated the crosstalk between large (LVs) and small (SVs) EVs and PQC in the disposal of TDP-43 and its FTLD and ALS-associated C-terminal fragments (TDP-35 and TDP-25). By taking advantage of neuronal cells (NSC-34 cells), we demonstrated that both EVs types, but particularly LVs, contained TDP-43, TDP-35 and TDP-25. When the PQC system was inhibited, as it occurs in NDs, we found that TDP-35 and TDP-25 secretion via EVs increased. In line with this observation, we specifically detected TDP-35 in EVs derived from plasma of FTLD patients. Moreover, we demonstrated that both neuronal and plasma-derived EVs transported components of the chaperone-assisted selective autophagy (CASA) complex (HSP70, BAG3 and HSPB8). Neuronal EVs also contained the autophagy-related MAP1LC3B-II protein. Notably, we found that, under PQC inhibition, HSPB8, BAG3 and MAP1LC3B-II secretion paralleled that of TDP-43 species. Taken together, our data highlight the role of EVs, particularly of LVs, in the disposal of disease-associated TDP-43 species, and suggest a possible new role for the CASA complex in NDs.
Collapse
|
29
|
TDP-43 pathology: from noxious assembly to therapeutic removal. Prog Neurobiol 2022; 211:102229. [DOI: 10.1016/j.pneurobio.2022.102229] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/08/2021] [Accepted: 01/26/2022] [Indexed: 02/08/2023]
|
30
|
Gómez-Sintes R, Arias E. Chaperone-mediated autophagy and disease: Implications for cancer and neurodegeneration. Mol Aspects Med 2021; 82:101025. [PMID: 34629183 DOI: 10.1016/j.mam.2021.101025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 02/07/2023]
Abstract
Chaperone-mediated autophagy (CMA) is a proteolytic process whereby selected intracellular proteins are degraded inside lysosomes. Owing to its selectivity, CMA participates in the modulation of specific regulatory proteins, thereby playing an important role in multiple cellular processes. Studies conducted over the last two decades have enabled the molecular characterization of this autophagic pathway and the design of specific experimental models, and have underscored the importance of CMA in a range of physiological processes beyond mere protein quality control. Those findings also indicate that decreases in CMA function with increasing age may contribute to the pathogenesis of age-associated diseases, including neurodegeneration and cancer. In the context of neurological diseases, CMA impairment is thought to contribute to the accumulation of misfolded/aggregated proteins, a process central to the pathogenesis of neurodegenerative diseases. CMA therefore constitutes a potential therapeutic target, as its induction accelerates the clearance of pathogenic proteins, promoting cell survival. More recent evidence has highlighted the important and complex role of CMA in cancer biology. While CMA induction may limit tumor development, experimental evidence also indicates that inhibition of this pathway can attenuate the growth of established tumors and improve the response to cancer therapeutics. Here, we describe and discuss the evidence supporting a role of impaired CMA function in neurodegeneration and cancer, as well as future research directions to evaluate the potential of this pathway as a target for the prevention and treatment of these diseases.
Collapse
Affiliation(s)
- Raquel Gómez-Sintes
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas CIB-CSIC, 28040, Madrid, Spain; Department of Developmental and Molecular Biology & Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Esperanza Arias
- Department of Medicine, Marion Bessin Liver Research Center & Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
31
|
Molecular Pathways Involved in Frontotemporal Lobar Degeneration with TDP-43 Proteinopathy: What Can We Learn from Proteomics? Int J Mol Sci 2021; 22:ijms221910298. [PMID: 34638637 PMCID: PMC8508653 DOI: 10.3390/ijms221910298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 12/14/2022] Open
Abstract
Frontotemporal lobar degeneration (FTLD) is a neurodegenerative disorder clinically characterized by behavioral, language, and motor symptoms, with major impact on the lives of patients and their families. TDP-43 proteinopathy is the underlying neuropathological substrate in the majority of cases, referred to as FTLD-TDP. Several genetic causes have been identified, which have revealed some components of its pathophysiology. However, the exact mechanisms driving FTLD-TDP remain largely unknown, forestalling the development of therapies. Proteomic approaches, in particular high-throughput mass spectrometry, hold promise to help elucidate the pathogenic molecular and cellular alterations. In this review, we describe the main findings of the proteomic profiling studies performed on human FTLD-TDP brain tissue. Subsequently, we address the major biological pathways implicated in FTLD-TDP, by reviewing these data together with knowledge derived from genomic and transcriptomic literature. We illustrate that an integrated perspective, encompassing both proteomic, genetic, and transcriptomic discoveries, is vital to unravel core disease processes, and to enable the identification of disease biomarkers and therapeutic targets for this devastating disorder.
Collapse
|
32
|
Bastien J, Menon S, Messa M, Nyfeler B. Molecular targets and approaches to restore autophagy and lysosomal capacity in neurodegenerative disorders. Mol Aspects Med 2021; 82:101018. [PMID: 34489092 DOI: 10.1016/j.mam.2021.101018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/18/2021] [Accepted: 08/25/2021] [Indexed: 01/18/2023]
Abstract
Autophagy is a catabolic process that promotes cellular fitness by clearing aggregated protein species, pathogens and damaged organelles through lysosomal degradation. The autophagic process is particularly important in the nervous system where post-mitotic neurons rely heavily on protein and organelle quality control in order to maintain cellular health throughout the lifetime of the organism. Alterations of autophagy and lysosomal function are hallmarks of various neurodegenerative disorders. In this review, we conceptualize some of the mechanistic and genetic evidence pointing towards autophagy and lysosomal dysfunction as a causal driver of neurodegeneration. Furthermore, we discuss rate-limiting pathway nodes and potential approaches to restore pathway activity, from autophagy initiation, cargo sequestration to lysosomal capacity.
Collapse
Affiliation(s)
- Julie Bastien
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Suchithra Menon
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Mirko Messa
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Beat Nyfeler
- Novartis Institutes for BioMedical Research, Basel, Switzerland.
| |
Collapse
|
33
|
Root J, Merino P, Nuckols A, Johnson M, Kukar T. Lysosome dysfunction as a cause of neurodegenerative diseases: Lessons from frontotemporal dementia and amyotrophic lateral sclerosis. Neurobiol Dis 2021; 154:105360. [PMID: 33812000 PMCID: PMC8113138 DOI: 10.1016/j.nbd.2021.105360] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 03/16/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are fatal neurodegenerative disorders that are thought to exist on a clinical and pathological spectrum. FTD and ALS are linked by shared genetic causes (e.g. C9orf72 hexanucleotide repeat expansions) and neuropathology, such as inclusions of ubiquitinated, misfolded proteins (e.g. TAR DNA-binding protein 43; TDP-43) in the CNS. Furthermore, some genes that cause FTD or ALS when mutated encode proteins that localize to the lysosome or modulate endosome-lysosome function, including lysosomal fusion, cargo trafficking, lysosomal acidification, autophagy, or TFEB activity. In this review, we summarize evidence that lysosomal dysfunction, caused by genetic mutations (e.g. C9orf72, GRN, MAPT, TMEM106B) or toxic-gain of function (e.g. aggregation of TDP-43 or tau), is an important pathogenic disease mechanism in FTD and ALS. Further studies into the normal function of many of these proteins are required and will help uncover the mechanisms that cause lysosomal dysfunction in FTD and ALS. Mutations or polymorphisms in genes that encode proteins important for endosome-lysosome function also occur in other age-dependent neurodegenerative diseases, including Alzheimer's (e.g. APOE, PSEN1, APP) and Parkinson's (e.g. GBA, LRRK2, ATP13A2) disease. A more complete understanding of the common and unique features of lysosome dysfunction across the spectrum of neurodegeneration will help guide the development of therapies for these devastating diseases.
Collapse
Affiliation(s)
- Jessica Root
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta 30322, Georgia; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta 30322, Georgia
| | - Paola Merino
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta 30322, Georgia; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta 30322, Georgia
| | - Austin Nuckols
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta 30322, Georgia; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta 30322, Georgia
| | - Michelle Johnson
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta 30322, Georgia; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta 30322, Georgia
| | - Thomas Kukar
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta 30322, Georgia; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta 30322, Georgia; Department of Neurology, Emory University, School of Medicine, Atlanta 30322, Georgia.
| |
Collapse
|
34
|
Mechanisms of TDP-43 Proteinopathy Onset and Propagation. Int J Mol Sci 2021; 22:ijms22116004. [PMID: 34199367 PMCID: PMC8199531 DOI: 10.3390/ijms22116004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 01/21/2023] Open
Abstract
TDP-43 is an RNA-binding protein that has been robustly linked to the pathogenesis of a number of neurodegenerative disorders, including amyotrophic lateral sclerosis and frontotemporal dementia. While mutations in the TARDBP gene that codes for the protein have been identified as causing disease in a small subset of patients, TDP-43 proteinopathy is present in the majority of cases regardless of mutation status. This raises key questions regarding the mechanisms by which TDP-43 proteinopathy arises and spreads throughout the central nervous system. Numerous studies have explored the role of a variety of cellular functions on the disease process, and nucleocytoplasmic transport, protein homeostasis, RNA interactions and cellular stress have all risen to the forefront as possible contributors to the initiation of TDP-43 pathogenesis. There is also a small but growing body of evidence suggesting that aggregation-prone TDP-43 can recruit physiological TDP-43, and be transmitted intercellularly, providing a mechanism whereby small-scale proteinopathy spreads from cell to cell, reflecting the spread of clinical symptoms observed in patients. This review will discuss the potential role of the aforementioned cellular functions in TDP-43 pathogenesis, and explore how aberrant pathology may spread, and result in a feed-forward cascade effect, leading to robust TDP-43 proteinopathy and disease.
Collapse
|
35
|
Chong ZX, Yeap SK, Ho WY. Transfection types, methods and strategies: a technical review. PeerJ 2021; 9:e11165. [PMID: 33976969 PMCID: PMC8067914 DOI: 10.7717/peerj.11165] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 03/05/2021] [Indexed: 12/17/2022] Open
Abstract
Transfection is a modern and powerful method used to insert foreign nucleic acids into eukaryotic cells. The ability to modify host cells' genetic content enables the broad application of this process in studying normal cellular processes, disease molecular mechanism and gene therapeutic effect. In this review, we summarized and compared the findings from various reported literature on the characteristics, strengths, and limitations of various transfection methods, type of transfected nucleic acids, transfection controls and approaches to assess transfection efficiency. With the vast choices of approaches available, we hope that this review will help researchers, especially those new to the field, in their decision making over the transfection protocol or strategy appropriate for their experimental aims.
Collapse
Affiliation(s)
- Zhi Xiong Chong
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| | - Wan Yong Ho
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| |
Collapse
|
36
|
Pathway from TDP-43-Related Pathology to Neuronal Dysfunction in Amyotrophic Lateral Sclerosis and Frontotemporal Lobar Degeneration. Int J Mol Sci 2021; 22:ijms22083843. [PMID: 33917673 PMCID: PMC8068029 DOI: 10.3390/ijms22083843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 12/15/2022] Open
Abstract
Transactivation response DNA binding protein 43 kDa (TDP-43) is known to be a pathologic protein in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). TDP-43 is normally a nuclear protein, but affected neurons of ALS or FTLD patients exhibit mislocalization of nuclear TDP-43 and cytoplasmic inclusions. Basic studies have suggested gain-of-neurotoxicity of aggregated TDP-43 or loss-of-function of intrinsic, nuclear TDP-43. It has also been hypothesized that the aggregated TDP-43 functions as a propagation seed of TDP-43 pathology. However, a mechanistic discrepancy between the TDP-43 pathology and neuronal dysfunctions remains. This article aims to review the observations of TDP-43 pathology in autopsied ALS and FTLD patients and address pathways of neuronal dysfunction related to the neuropathological findings, focusing on impaired clearance of TDP-43 and synaptic alterations in TDP-43-related ALS and FTLD. The former may be relevant to intraneuronal aggregation of TDP-43 and exocytosis of propagation seeds, whereas the latter may be related to neuronal dysfunction induced by TDP-43 pathology. Successful strategies of disease-modifying therapy might arise from further investigation of these subcellular alterations.
Collapse
|
37
|
Auzmendi-Iriarte J, Matheu A. Impact of Chaperone-Mediated Autophagy in Brain Aging: Neurodegenerative Diseases and Glioblastoma. Front Aging Neurosci 2021; 12:630743. [PMID: 33633561 PMCID: PMC7901968 DOI: 10.3389/fnagi.2020.630743] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
Brain aging is characterized by a time-dependent decline of tissue integrity and function, and it is a major risk for neurodegenerative diseases and brain cancer. Chaperone-mediated autophagy (CMA) is a selective form of autophagy specialized in protein degradation, which is based on the individual translocation of a cargo protein through the lysosomal membrane. Regulation of processes such as proteostasis, cellular energetics, or immune system activity has been associated with CMA, indicating its pivotal role in tissue homeostasis. Since first studies associating Parkinson’s disease (PD) to CMA dysfunction, increasing evidence points out that CMA is altered in both physiological and pathological brain aging. In this review article, we summarize the current knowledge regarding the impact of CMA during aging in brain physiopathology, highlighting the role of CMA in neurodegenerative diseases and glioblastoma, the most common and aggressive brain tumor in adults.
Collapse
Affiliation(s)
| | - Ander Matheu
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain.,CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), Madrid, Spain.,IKERBASQUE, Basque Foundation, Bilbao, Spain
| |
Collapse
|
38
|
Liao Z, Wang B, Liu W, Xu Q, Hou L, Song J, Guo Q, Li N. Dysfunction of chaperone-mediated autophagy in human diseases. Mol Cell Biochem 2021; 476:1439-1454. [PMID: 33389491 DOI: 10.1007/s11010-020-04006-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/24/2020] [Indexed: 12/19/2022]
Abstract
Chaperone-mediated autophagy (CMA), one of the degradation pathways of proteins, is highly selective to substrates that have KFERQ-like motif. In this process, the substrate proteins are first recognized by the chaperone protein, heat shock cognate protein 70 (Hsc70), then delivered to lysosomal membrane surface where the single-span lysosomal receptor, lysosome-associated membrane protein type 2A (LAMP2A) can bind to the substrate proteins to form a 700 kDa protein complex that allows them to translocate into the lysosome lumen to be degraded by the hydrolytic enzymes. This degradation pathway mediated by CMA plays an important role in regulating glucose and lipid metabolism, transcription, DNA reparation, cell cycle, cellular response to stress and consequently, regulating many aging-associated human diseases, such as neurodegeneration, cancer and metabolic disorders. In this review, we provide an overview of current research on the functional roles of CMA primarily from a perspective of understanding and treating human diseases and also discuss its potential applications for diseases.
Collapse
Affiliation(s)
- Zhaozhong Liao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Bin Wang
- College of Electronic Information, Micro-Nano Technology College, Qingdao University, Qingdao, China
| | - Wenjing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qian Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Lin Hou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jinlian Song
- Department of Laboratory, The Affiliated Women and Children's Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Qingming Guo
- Biotherapy Center, Clinical Laboratory, Qingdao Central Hospital, The Second Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ning Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
39
|
Pang W, Hu F. Cellular and physiological functions of C9ORF72 and implications for ALS/FTD. J Neurochem 2020; 157:334-350. [PMID: 33259633 DOI: 10.1111/jnc.15255] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/27/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022]
Abstract
The hexanucleotide repeat expansion (HRE) in the C9ORF72 gene is the main cause of two tightly linked neurodegenerative diseases, amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). HRE leads to not only a gain of toxicity from RNA repeats and dipeptide repeats but also reduced levels of C9ORF72 protein. However, the cellular and physiological functions of C9ORF72 were unknown until recently. Through proteomic analysis, Smith-Magenis chromosome regions 8 (SMCR8) and WD repeat-containing protein (WDR41) were identified as binding partners of C9ORF72. These three proteins have been shown to form a tight complex, but the exact functions of this complex remain to be characterized. Both C9ORF72 and SMCR8 contain a DENN domain, which has been shown to regulate the activities of small GTPases. The C9ORF72 complex has been implicated in many cellular processes, including vesicle trafficking, lysosome homeostasis, mTORC1 signaling , and autophagy. C9ORF72 deficiency in mice results in exaggerated inflammatory responses and human patients with C9ORF72 mutations have neuroinflammation phenotype. Recent studies indicate that C9ORF72 regulates trafficking and lysosomal degradation of inflammatory mediators, including toll-like receptors (TLRs) and STING, to affect inflammatory outputs. Further exploration of cellular and physiological functions of C9ORF72 will help dissect the pathological mechanism of ALS/FTD caused by C9ORF72 mutations.
Collapse
Affiliation(s)
- Weilun Pang
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Fenghua Hu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
40
|
Huang C, Yan S, Zhang Z. Maintaining the balance of TDP-43, mitochondria, and autophagy: a promising therapeutic strategy for neurodegenerative diseases. Transl Neurodegener 2020; 9:40. [PMID: 33126923 PMCID: PMC7597011 DOI: 10.1186/s40035-020-00219-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are the energy center of cell operations and are involved in physiological functions and maintenance of metabolic balance and homeostasis in the body. Alterations of mitochondrial function are associated with a variety of degenerative and acute diseases. As mitochondria age in cells, they gradually become inefficient and potentially toxic. Acute injury can trigger the permeability of mitochondrial membranes, which can lead to apoptosis or necrosis. Transactive response DNA-binding protein 43 kDa (TDP-43) is a protein widely present in cells. It can bind to RNA, regulate a variety of RNA processes, and play a role in the formation of multi-protein/RNA complexes. Thus, the normal physiological functions of TDP-43 are particularly important for cell survival. Normal TDP-43 is located in various subcellular structures including mitochondria, mitochondrial-associated membrane, RNA particles and stress granules to regulate the endoplasmic reticulum–mitochondrial binding, mitochondrial protein translation, and mRNA transport and translation. Importantly, TDP-43 is associated with a variety of neurodegenerative diseases, including amyotrophic lateral sclerosis, frontotemporal dementia and Alzheimer's disease, which are characterized by abnormal phosphorylation, ubiquitination, lysis or nuclear depletion of TDP-43 in neurons and glial cells. Although the pathogenesis of TDP-43 proteinopathy remains unknown, the presence of pathological TDP-43 inside or outside of mitochondria and the functional involvement of TDP-43 in the regulation of mitochondrial morphology, transport, and function suggest that mitochondria are associated with TDP-43-related diseases. Autophagy is a basic physiological process that maintains the homeostasis of cells, including targeted clearance of abnormally aggregated proteins and damaged organelles in the cytoplasm; therefore, it is considered protective against neurodegenerative diseases. However, the combination of abnormal TDP-43 aggregation, mitochondrial dysfunction, and insufficient autophagy can lead to a variety of aging-related pathologies. In this review, we describe the current knowledge on the associations of mitochondria with TDP-43 and the role of autophagy in the clearance of abnormally aggregated TDP-43 and dysfunctional mitochondria. Finally, we discuss a novel approach for neurodegenerative treatment based on the knowledge.
Collapse
Affiliation(s)
- Chunhui Huang
- Institute of New Drug Research, Guangdong Province Key Laboratory of Pharmacodynamic, Constituents of Traditional Chinese Medicine and New Drug Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Sen Yan
- Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
| | - Zaijun Zhang
- Institute of New Drug Research, Guangdong Province Key Laboratory of Pharmacodynamic, Constituents of Traditional Chinese Medicine and New Drug Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
41
|
Tittelmeier J, Nachman E, Nussbaum-Krammer C. Molecular Chaperones: A Double-Edged Sword in Neurodegenerative Diseases. Front Aging Neurosci 2020; 12:581374. [PMID: 33132902 PMCID: PMC7572858 DOI: 10.3389/fnagi.2020.581374] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/09/2020] [Indexed: 12/16/2022] Open
Abstract
Aberrant accumulation of misfolded proteins into amyloid deposits is a hallmark in many age-related neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS). Pathological inclusions and the associated toxicity appear to spread through the nervous system in a characteristic pattern during the disease. This has been attributed to a prion-like behavior of amyloid-type aggregates, which involves self-replication of the pathological conformation, intercellular transfer, and the subsequent seeding of native forms of the same protein in the neighboring cell. Molecular chaperones play a major role in maintaining cellular proteostasis by assisting the (re)-folding of cellular proteins to ensure their function or by promoting the degradation of terminally misfolded proteins to prevent damage. With increasing age, however, the capacity of this proteostasis network tends to decrease, which enables the manifestation of neurodegenerative diseases. Recently, there has been a plethora of studies investigating how and when chaperones interact with disease-related proteins, which have advanced our understanding of the role of chaperones in protein misfolding diseases. This review article focuses on the steps of prion-like propagation from initial misfolding and self-templated replication to intercellular spreading and discusses the influence that chaperones have on these various steps, highlighting both the positive and adverse consequences chaperone action can have. Understanding how chaperones alleviate and aggravate disease progression is vital for the development of therapeutic strategies to combat these debilitating diseases.
Collapse
Affiliation(s)
- Jessica Tittelmeier
- German Cancer Research Center (DKFZ), Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Eliana Nachman
- German Cancer Research Center (DKFZ), Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Carmen Nussbaum-Krammer
- German Cancer Research Center (DKFZ), Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
42
|
Fernandes N, Nero L, Lyons SM, Ivanov P, Mittelmeier TM, Bolger TA, Buchan JR. Stress Granule Assembly Can Facilitate but Is Not Required for TDP-43 Cytoplasmic Aggregation. Biomolecules 2020; 10:biom10101367. [PMID: 32992901 PMCID: PMC7650667 DOI: 10.3390/biom10101367] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 09/21/2020] [Indexed: 01/08/2023] Open
Abstract
Stress granules (SGs) are hypothesized to facilitate TAR DNA-binding protein 43 (TDP-43) cytoplasmic mislocalization and aggregation, which may underly amyotrophic lateral sclerosis pathology. However, much data for this hypothesis is indirect. Additionally, whether P-bodies (PBs; related mRNA-protein granules) affect TDP-43 phenotypes is unclear. Here, we determine that induction of TDP-43 expression in yeast results in the accumulation of SG-like foci that in >90% of cases become the sites where TDP-43 cytoplasmic foci first appear. Later, TDP-43 foci associate less with SGs and more with PBs, though independent TDP-43 foci also accumulate. However, depleting or over-expressing yeast SG and PB proteins reveals no consistent trend between SG or PB assembly and TDP-43 foci formation, toxicity or protein abundance. In human cells, immunostaining endogenous TDP-43 with different TDP-43 antibodies reveals distinct localization and aggregation behaviors. Following acute arsenite stress, all phospho-TDP-43 foci colocalize with SGs. Interestingly, in SG assembly mutant cells (G3BP1/2ΔΔ), TDP-43 is enriched in nucleoli. Finally, formation of TDP-43 cytoplasmic foci following low-dose chronic arsenite stress is impaired, but not completely blocked, in G3BP1/2ΔΔ cells. Collectively, our data suggest that SG and PB assembly may facilitate TDP-43 cytoplasmic localization and aggregation but are likely not essential for these events.
Collapse
Affiliation(s)
- Nikita Fernandes
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA; (N.F.); (L.N.); (T.M.M.); (T.A.B.)
| | - Luke Nero
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA; (N.F.); (L.N.); (T.M.M.); (T.A.B.)
| | - Shawn M. Lyons
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; (S.M.L.); (P.I.)
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Pavel Ivanov
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; (S.M.L.); (P.I.)
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Telsa M. Mittelmeier
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA; (N.F.); (L.N.); (T.M.M.); (T.A.B.)
| | - Timothy A. Bolger
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA; (N.F.); (L.N.); (T.M.M.); (T.A.B.)
| | - J. Ross Buchan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA; (N.F.); (L.N.); (T.M.M.); (T.A.B.)
- Correspondence: ; Tel.: +1-520-626-1881
| |
Collapse
|
43
|
Cristofani R, Crippa V, Cicardi ME, Tedesco B, Ferrari V, Chierichetti M, Casarotto E, Piccolella M, Messi E, Galbiati M, Rusmini P, Poletti A. A Crucial Role for the Protein Quality Control System in Motor Neuron Diseases. Front Aging Neurosci 2020; 12:191. [PMID: 32792938 PMCID: PMC7385251 DOI: 10.3389/fnagi.2020.00191] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022] Open
Abstract
Motor neuron diseases (MNDs) are fatal diseases characterized by loss of motor neurons in the brain cortex, in the bulbar region, and/or in the anterior horns of the spinal cord. While generally sporadic, inherited forms linked to mutant genes encoding altered RNA/protein products have also been described. Several different mechanisms have been found altered or dysfunctional in MNDs, like the protein quality control (PQC) system. In this review, we will discuss how the PQC system is affected in two MNDs—spinal and bulbar muscular atrophy (SBMA) and amyotrophic lateral sclerosis (ALS)—and how this affects the clearance of aberrantly folded proteins, which accumulate in motor neurons, inducing dysfunctions and their death. In addition, we will discuss how the PQC system can be targeted to restore proper cell function, enhancing the survival of affected cells in MNDs.
Collapse
Affiliation(s)
- Riccardo Cristofani
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Valeria Crippa
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Maria Elena Cicardi
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy.,Department of Neuroscience, Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Barbara Tedesco
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Veronica Ferrari
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Marta Chierichetti
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Elena Casarotto
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Margherita Piccolella
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Elio Messi
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Mariarita Galbiati
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Paola Rusmini
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Angelo Poletti
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy.,Center of Excellence on Neurodegenerative Diseases (CEND), Università degli Studi di Milano, Milan, Italy
| |
Collapse
|