1
|
Lu J, Rao SR, Knowles H, Zhan H, Gamez B, Platt E, Frost LR, Allen TJ, Marshall G, Huber KV, Bauer LG, Vendrell I, Kessler B, Horne A, Reid IR, Bountra C, Kirkland JL, Khosla S, Hal Ebetino F, Roldan E, Russell RGG, Edwards JR. Bisphosphonates Trigger Anti-Ageing Effects Across Multiple Cell Types and Protect Against Senescence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.25.645228. [PMID: 40196558 PMCID: PMC11974835 DOI: 10.1101/2025.03.25.645228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Bisphosphonates (BPs) have been the major class of medicines used to treat disorders of excessive bone loss for over five decades. Recently it has been recognized that BPs may also have additional significant beneficial extra-skeletal effects. These include a reduction of all-cause mortality and of conditions commonly linked to ageing, such as cancer and cardiovascular disease. Here we show that bisphosphonates co-localize with lysosomal and endosomal organelles in non-skeletal cells and stimulate cell growth at low doses. In vivo spatial transcriptomic analysis revealed differentially expressed senescence markers in multiple organs of aged BP-treated mice, and a shift in cellular composition toward those of young counterparts. Similarly, a 5000-plex plasma proteome analysis from osteopenic patients before and after BP-treatment showed significant alterations in ~400 proteins including GTPase regulators and markers of senescence, autophagy, apoptosis, and inflammatory responses. Furthermore, treatment with BPs protected against the onset of senescence in vitro. Proteome-wide target deconvolution using 2D thermal profiling revealed novel BP-binding targets (PHB2, ASAH1), and combined with RNA- and ATAC-seq of BP-treated cells and patient data, suggests downstream regulation of the MEF2A transcription factor within the heart. Collectively, these results indicate how BPs may beneficially modify the human plasma proteome, and directly impact multiple non-skeletal cell types through previously unidentified proteins, thereby influencing a range of pathways related to senescence and ageing.
Collapse
Affiliation(s)
- Jinsen Lu
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Srinivasa Rao Rao
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Helen Knowles
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Haoqun Zhan
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Beatriz Gamez
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | | | | | | | | | - Kilian V.M. Huber
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford UK
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ludwig G. Bauer
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford UK
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Iolanda Vendrell
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford UK
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Benedikt Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford UK
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Anne Horne
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, NZ
| | - Ian R Reid
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, NZ
| | - Chas Bountra
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - James L Kirkland
- Center for Advanced Gerotherapeutics, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Sundeep Khosla
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - F Hal Ebetino
- BioVinc LLC, Pasadena, CA, US; Chemistry Dept, University of Rochester, Rochester, NY, USA
| | | | - R Graham G Russell
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- Mellanby Centre for Bone Research, Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield Medical School, Sheffield, UK
| | - James R Edwards
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Vincent PFY, Young ED, Edge ASB, Glowatzki E. Auditory hair cells and spiral ganglion neurons regenerate synapses with refined release properties in vitro. Proc Natl Acad Sci U S A 2024; 121:e2315599121. [PMID: 39058581 PMCID: PMC11294990 DOI: 10.1073/pnas.2315599121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 06/12/2024] [Indexed: 07/28/2024] Open
Abstract
Ribbon synapses between inner hair cells (IHCs) and type I spiral ganglion neurons (SGNs) in the inner ear are damaged by noise trauma and with aging, causing "synaptopathy" and hearing loss. Cocultures of neonatal denervated organs of Corti and newly introduced SGNs have been developed to find strategies for improving IHC synapse regeneration, but evidence of the physiological normality of regenerated synapses is missing. This study utilizes IHC optogenetic stimulation and SGN recordings, showing that, when P3-5 denervated organs of Corti are cocultured with SGNs, newly formed IHC/SGN synapses are indeed functional, exhibiting glutamatergic excitatory postsynaptic currents. When using older organs of Corti at P10-11, synaptic activity probed by deconvolution showed more mature release properties, closer to the specialized mode of IHC synaptic transmission crucial for coding the sound signal. This functional assessment of newly formed IHC synapses developed here, provides a powerful tool for testing approaches to improve synapse regeneration.
Collapse
Affiliation(s)
- Philippe F. Y. Vincent
- The Center for Hearing and Balance, The Johns Hopkins School of Medicine, Baltimore, MD21205
- Department of Otolaryngology Head and Neck Surgery, The Johns Hopkins School of Medicine, Baltimore, MD21205
| | - Eric D. Young
- The Center for Hearing and Balance, The Johns Hopkins School of Medicine, Baltimore, MD21205
- Department of Otolaryngology Head and Neck Surgery, The Johns Hopkins School of Medicine, Baltimore, MD21205
- Department of Neuroscience, The Johns Hopkins School of Medicine, Baltimore, MD21205
- Department of Biomedical Engineering, The Johns Hopkins School of Medicine, Baltimore, MD21205
| | - Albert S. B. Edge
- Department of Otolaryngology, Harvard Medical School, Boston, MA02115
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, MA02114
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA02115
- Harvard Stem Cell Institute, Cambridge, MA02139
| | - Elisabeth Glowatzki
- The Center for Hearing and Balance, The Johns Hopkins School of Medicine, Baltimore, MD21205
- Department of Otolaryngology Head and Neck Surgery, The Johns Hopkins School of Medicine, Baltimore, MD21205
- Department of Neuroscience, The Johns Hopkins School of Medicine, Baltimore, MD21205
| |
Collapse
|
3
|
Zhao HB, Liu LM, Mei L, Quinonez AT, Roberts RA, Lu X. Prevention and treatment of noise-induced hearing loss and cochlear synapse degeneration by potassium channel blockers in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597382. [PMID: 38895254 PMCID: PMC11185602 DOI: 10.1101/2024.06.04.597382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Noise can induce hearing loss. In particularly, noise can induce cochlear synapse degeneration leading to hidden hearing loss, which is the most common type of hearing disorders in the clinic. Currently, there is no pharmacological treatment, particularly, no post-exposure (i.e., therapeutic) treatment available in the clinic. Here, we report that systematic administration of K + channel blockers before or after noise exposure could significantly attenuate NIHL and synapse degeneration. After systematic administration of a general K-channel blocker tetraethylammonium (TEA), the elevation of auditory brainstem response (ABR) thresholds after noise-exposure significantly reduced, and the active cochlear mechanics significantly improved. The therapeutic effect was further improved as the post-exposure administration time extending to 3 days. BK channel is a predominant K + channel in the inner hair cells. Systematic administration of a BK channel blocker GAL-021 after noise exposure also ameliorated hearing loss and improved hearing behavioral responses tested by acoustic startle response (ASR). Finally, both TEA and GAL-021 significantly attenuated noise-induced ribbon synapse degeneration. These data demonstrate that K + -channel blockers can prevent and treat NIHL and cochlear synapse degeneration. Our finding may aid in developing therapeutic strategies for post-exposure treatment of NIHL and synapse degeneration. Significance Statement Noise is a common deafness factor affecting more 100 million people in the United States. So far, there is no pharmacological treatment available. We show here that administration of K + channel blockers after noise exposure could attenuate noise-induced hearing loss and synapse degeneration, and improved behavioral responses. This is the first time to real the K + channel blockers that could treat noise-induced hearing loss and cochlear synaptopathy after noise exposure.
Collapse
|
4
|
Yancey KL, Patro A, Smetak M, Perkins EL, Isaacson B, Bennett ML, O'Malley M, Haynes DS, Hunter JB. Evaluating calcium channel blockers and bisphosphonates as otoprotective agents in cochlear implantation hearing preservation candidates. Cochlear Implants Int 2024; 25:131-139. [PMID: 38738388 DOI: 10.1080/14670100.2024.2338003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
OBJECTIVES Evaluate potential effects of calcium channel blockers (CCB) and bisphosphonates (BP) on residual hearing following cochlear implantation. METHODS Medications of 303 adult hearing preservation (HP) candidates (low frequency pure tone average [LFPTA] of 125, 250, and 500 Hz ≤80 dB HL) were reviewed. Postimplantation LFPTA of patients taking CCBs and BPs were compared to controls matched by age and preimplantation LFPTA. RESULTS Twenty-six HP candidates were taking a CCB (N = 14) or bisphosphonate (N = 12) at implantation. Median follow-up was 1.37 years (range 0.22-4.64y). Among subjects with initial HP, 29% (N = 2 of 7) CCB users compared to 50% (N = 2 of 4) controls subsequently lost residual hearing 3-6 months later (OR = 0.40, 95% CI = 0.04-4.32, p = 0.58). None of the four BP patients with initial HP experienced delayed loss compared to 50% (N = 2 of 4) controls with initial HP (OR = 0.00, 95% CI = 0.00-1.95, P = 0.43). Two CCB and one BP patients improved to a LFPTA <80 dB HL following initial unaided thresholds that suggested loss of residual hearing. DISCUSSION There were no significant differences in the odds of delayed loss of residual hearing with CCBs or BPs. CONCLUSION Further investigation into potential otoprotective adjuvants for maintaining residual hearing following initial successful hearing preservation is warranted, with larger cohorts and additional CCB/BP agents.
Collapse
Affiliation(s)
- Kristen L Yancey
- Department of Otolaryngology-Head and Neck Surgery, Weill Cornell Medical Center/New York Presbyterian Hospital, New York, NY, USA
| | - Ankita Patro
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Miriam Smetak
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elizabeth L Perkins
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Brandon Isaacson
- Department of Otolaryngology-Head and Neck Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Marc L Bennett
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Matthew O'Malley
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David S Haynes
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jacob B Hunter
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| |
Collapse
|
5
|
Vincent PF, Young ED, Edge AS, Glowatzki E. Auditory Hair Cells and Spiral Ganglion Neurons Regenerate Synapses with Refined Release Properties In Vitro. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.05.561095. [PMID: 38076928 PMCID: PMC10705289 DOI: 10.1101/2023.10.05.561095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Ribbon synapses between inner hair cells (IHCs) and type I spiral ganglion neurons (SGNs) in the inner ear are damaged by noise trauma and with aging, causing 'synaptopathy 'and hearing loss. Co-cultures of neonatal denervated organs of Corti and newly introduced SGNs have been developed to find strategies for improving IHC synapse regeneration, but evidence of the physiological normality of regenerated synapses is missing. This study utilizes IHC optogenetic stimulation and SGN recordings, showing that newly formed IHC synapses are indeed functional, exhibiting glutamatergic excitatory postsynaptic currents. When older organs of Corti were plated, synaptic activity probed by deconvolution, showed more mature release properties, closer to the highly specialized mode of IHC synaptic transmission that is crucial for coding the sound signal. This newly developed functional assessment of regenerated IHC synapses provides a powerful tool for testing approaches to improve synapse regeneration.
Collapse
Affiliation(s)
- Philippe F.Y. Vincent
- The Center for Hearing and Balance, The Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Otolaryngology Head and Neck Surgery, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Eric D. Young
- The Center for Hearing and Balance, The Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Otolaryngology Head and Neck Surgery, The Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Neuroscience, The Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Biomedical Engineering, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Albert S.B. Edge
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, USA
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts, USA
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Elisabeth Glowatzki
- The Center for Hearing and Balance, The Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Otolaryngology Head and Neck Surgery, The Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Neuroscience, The Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
6
|
Fujita T, Seist R, Kao SY, Soares V, Panano L, Khetani RS, Landegger LD, Batts S, Stankovic KM. miR-431 secreted by human vestibular schwannomas increases the mammalian inner ear's vulnerability to noise trauma. Front Neurol 2023; 14:1268359. [PMID: 37885485 PMCID: PMC10598552 DOI: 10.3389/fneur.2023.1268359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023] Open
Abstract
Introduction Vestibular schwannoma (VS) is an intracranial tumor that arises on the vestibular branch of cranial nerve VIII and typically presents with sensorineural hearing loss (SNHL). The mechanisms of this SNHL are postulated to involve alterations in the inner ear's microenvironment mediated by the genetic cargo of VS-secreted extracellular vesicles (EVs). We aimed to identify the EV cargo associated with poor hearing and determine whether its delivery caused hearing loss and cochlear damage in a mouse model in vivo. Methods VS tissue was collected from routinely resected tumors of patients with good (VS-GH) or poor (VS-PH) pre-surgical hearing measured via pure-tone average and word recognition scores. Next-generation sequencing was performed on RNA isolated from cultured primary human VS cells and EVs from VS-conditioned media, stratified by patients' hearing ability. microRNA expression levels were compared between VS-PH and VS-GH samples to identify differentially expressed candidates for packaging into a synthetic adeno-associated viral vector (Anc80L65). Viral vectors containing candidate microRNA were infused to the semicircular canals of mice to evaluate the effects on hearing, including after noise exposure. Results Differentially expressed microRNAs included hsa-miR-431-5p (enriched in VS-PH) and hsa-miR-192-5p (enriched in VS-GH). Newborn mice receiving intracochlear injection of viral vectors over-expressing hsa-miR-431-GFP, hsa-miR-192-GFP, or GFP only (control) had similar hearing 6 weeks post-injection. However, after acoustic trauma, the miR-431 group displayed significantly worse hearing, and greater loss of synaptic ribbons per inner hair cell in the acoustically traumatized cochlear region than the control group. Conclusion Our results suggest that miR-431 contributes to VS-associated hearing loss following cochlear stress. Further investigation is needed to determine whether miR-431 is a potential therapeutic target for SNHL.
Collapse
Affiliation(s)
- Takeshi Fujita
- Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, United States
| | - Richard Seist
- Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, United States
| | - Shyan-Yuan Kao
- Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, United States
| | - Vitor Soares
- Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, United States
| | - Lorena Panano
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Radhika S. Khetani
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Lukas D. Landegger
- Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, United States
| | - Shelley Batts
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Konstantina M. Stankovic
- Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, United States
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, United States
| |
Collapse
|
7
|
Kennedy CL, Shuster B, Amanipour R, Milon B, Patel P, Elkon R, Hertzano R. Metformin Protects Against Noise-Induced Hearing Loss in Male Mice. Otol Neurotol 2023; 44:956-963. [PMID: 37641232 PMCID: PMC10510802 DOI: 10.1097/mao.0000000000004002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
HYPOTHESIS Metformin treatment will protect mice from noise-induced hearing loss (NIHL). BACKGROUND We recently identified metformin as the top-ranking, Food and Drug Administration-approved drug to counter inner ear molecular changes induced by permanent threshold shift-inducing noise. This study is designed to functionally test metformin as a potential otoprotective drug against NIHL. METHODS Male and female B6CBAF1/J mice were obtained at 7 to 8 weeks of age. A cohort of the females underwent ovariectomy to simulate menopause and eliminate the effect of ovarian-derived estrogens. At 10 weeks of age, mice underwent a permanent threshold shift-inducing noise exposure (102.5 or 105 dB SPL, 8-16 kHz, 2 h). Auditory brainstem response (ABR) thresholds were obtained at baseline, 24 h after noise exposure, and 1 week after noise exposure. Mice were administered metformin (200 mg/kg/d) or a saline control in their drinking water after the baseline ABR and for the remainder of the study. After the 1-week ABR, mice were euthanized and cochlear tissue was analyzed. RESULTS Metformin treatment reduced the 1-week ABR threshold shift at 16 kHz ( p < 0.01; d = 1.20) and 24 kHz ( p < 0.01; d = 1.15) as well as outer hair cell loss in the 32-45.5 kHz range ( p < 0.0001; d = 2.37) in male mice. In contrast, metformin treatment did not prevent hearing loss or outer hair cell loss in the intact or ovariectomized female mice. CONCLUSIONS Metformin exhibits sex-dependent efficacy as a therapeutic for NIHL. These data compel continued investigation into metformin's protective effects and demonstrate the importance of evaluating the therapeutic efficacy of drugs in subjects of both sexes.
Collapse
Affiliation(s)
- Catherine L. Kennedy
- Department of Otorhinolaryngology–Head and Neck Surgery, University of Maryland School of Medicine, Baltimore
| | - Benjamin Shuster
- Neurotology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - Reza Amanipour
- Neurotology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - Beatrice Milon
- Neurotology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - Priya Patel
- Department of Otorhinolaryngology–Head and Neck Surgery, University of Maryland School of Medicine, Baltimore
| | - Ran Elkon
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ronna Hertzano
- Department of Otorhinolaryngology–Head and Neck Surgery, University of Maryland School of Medicine, Baltimore
- Neurotology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Bertagnoli LE, Seist R, Batts S, Stankovic KM. Potential Ototoxicity of Insulin-like Growth Factor 1 Receptor Signaling Inhibitors: An In Silico Drug Repurposing Study of the Regenerating Cochlear Neuron Transcriptome. J Clin Med 2023; 12:jcm12103485. [PMID: 37240591 DOI: 10.3390/jcm12103485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Spiral ganglion neurons (SGNs) connect cochlear hair cells with higher auditory pathways and their degeneration due to drug toxicity (ototoxicity) contributes to hearing loss. This study aimed to identify drug classes that are negatively correlated with the transcriptome of regenerating SGNs. Human orthologs of differentially expressed genes within the regenerating neonatal mouse SGN transcriptome were entered into CMap and the LINCS unified environment and perturbation-driven gene expression was analyzed. The CMap connectivity scores ranged from 100 (positive correlation) to -100 (negative correlation). Insulin-like growth factor 1/receptor (IGF-1/R) inhibitors were highly negatively correlated with the regenerating SGN transcriptome (connectivity score: -98.87). A systematic literature review of clinical trials and observational studies reporting otologic adverse events (AEs) with IGF-1/R inhibitors identified 108 reports (6141 treated patients). Overall, 16.9% of the treated patients experienced any otologic AE; the rate was highest for teprotumumab (42.9%). In a meta-analysis of two randomized placebo-controlled trials of teprotumumab, there was a significantly higher risk of hearing-related (pooled Peto OR [95% CI]: 7.95 [1.57, 40.17]) and of any otologic AEs (3.56 [1.35, 9.43]) with teprotumumab vs. a placebo, whether or not dizziness/vertigo AEs were included. These results call for close audiological monitoring during IGF-1-targeted treatment, with prompt referral to an otolaryngologist should otologic AEs develop.
Collapse
Affiliation(s)
- Lino E Bertagnoli
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Paracelsus Medical University, 5020 Salzburg, Austria
| | - Richard Seist
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Paracelsus Medical University, 5020 Salzburg, Austria
| | - Shelley Batts
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Konstantina M Stankovic
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
9
|
Smith-Cortinez N, Tan AK, Stokroos RJ, Versnel H, Straatman LV. Regeneration of Hair Cells from Endogenous Otic Progenitors in the Adult Mammalian Cochlea: Understanding Its Origins and Future Directions. Int J Mol Sci 2023; 24:ijms24097840. [PMID: 37175547 PMCID: PMC10177935 DOI: 10.3390/ijms24097840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Sensorineural hearing loss is caused by damage to sensory hair cells and/or spiral ganglion neurons. In non-mammalian species, hair cell regeneration after damage is observed, even in adulthood. Although the neonatal mammalian cochlea carries regenerative potential, the adult cochlea cannot regenerate lost hair cells. The survival of supporting cells with regenerative potential after cochlear trauma in adults is promising for promoting hair cell regeneration through therapeutic approaches. Targeting these cells by manipulating key signaling pathways that control mammalian cochlear development and non-mammalian hair cell regeneration could lead to regeneration of hair cells in the mammalian cochlea. This review discusses the pathways involved in the development of the cochlea and the impact that trauma has on the regenerative capacity of the endogenous progenitor cells. Furthermore, it discusses the effects of manipulating key signaling pathways targeting supporting cells with progenitor potential to promote hair cell regeneration and translates these findings to the human situation. To improve hearing recovery after hearing loss in adults, we propose a combined approach targeting (1) the endogenous progenitor cells by manipulating signaling pathways (Wnt, Notch, Shh, FGF and BMP/TGFβ signaling pathways), (2) by manipulating epigenetic control, and (3) by applying neurotrophic treatments to promote reinnervation.
Collapse
Affiliation(s)
- Natalia Smith-Cortinez
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - A Katherine Tan
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Robert J Stokroos
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Huib Versnel
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Louise V Straatman
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
10
|
Le Prell CG, Clavier OH, Bao J. Noise-induced hearing disorders: Clinical and investigational tools. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:711. [PMID: 36732240 PMCID: PMC9889121 DOI: 10.1121/10.0017002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
A series of articles discussing advanced diagnostics that can be used to assess noise injury and associated noise-induced hearing disorders (NIHD) was developed under the umbrella of the United States Department of Defense Hearing Center of Excellence Pharmaceutical Interventions for Hearing Loss working group. The overarching goals of the current series were to provide insight into (1) well-established and more recently developed metrics that are sensitive for detection of cochlear pathology or diagnosis of NIHD, and (2) the tools that are available for characterizing individual noise hazard as personal exposure will vary based on distance to the sound source and placement of hearing protection devices. In addition to discussing the utility of advanced diagnostics in patient care settings, the current articles discuss the selection of outcomes and end points that can be considered for use in clinical trials investigating hearing loss prevention and hearing rehabilitation.
Collapse
Affiliation(s)
- Colleen G Le Prell
- Department of Speech, Language, and Hearing Science, University of Texas at Dallas, Richardson, Texas 75080, USA
| | | | - Jianxin Bao
- Gateway Biotechnology Inc., St. Louis, Missouri 63132, USA
| |
Collapse
|
11
|
Toward Personalized Diagnosis and Therapy for Hearing Loss: Insights From Cochlear Implants. Otol Neurotol 2022; 43:e903-e909. [PMID: 35970169 DOI: 10.1097/mao.0000000000003624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT Sensorineural hearing loss (SNHL) is the most common sensory deficit, disabling nearly half a billion people worldwide. The cochlear implant (CI) has transformed the treatment of patients with SNHL, having restored hearing to more than 800,000 people. The success of CIs has inspired multidisciplinary efforts to address the unmet need for personalized, cellular-level diagnosis, and treatment of patients with SNHL. Current limitations include an inability to safely and accurately image at high resolution and biopsy the inner ear, precluding the use of key structural and molecular information during diagnostic and treatment decisions. Furthermore, there remains a lack of pharmacological therapies for hearing loss, which can partially be attributed to challenges associated with new drug development. We highlight advances in diagnostic and therapeutic strategies for SNHL that will help accelerate the push toward precision medicine. In addition, we discuss technological improvements for the CI that will further enhance its functionality for future patients. This report highlights work that was originally presented by Dr. Stankovic as part of the Dr. John Niparko Memorial Lecture during the 2021 American Cochlear Implant Alliance annual meeting.
Collapse
|
12
|
Brungart DS, Sherlock LP, Kuchinsky SE, Perry TT, Bieber RE, Grant KW, Bernstein JGW. Assessment methods for determining small changes in hearing performance over time. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 151:3866. [PMID: 35778214 DOI: 10.1121/10.0011509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Although the behavioral pure-tone threshold audiogram is considered the gold standard for quantifying hearing loss, assessment of speech understanding, especially in noise, is more relevant to quality of life but is only partly related to the audiogram. Metrics of speech understanding in noise are therefore an attractive target for assessing hearing over time. However, speech-in-noise assessments have more potential sources of variability than pure-tone threshold measures, making it a challenge to obtain results reliable enough to detect small changes in performance. This review examines the benefits and limitations of speech-understanding metrics and their application to longitudinal hearing assessment, and identifies potential sources of variability, including learning effects, differences in item difficulty, and between- and within-individual variations in effort and motivation. We conclude by recommending the integration of non-speech auditory tests, which provide information about aspects of auditory health that have reduced variability and fewer central influences than speech tests, in parallel with the traditional audiogram and speech-based assessments.
Collapse
Affiliation(s)
- Douglas S Brungart
- Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Building 19, Floor 5, 4954 North Palmer Road, Bethesda, Maryland 20889, USA
| | - LaGuinn P Sherlock
- Hearing Conservation and Readiness Branch, U.S. Army Public Health Center, E1570 8977 Sibert Road, Aberdeen Proving Ground, Maryland 21010, USA
| | - Stefanie E Kuchinsky
- Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Building 19, Floor 5, 4954 North Palmer Road, Bethesda, Maryland 20889, USA
| | - Trevor T Perry
- Hearing Conservation and Readiness Branch, U.S. Army Public Health Center, E1570 8977 Sibert Road, Aberdeen Proving Ground, Maryland 21010, USA
| | - Rebecca E Bieber
- Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Building 19, Floor 5, 4954 North Palmer Road, Bethesda, Maryland 20889, USA
| | - Ken W Grant
- Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Building 19, Floor 5, 4954 North Palmer Road, Bethesda, Maryland 20889, USA
| | - Joshua G W Bernstein
- Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Building 19, Floor 5, 4954 North Palmer Road, Bethesda, Maryland 20889, USA
| |
Collapse
|
13
|
Lee JI, Seist R, McInturff S, Lee DJ, Brown MC, Stankovic KM, Fried S. Magnetic stimulation allows focal activation of the mouse cochlea. eLife 2022; 11:76682. [PMID: 35608242 PMCID: PMC9177144 DOI: 10.7554/elife.76682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Cochlear implants (CIs) provide sound and speech sensations for patients with severe to profound hearing loss by electrically stimulating the auditory nerve. While most CI users achieve some degree of open set word recognition under quiet conditions, hearing that utilizes complex neural coding (e.g., appreciating music) has proved elusive, probably because of the inability of CIs to create narrow regions of spectral activation. Several novel approaches have recently shown promise for improving spatial selectivity, but substantial design differences from conventional CIs will necessitate much additional safety and efficacy testing before clinical viability is established. Outside the cochlea, magnetic stimulation from small coils (micro-coils) has been shown to confine activation more narrowly than that from conventional microelectrodes, raising the possibility that coil-based stimulation of the cochlea could improve the spectral resolution of CIs. To explore this, we delivered magnetic stimulation from micro-coils to multiple locations of the cochlea and measured the spread of activation utilizing a multielectrode array inserted into the inferior colliculus; responses to magnetic stimulation were compared to analogous experiments with conventional microelectrodes as well as to responses when presenting auditory monotones. Encouragingly, the extent of activation with micro-coils was ~60% narrower compared to electric stimulation and largely similar to the spread arising from acoustic stimulation. The dynamic range of coils was more than three times larger than that of electrodes, further supporting a smaller spread of activation. While much additional testing is required, these results support the notion that magnetic micro-coil CIs can produce a larger number of independent spectral channels and may therefore improve auditory outcomes. Further, because coil-based devices are structurally similar to existing CIs, fewer impediments to clinical translational are likely to arise.
Collapse
Affiliation(s)
- Jae-Ik Lee
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - Richard Seist
- Department of Otolaryngology - Head and Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, Boston, United States.,Department of Otorhinolaryngology - Head and Neck Surgery, Paracelsus Medical University, Salzburg, Austria
| | - Stephen McInturff
- Department of Otolaryngology - Head and Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, Boston, United States.,Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, United States
| | - Daniel J Lee
- Department of Otolaryngology - Head and Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, Boston, United States.,Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, United States
| | - M Christian Brown
- Department of Otolaryngology - Head and Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, Boston, United States.,Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, United States
| | - Konstantina M Stankovic
- Department of Otolaryngology - Head and Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, Boston, United States.,Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, United States.,Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, United States
| | - Shelley Fried
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States.,Boston VA Medical Center, Boston, United States
| |
Collapse
|
14
|
Ebetino FH, Sun S, Cherian P, Roshandel S, Neighbors JD, Hu E, Dunford JE, Sedghizadeh PP, McKenna CE, Srinivasan V, Boeckman RK, Russell RGG. Bisphosphonates: The role of chemistry in understanding their biological actions and structure-activity relationships, and new directions for their therapeutic use. Bone 2022; 156:116289. [PMID: 34896359 PMCID: PMC11023620 DOI: 10.1016/j.bone.2021.116289] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/16/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022]
Abstract
The bisphosphonates ((HO)2P(O)CR1R2P(O)(OH)2, BPs) were first shown to inhibit bone resorption in the 1960s, but it was not until 30 years later that a detailed molecular understanding of the relationship between their varied chemical structures and biological activity was elucidated. In the 1990s and 2000s, several potent bisphosphonates containing nitrogen in their R2 side chains (N-BPs) were approved for clinical use including alendronate, risedronate, ibandronate, and zoledronate. These are now mostly generic drugs and remain the leading therapies for several major bone-related diseases, including osteoporosis and skeletal-related events associated with bone metastases. The early development of chemistry in this area was largely empirical and only a few common structural features related to strong binding to calcium phosphate were clear. Attempts to further develop structure-activity relationships to explain more dramatic pharmacological differences in vivo at first appeared inconclusive, and evidence for mechanisms underlying cellular effects on osteoclasts and macrophages only emerged after many years of research. The breakthrough came when the intracellular actions on the osteoclast were first shown for the simpler bisphosphonates, via the in vivo formation of P-C-P derivatives of ATP. The synthesis and biological evaluation of a large number of nitrogen-containing bisphosphonates in the 1980s and 1990s led to the key discovery that the antiresorptive effects of these more complex analogs on osteoclasts result mostly from their potency as inhibitors of the enzyme farnesyl diphosphate synthase (FDPS/FPPS). This key branch-point enzyme in the mevalonate pathway of cholesterol biosynthesis is important for the generation of isoprenoid lipids that are utilized for the post-translational modification of small GTP-binding proteins essential for osteoclast function. Since then, it has become even more clear that the overall pharmacological effects of individual bisphosphonates on bone depend upon two key properties: the affinity for bone mineral and inhibitory effects on biochemical targets within bone cells, in particular FDPS. Detailed enzyme-ligand crystal structure analysis began in the early 2000s and advances in our understanding of the structure-activity relationships, based on interactions with this target within the mevalonate pathway and related enzymes in osteoclasts and other cells have continued to be the focus of research efforts to this day. In addition, while many members of the bisphosphonate drug class share common properties, now it is more clear that chemical modifications to create variations in these properties may allow customization of BPs for different uses. Thus, as the appreciation for new potential opportunities with this drug class grows, new chemistry to allow ready access to an ever-widening variety of bisphosphonates continues to be developed. Potential new uses of the calcium phosphate binding mechanism of bisphosphonates for the targeting of other drugs to the skeleton, and effects discovered on other cellular targets, even at non-skeletal sites, continue to intrigue scientists in this research field.
Collapse
Affiliation(s)
- Frank H Ebetino
- BioVinc LLC, 2265 E. Foothill Blvd, Pasadena, CA 91107, USA; Department of Chemistry, University of Rochester, Rochester, NY 14617, USA; Department of Oncology & Metabolism, University of Sheffield, Sheffield, UK.
| | - Shuting Sun
- BioVinc LLC, 2265 E. Foothill Blvd, Pasadena, CA 91107, USA.
| | - Philip Cherian
- BioVinc LLC, 2265 E. Foothill Blvd, Pasadena, CA 91107, USA
| | | | | | - Eric Hu
- BioVinc LLC, 2265 E. Foothill Blvd, Pasadena, CA 91107, USA
| | - James E Dunford
- Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences, The Oxford University Institute of Musculoskeletal Sciences, The Botnar Research Centre, Nuffield Orthopaedic Centre, Headington, Oxford OX3 7LD, UK
| | - Parish P Sedghizadeh
- Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Charles E McKenna
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Venkat Srinivasan
- Department of Chemistry, University of Rochester, Rochester, NY 14617, USA
| | - Robert K Boeckman
- Department of Chemistry, University of Rochester, Rochester, NY 14617, USA
| | - R Graham G Russell
- Department of Oncology & Metabolism, University of Sheffield, Sheffield, UK; Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences, The Oxford University Institute of Musculoskeletal Sciences, The Botnar Research Centre, Nuffield Orthopaedic Centre, Headington, Oxford OX3 7LD, UK; Mellanby Centre for Musculoskeletal Research, University of Sheffield, Sheffield, UK
| |
Collapse
|
15
|
Wang H, Zhao WS, Xu L. Bisphosphonate of Zoledronate Has Antiapoptotic Effect on Hypoxia/Reoxygenation Injury in Human Embryonic Stem Cell-Derived Cardiomyocytes Through Trk Signaling Pathway. Cell Biochem Biophys 2022; 80:435-442. [PMID: 35226248 DOI: 10.1007/s12013-021-01031-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/04/2021] [Indexed: 11/29/2022]
Abstract
In this work, we investigated the in vitro and in vivo functions of bisphosphonate of zoledronate (Zd) in hypoxia/reoxygenation (H/R) injured human embryonic stem cell-derived cardiomyocytes (hES-CMs). In the in vitro setting, the effects of Zd on hES-CM survival and differentiation were examined. We found that low and medium concentrations (<2 µm) of Zd did not induce cell death of hES-CMs. 0.5 µm Zd protected H/R-induced hES-CM apoptosis but did not affect key differentiation proteins, including hcTnl, PECM-1 Cnx43 and Pan-Cadherin. In addition, Zd-induced TrkA/B phosphorylation and promoted VEGF to counter the apoptotic effect of H/R injury. In the in vivo animal model of myocardial infarction, Zd treatment promoted the survival of hES-CMs by inducing PECAM1 and hcTnl. Thus, we concluded that Zd protected H/R-induced hES-CM apoptosis in vitro and promoted hES-CM survival in vivo. These data may facilitate the development of human embryonic stem cells into clinical applications for patients with ischemic heart disease.
Collapse
Affiliation(s)
- Hua Wang
- Heart Center and Beijing Key Laboratory of Hypertension Research, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Wen-Shu Zhao
- Heart Center and Beijing Key Laboratory of Hypertension Research, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Lin Xu
- Heart Center and Beijing Key Laboratory of Hypertension Research, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
16
|
|
17
|
Shuster B, Casserly R, Lipford E, Olszewski R, Milon B, Viechweg S, Davidson K, Enoch J, McMurray M, Rutherford MA, Ohlemiller KK, Hoa M, Depireux DA, Mong JA, Hertzano R. Estradiol Protects against Noise-Induced Hearing Loss and Modulates Auditory Physiology in Female Mice. Int J Mol Sci 2021; 22:12208. [PMID: 34830090 PMCID: PMC8620009 DOI: 10.3390/ijms222212208] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
Recent studies have identified sex-differences in auditory physiology and in the susceptibility to noise-induced hearing loss (NIHL). We hypothesize that 17β-estradiol (E2), a known modulator of auditory physiology, may underpin sex-differences in the response to noise trauma. Here, we gonadectomized B6CBAF1/J mice and used a combination of electrophysiological and histological techniques to study the effects of estrogen replacement on peripheral auditory physiology in the absence of noise exposure and on protection from NIHL. Functional analysis of auditory physiology in gonadectomized female mice revealed that E2-treatment modulated the peripheral response to sound in the absence of changes to the endocochlear potential compared to vehicle-treatment. E2-replacement in gonadectomized female mice protected against hearing loss following permanent threshold shift (PTS)- and temporary threshold shift (TTS)-inducing noise exposures. Histological analysis of the cochlear tissue revealed that E2-replacement mitigated outer hair cell loss and cochlear synaptopathy following noise exposure compared to vehicle-treatment. Lastly, using fluorescent in situ hybridization, we demonstrate co-localization of estrogen receptor-2 with type-1C, high threshold spiral ganglion neurons, suggesting that the observed protection from cochlear synaptopathy may occur through E2-mediated preservation of these neurons. Taken together, these data indicate the estrogen signaling pathways may be harnessed for the prevention and treatment of NIHL.
Collapse
Affiliation(s)
- Benjamin Shuster
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.S.); (R.C.); (E.L.); (B.M.); (M.M.)
| | - Ryan Casserly
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.S.); (R.C.); (E.L.); (B.M.); (M.M.)
| | - Erika Lipford
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.S.); (R.C.); (E.L.); (B.M.); (M.M.)
| | - Rafal Olszewski
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA; (R.O.); (M.H.)
| | - Béatrice Milon
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.S.); (R.C.); (E.L.); (B.M.); (M.M.)
| | - Shaun Viechweg
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.V.); (K.D.); (J.E.); (J.A.M.)
| | - Kanisa Davidson
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.V.); (K.D.); (J.E.); (J.A.M.)
| | - Jennifer Enoch
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.V.); (K.D.); (J.E.); (J.A.M.)
| | - Mark McMurray
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.S.); (R.C.); (E.L.); (B.M.); (M.M.)
| | - Mark A. Rutherford
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO 63110, USA; (M.A.R.); (K.K.O.)
| | - Kevin K. Ohlemiller
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO 63110, USA; (M.A.R.); (K.K.O.)
| | - Michael Hoa
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA; (R.O.); (M.H.)
| | | | - Jessica A. Mong
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.V.); (K.D.); (J.E.); (J.A.M.)
| | - Ronna Hertzano
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.S.); (R.C.); (E.L.); (B.M.); (M.M.)
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
18
|
Curhan SG, Stankovic K, Halpin C, Wang M, Eavey RD, Paik JM, Curhan GC. Osteoporosis, bisphosphonate use, and risk of moderate or worse hearing loss in women. J Am Geriatr Soc 2021; 69:3103-3113. [PMID: 34028002 PMCID: PMC8595486 DOI: 10.1111/jgs.17275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Osteoporosis and low bone density (LBD) may be associated with higher risk of hearing loss, but findings are inconsistent and longitudinal data are scarce. Bisphosphonates may influence risk, but the relation has not been studied in humans. We longitudinally investigated associations of osteoporosis and LBD, bisphosphonate use, vertebral fracture (VF), hip fracture (HF), and risk of self-reported moderate or worse hearing loss. DESIGN Longitudinal cohort study. SETTING The Nurses' Health Study (NHS) (1982-2016) and Nurses' Health Study II (NHS II) (1995-2017). PARTICIPANTS Participants included 60,821 NHS women, aged 36-61 years at baseline, and 83,078 NHS II women, aged 31-48 years at baseline (total n = 143,899). MEASUREMENTS Information on osteoporosis, LBD, bisphosphonate use, VF, HF, and hearing status was obtained from validated biennial questionnaires. In a subcohort (n = 3749), objective hearing thresholds were obtained by audiometry. Multivariable-adjusted Cox proportional hazards models were used to examine independent associations between osteoporosis (NHS), osteoporosis/LBD (NHS II), and risk of hearing loss. RESULTS The multivariable-adjusted relative risk (MVRR, 95% confidence interval) of moderate or worse hearing loss was higher among women with osteoporosis or LBD in both cohorts. In NHS, compared with women without osteoporosis, the MVRR was 1.14 (1.09, 1.19) among women with osteoporosis; in NHS II, the MVRR was 1.30 (1.21, 1.40) among women with osteoporosis/LBD. The magnitude of the elevated risk was similar among women who did and did not use bisphosphonates. VF was associated with higher risk (NHS: 1.31 [1.16, 1.49]; NHS II: 1.39 [1.13, 1.71]), but HF was not (NHS: 1.00 [0.86, 1.16];NHS II: 1.15 [0.75,1.74]). Among participants with audiometric measurements, compared with women without osteoporosis/LBD, the mean multivariable-adjusted hearing thresholds were higher (i.e., worse) among those with osteoporosis/LBD who used bisphosphonates. CONCLUSION Osteoporosis and LBD may be important contributors to aging-related hearing loss. Among women with osteoporosis, the risk of hearing loss was not influenced by bisphosphonate use.
Collapse
Affiliation(s)
- Sharon G. Curhan
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Konstantina Stankovic
- Harvard Medical School, Boston, MA, USA
- Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, USA
| | | | - Molin Wang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | - Roland D. Eavey
- Vanderbilt Bill Wilkerson Center for Otolaryngology and Communication Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Julie M. Paik
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Renal Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Geriatric Research Education and Clinical Center, VA Boston Healthcare System, Boston, MA, USA
| | - Gary C. Curhan
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
- Renal Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
19
|
Milon B, Shulman ED, So KS, Cederroth CR, Lipford EL, Sperber M, Sellon JB, Sarlus H, Pregernig G, Shuster B, Song Y, Mitra S, Orvis J, Margulies Z, Ogawa Y, Shults C, Depireux DA, Palermo AT, Canlon B, Burns J, Elkon R, Hertzano R. A cell-type-specific atlas of the inner ear transcriptional response to acoustic trauma. Cell Rep 2021; 36:109758. [PMID: 34592158 PMCID: PMC8709734 DOI: 10.1016/j.celrep.2021.109758] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/29/2021] [Accepted: 09/03/2021] [Indexed: 01/26/2023] Open
Abstract
Noise-induced hearing loss (NIHL) results from a complex interplay of damage to the sensory cells of the inner ear, dysfunction of its lateral wall, axonal retraction of type 1C spiral ganglion neurons, and activation of the immune response. We use RiboTag and single-cell RNA sequencing to survey the cell-type-specific molecular landscape of the mouse inner ear before and after noise trauma. We identify induction of the transcription factors STAT3 and IRF7 and immune-related genes across all cell-types. Yet, cell-type-specific transcriptomic changes dominate the response. The ATF3/ATF4 stress-response pathway is robustly induced in the type 1A noise-resilient neurons, potassium transport genes are downregulated in the lateral wall, mRNA metabolism genes are downregulated in outer hair cells, and deafness-associated genes are downregulated in most cell types. This transcriptomic resource is available via the Gene Expression Analysis Resource (gEAR; https://umgear.org/NIHL) and provides a blueprint for the rational development of drugs to prevent and treat NIHL.
Collapse
Affiliation(s)
- Beatrice Milon
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Eldad D Shulman
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Kathy S So
- Decibel Therapeutics, Boston, MA 02215, USA
| | - Christopher R Cederroth
- Laboratory of Experimental Audiology, Department of Physiology and Pharmacology, Karolinska Institute, 171 77 Stockholm, Sweden; Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Erika L Lipford
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Michal Sperber
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Heela Sarlus
- Laboratory of Experimental Audiology, Department of Physiology and Pharmacology, Karolinska Institute, 171 77 Stockholm, Sweden; Applied Immunology & Immunotherapy, Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska University Hospital, 171 77 Stockholm, Sweden
| | | | - Benjamin Shuster
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yang Song
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Sunayana Mitra
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Joshua Orvis
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Zachary Margulies
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yoko Ogawa
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Christopher Shults
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | - Barbara Canlon
- Laboratory of Experimental Audiology, Department of Physiology and Pharmacology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Joe Burns
- Decibel Therapeutics, Boston, MA 02215, USA
| | - Ran Elkon
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Ronna Hertzano
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
20
|
Kempfle JS, Duro MV, Zhang A, Amador CD, Kuang R, Lu R, Kashemirov BA, Edge AS, McKenna CE, Jung DH. A Novel Small Molecule Neurotrophin-3 Analogue Promotes Inner Ear Neurite Outgrowth and Synaptogenesis In vitro. Front Cell Neurosci 2021; 15:666706. [PMID: 34335184 PMCID: PMC8319950 DOI: 10.3389/fncel.2021.666706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/18/2021] [Indexed: 11/15/2022] Open
Abstract
Sensorineural hearing loss is irreversible and is associated with the loss of spiral ganglion neurons (SGNs) and sensory hair cells within the inner ear. Improving spiral ganglion neuron (SGN) survival, neurite outgrowth, and synaptogenesis could lead to significant gains for hearing-impaired patients. There has therefore been intense interest in the use of neurotrophic factors in the inner ear to promote both survival of SGNs and re-wiring of sensory hair cells by surviving SGNs. Neurotrophin-3 (NT-3) and brain-derived neurotrophic factor (BDNF) represent the primary neurotrophins in the inner ear during development and throughout adulthood, and have demonstrated potential for SGN survival and neurite outgrowth. We have pioneered a hybrid molecule approach to maximize SGN stimulation in vivo, in which small molecule analogues of neurotrophins are linked to bisphosphonates, which in turn bind to cochlear bone. We have previously shown that a small molecule BDNF analogue coupled to risedronate binds to bone matrix and promotes SGN neurite outgrowth and synaptogenesis in vitro. Because NT-3 has been shown in a variety of contexts to have a greater regenerative capacity in the cochlea than BDNF, we sought to develop a similar approach for NT-3. 1Aa is a small molecule analogue of NT-3 that has been shown to activate cells through TrkC, the NT-3 receptor, although its activity on SGNs has not previously been described. Herein we describe the design and synthesis of 1Aa and a covalent conjugate of 1Aa with risedronate, Ris-1Aa. We demonstrate that both 1Aa and Ris-1Aa stimulate neurite outgrowth in SGN cultures at a significantly higher level compared to controls. Ris-1Aa maintained its neurotrophic activity when bound to hydroxyapatite, the primary mineral component of bone. Both 1Aa and Ris-1Aa promote significant synaptic regeneration in cochlear explant cultures, and both 1Aa and Ris-1Aa appear to act at least partly through TrkC. Our results provide the first evidence that a small molecule analogue of NT-3 can stimulate SGNs and promote regeneration of synapses between SGNs and inner hair cells. Our findings support the promise of hydroxyapatite-targeting bisphosphonate conjugation as a novel strategy to deliver neurotrophic agents to SGNs encased within cochlear bone.
Collapse
Affiliation(s)
- Judith S Kempfle
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States.,Department of Otolaryngology, University Medical Center Tübingen, Tübingen, Germany
| | - Marlon V Duro
- Department of Chemistry, University of Southern California, Los Angeles, CA, United States
| | - Andrea Zhang
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States
| | - Carolina D Amador
- Department of Chemistry, University of Southern California, Los Angeles, CA, United States
| | - Richard Kuang
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States
| | - Ryan Lu
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States
| | - Boris A Kashemirov
- Department of Chemistry, University of Southern California, Los Angeles, CA, United States
| | - Albert S Edge
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States
| | - Charles E McKenna
- Department of Chemistry, University of Southern California, Los Angeles, CA, United States
| | - David H Jung
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
21
|
Seist R, Landegger LD, Robertson NG, Vasilijic S, Morton CC, Stankovic KM. Cochlin Deficiency Protects Against Noise-Induced Hearing Loss. Front Mol Neurosci 2021; 14:670013. [PMID: 34108864 PMCID: PMC8180578 DOI: 10.3389/fnmol.2021.670013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/16/2021] [Indexed: 12/20/2022] Open
Abstract
Cochlin is the most abundant protein in the inner ear. To study its function in response to noise trauma, we exposed adolescent wild-type (Coch +/+ ) and cochlin knock-out (Coch -/-) mice to noise (8-16 kHz, 103 dB SPL, 2 h) that causes a permanent threshold shift and hair cell loss. Two weeks after noise exposure, Coch-/- mice had substantially less elevation in noise-induced auditory thresholds and hair cell loss than Coch + / + mice, consistent with cochlin deficiency providing protection from noise trauma. Comparison of pre-noise exposure thresholds of auditory brain stem responses (ABRs) and distortion product otoacoustic emissions (DPOAEs) in Coch-/- mice and Coch + / + littermates revealed a small and significant elevation in thresholds of Coch-/- mice, overall consistent with a small conductive hearing loss in Coch-/- mice. We show quantitatively that the pro-inflammatory component of cochlin, LCCL, is upregulated after noise exposure in perilymph of wild-type mice compared to unexposed mice, as is the enzyme catalyzing LCCL release, aggrecanase1, encoded by Adamts4. We further show that upregulation of pro-inflammatory cytokines in perilymph and cochlear soft-tissue after noise exposure is lower in cochlin knock-out than wild-type mice. Taken together, our data demonstrate for the first time that cochlin deficiency results in conductive hearing loss that protects against physiologic and molecular effects of noise trauma.
Collapse
Affiliation(s)
- Richard Seist
- Eaton-Peabody Laboratories and Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
- Department of Otorhinolaryngology – Head and Neck Surgery, Paracelsus Medical University, Salzburg, Austria
| | - Lukas D. Landegger
- Eaton-Peabody Laboratories and Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
- Department of Otorhinolaryngology – Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Nahid G. Robertson
- Department of Obstetrics and Gynecology and of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Sasa Vasilijic
- Eaton-Peabody Laboratories and Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| | - Cynthia C. Morton
- Department of Obstetrics and Gynecology and of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
- Manchester Centre for Audiology and Deafness, School of Health Sciences, University of Manchester, Manchester, United Kingdom
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, United States
| | - Konstantina M. Stankovic
- Eaton-Peabody Laboratories and Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, United States
- Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
22
|
Barbosa JS, Almeida Paz FA, Braga SS. Bisphosphonates, Old Friends of Bones and New Trends in Clinics. J Med Chem 2021; 64:1260-1282. [PMID: 33522236 DOI: 10.1021/acs.jmedchem.0c01292] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bisphosphonates, used for a long time in osteoporosis management, are currently the target of intensive research, from pre-formulation studies to more advanced stages of clinical practice. This review presents an overview of the contributions of this family of compounds to human health, starting with the chemistry and clinical uses of bisphosphonates. Following this, their pharmacology is described, highlighting administration-borne handicaps and undesirable effects. The last three sections of the review describe the research efforts that seek to curb delivery-related issues and expand bisphosphonate use. Innovative routes and strategies of administration, such as nano-encapsulation for oral intake or injectable cements for local or in-bone delivery are presented, as well as the latest results of case studies or preclinical studies proposing new therapeutic indications for the clinically approved bisphosphonates. Finally, a selection of anti-infectious bisphosphonate new drug candidates is shown, with focus on the molecules reported in the last two decades.
Collapse
Affiliation(s)
- Jéssica S Barbosa
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.,LAQV-Requimte, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Filipe A Almeida Paz
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Susana Santos Braga
- LAQV-Requimte, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|