1
|
Ceder MM, Ahemaiti A, Lagerström MC. Fluorescence-based method for analysis of glycine receptor alpha 3 agonists. Eur J Pharmacol 2025:177661. [PMID: 40306539 DOI: 10.1016/j.ejphar.2025.177661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/18/2025] [Accepted: 04/22/2025] [Indexed: 05/02/2025]
Abstract
Glycine, a key neurotransmitter, plays a complex role in the CNS. It acts as an inhibitory neurotransmitter by interacting with ligand-gated chloride channels. Glycine plays a crucial role in pain and itch transmission through its interactions with the glycine receptor alpha 1 (Glyr α1) and 3 (Glyr α3) subunits. Targeting glycinergic neurotransmission in the CNS, particularly the spinal cord, could provide a beneficial strategy for analgesic and/or abirritant drug discovery. Currently, the search for novel pharmacological agonists and modulators against glycine receptors is still in its early stages. In this study, we designed two different vectors to express the human hetero-pentameric GlyR α3β. We tested different chemical transfection protocols and performed fluorescence endpoint measurements in acutely transfected cells and cells that underwent antibiotic selection. We further validated our findings by studying the electrophysiological properties of the vector-expressing cells using patch clamp. The results demonstrate that acutely vector-transfected cells and vector-transfected cells subjected to antibiotic selection work equally well during fluorescence-based measurements. However, in single-cell measurements such as patch clamp, acutely transfected cells perform better. The results further show that reversing the equilibrium potential of Cl- can enhance the fluorescence response from the FluoVolt™ membrane potential dye, which can be used during patch clamp measurements. This establishes a simple and cost-effective method to screen for compounds in cell cultures using chemical transfection with a vector expressing GlyR α3β, which could aid in developing the next generation of non-opioid analgesic.
Collapse
Affiliation(s)
- Mikaela M Ceder
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 08 Uppsala, Sweden
| | - Aikeremu Ahemaiti
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 08 Uppsala, Sweden
| | - Malin C Lagerström
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 08 Uppsala, Sweden.
| |
Collapse
|
2
|
Ceder MM, Magnusson KA, Weman HM, Henriksson K, Andréasson L, Lindström T, Wiggins O, Lagerström MC. The mRNA expression profile of glycine receptor subunits alpha 1, alpha 2, alpha 4 and beta in female and male mice. Mol Cell Neurosci 2024; 131:103976. [PMID: 39580061 DOI: 10.1016/j.mcn.2024.103976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 11/25/2024] Open
Abstract
Glycine receptors are ligand-gated chloride-selective channels that control excitability in the central nervous system (CNS). Herein, we have investigated the mRNA expression of the glycine receptor alpha 1 (Glra1), alpha 2 (Glra2), alpha 4 (Glra4) and the beta (Glrb) subunits, in adult female and male mice. Single-cell RNA sequencing data re-analysis of the Zeisel et al. (2018) dataset indicated widespread expression of Glra1, Glra2 and Glrb in the CNS, while only a few cells in the cortex, striatum, thalamus, midbrain and the spinal cord expressed Glra4. Highest occurrence of Glra1, Glra2 and Glrb were found in the brainstem. Moreover, Glra1 and Glrb were revealed to have the highest occurrences in the spinal cord of the investigated subunits. However, both Glra2 and Glrb had a more widespread expression in the CNS compared with Glra1 and Glra4. Bulk quantitative real-time-PCR (qRT-PCR) analysis revealed Glra1 expression in the hypothalamus, thalamus, brainstem and the spinal cord, and widespread, but low, Glra2 and Glrb expression in the CNS. Moreover, Glrb could be detected in a few visceral organs. Additionally, females and males were found to express Glra1, Glra2 and Glrb differently in certain brain areas such as the brainstem. Expression levels of Glra4 were too low to be detected using qRT-PCR. Lastly, RNAscope spatially validated the expression of Glra1, Glra2 and Glrb in the areas indicated by the single-cell and bulk analyses, and further revealed that Glra4 can be detected in the cortex, amygdala, hypothalamus, thalamus, brainstem, especially the cochlear nucleus, and in the spinal cord.
Collapse
Affiliation(s)
- Mikaela M Ceder
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Kajsa A Magnusson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Hannah M Weman
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Katharina Henriksson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Linn Andréasson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Teresa Lindström
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Oskar Wiggins
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Malin C Lagerström
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
3
|
San Martin LS, Armijo-Weingart L, Gallegos S, Araya A, Homanics GE, Aguayo LG. Changes in ethanol effects in knock-in mice expressing ethanol insensitive alpha1 and alpha2 glycine receptor subunits. Life Sci 2024; 348:122673. [PMID: 38679193 PMCID: PMC11177624 DOI: 10.1016/j.lfs.2024.122673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
AIMS Glycine receptors (GlyRs) are potentiated by physiologically relevant concentrations of ethanol, and mutations in the intracellular loop of α1 and α2 subunits reduced the effect of the drug. Knock-in (KI) mice having these individual mutations revealed that α1 and α2 subunits played a role in ethanol-induced sedation and ethanol intake. In this study, we wanted to examine if the effects of stacking both mutations in a 2xKI mouse model (α1/α2) generated by a selective breeding strategy further impacted cellular and behavioral responses to ethanol. MAIN METHODS We used electrophysiological recordings to examine ethanol's effect on GlyRs and evaluated ethanol-induced neuronal activation using c-Fos immunoreactivity and the genetically encoded calcium indicator GCaMP6s in the nucleus accumbens (nAc). We also examined ethanol-induced behavior using open field, loss of the righting response, and drinking in the dark (DID) paradigm. KEY FINDINGS Ethanol did not potentiate GlyRs nor affect neuronal excitability in the nAc from 2xKI. Moreover, ethanol decreased the Ca2+ signal in WT mice, whereas there were no changes in the signal in 2xKI mice. Interestingly, there was an increase in c-Fos baseline in the 2xKI mice in the absence of ethanol. Behavioral assays showed that 2xKI mice recovered faster from a sedative dose of ethanol and had higher ethanol intake on the first test day of the DID test than WT mice. Interestingly, an open-field assay showed that 2xKI mice displayed less anxiety-like behavior than WT mice. SIGNIFICANCE The results indicate that α1 and α2 subunits are biologically relevant targets for regulating sedative effects and ethanol consumption.
Collapse
Affiliation(s)
- Loreto S San Martin
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Chile; Programa de Neurociencia, Psiquiatría y Salud Mental (NEPSAM), Universidad de Concepción, Chile
| | - Lorena Armijo-Weingart
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Chile; Programa de Neurociencia, Psiquiatría y Salud Mental (NEPSAM), Universidad de Concepción, Chile
| | - Scarlet Gallegos
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Chile
| | - Anibal Araya
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Chile
| | - Gregg E Homanics
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmacology & Chemical, University of Pittsburgh, Pittsburgh, PA, USA; Department of Biology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Luis G Aguayo
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Chile; Programa de Neurociencia, Psiquiatría y Salud Mental (NEPSAM), Universidad de Concepción, Chile.
| |
Collapse
|
4
|
Wiessler AL, Hasenmüller AS, Fuhl I, Mille C, Cortes Campo O, Reinhard N, Schenk J, Heinze KG, Schaefer N, Specht CG, Villmann C. Role of the Glycine Receptor β Subunit in Synaptic Localization and Pathogenicity in Severe Startle Disease. J Neurosci 2024; 44:e0837232023. [PMID: 37963764 PMCID: PMC10860499 DOI: 10.1523/jneurosci.0837-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/20/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Startle disease is due to the disruption of recurrent inhibition in the spinal cord. Most common causes are genetic variants in genes (GLRA1, GLRB) encoding inhibitory glycine receptor (GlyR) subunits. The adult GlyR is a heteropentameric complex composed of α1 and β subunits that localizes at postsynaptic sites and replaces embryonically expressed GlyRα2 homomers. The human GlyR variants of GLRA1 and GLRB, dominant and recessive, have been intensively studied in vitro. However, the role of unaffected GlyRβ, essential for synaptic GlyR localization, in the presence of mutated GlyRα1 in vivo is not fully understood. Here, we used knock-in mice expressing endogenous mEos4b-tagged GlyRβ that were crossed with mouse Glra1 startle disease mutants. We explored the role of GlyRβ under disease conditions in mice carrying a missense mutation (shaky) or resulting from the loss of GlyRα1 (oscillator). Interestingly, synaptic targeting of GlyRβ was largely unaffected in both mouse mutants. While synaptic morphology appears unaltered in shaky animals, synapses were notably smaller in homozygous oscillator animals. Hence, GlyRβ enables transport of functionally impaired GlyRα1 missense variants to synaptic sites in shaky animals, which has an impact on the efficacy of possible compensatory mechanisms. The observed enhanced GlyRα2 expression in oscillator animals points to a compensation by other GlyRα subunits. However, trafficking of GlyRα2β complexes to synaptic sites remains functionally insufficient, and homozygous oscillator mice still die at 3 weeks after birth. Thus, both functional and structural deficits can affect glycinergic neurotransmission in severe startle disease, eliciting different compensatory mechanisms in vivo.
Collapse
Affiliation(s)
- Anna-Lena Wiessler
- Institute for Clinical Neurobiology, University Hospital, Julius-Maximilians-University of Würzburg, 97078 Würzburg, Germany
| | - Ann-Sofie Hasenmüller
- Institute for Clinical Neurobiology, University Hospital, Julius-Maximilians-University of Würzburg, 97078 Würzburg, Germany
| | - Isabell Fuhl
- Institute for Clinical Neurobiology, University Hospital, Julius-Maximilians-University of Würzburg, 97078 Würzburg, Germany
| | - Clémence Mille
- Institut National de la Santé et de la Recherche Médicale (Inserm U1195), Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Orlando Cortes Campo
- Institute for Clinical Neurobiology, University Hospital, Julius-Maximilians-University of Würzburg, 97078 Würzburg, Germany
| | - Nicola Reinhard
- Institute for Clinical Neurobiology, University Hospital, Julius-Maximilians-University of Würzburg, 97078 Würzburg, Germany
| | - Joachim Schenk
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians-University of Würzburg, 97080 Würzburg, Germany
| | - Katrin G Heinze
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians-University of Würzburg, 97080 Würzburg, Germany
| | - Natascha Schaefer
- Institute for Clinical Neurobiology, University Hospital, Julius-Maximilians-University of Würzburg, 97078 Würzburg, Germany
| | - Christian G Specht
- Institut National de la Santé et de la Recherche Médicale (Inserm U1195), Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Carmen Villmann
- Institute for Clinical Neurobiology, University Hospital, Julius-Maximilians-University of Würzburg, 97078 Würzburg, Germany
| |
Collapse
|
5
|
Schaefer N, Harvey RJ, Villmann C. Startle Disease: New Molecular Insights into an Old Neurological Disorder. Neuroscientist 2023; 29:767-781. [PMID: 35754344 PMCID: PMC10623600 DOI: 10.1177/10738584221104724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Startle disease (SD) is characterized by enhanced startle responses, generalized muscle stiffness, unexpected falling, and fatal apnea episodes due to disturbed feedback inhibition in the spinal cord and brainstem of affected individuals. Mutations within the glycine receptor (GlyR) subunit and glycine transporter 2 (GlyT2) genes have been identified in individuals with SD. Impaired inhibitory neurotransmission in SD is due to pre- and/or postsynaptic GlyR or presynaptic GlyT2 dysfunctions. Previous research has focused on mutated GlyRs and GlyT2 that impair ion channel/transporter function or trafficking. With insights provided by recently solved cryo-electron microscopy and X-ray structures of GlyRs, a detailed picture of structural transitions important for receptor gating has emerged, allowing a deeper understanding of SD at the molecular level. Moreover, studies on novel SD mutations have demonstrated a higher complexity of SD, with identification of additional clinical signs and symptoms and interaction partners representing key players for fine-tuning synaptic processes. Although our knowledge has steadily improved during the last years, changes in synaptic localization and GlyR or GlyT2 homeostasis under disease conditions are not yet completely understood. Combined proteomics, interactomics, and high-resolution microscopy techniques are required to reveal alterations in receptor dynamics at the synaptic level under disease conditions.
Collapse
Affiliation(s)
- Natascha Schaefer
- Institute of Clinical Neurobiology, University Hospital, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Robert J. Harvey
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore DC, Australia
- Sunshine Coast Health Institute, Birtinya, Australia
| | - Carmen Villmann
- Institute of Clinical Neurobiology, University Hospital, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| |
Collapse
|
6
|
Darwish M, Hattori S, Nishizono H, Miyakawa T, Yachie N, Takao K. Comprehensive behavioral analyses of mice with a glycine receptor alpha 4 deficiency. Mol Brain 2023; 16:44. [PMID: 37217969 DOI: 10.1186/s13041-023-01033-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023] Open
Abstract
Glycine receptors (GlyRs) are ligand-gated chloride channels comprising alpha (α1-4) and β subunits. The GlyR subunits play major roles in the mammalian central nervous system, ranging from regulating simple sensory information to modulating higher-order brain function. Unlike the other GlyR subunits, GlyR α4 receives relatively little attention because the human ortholog lacks a transmembrane domain and is thus considered a pseudogene. A recent genetic study reported that the GLRA4 pseudogene locus on the X chromosome is potentially involved in cognitive impairment, motor delay and craniofacial anomalies in humans. The physiologic roles of GlyR α4 in mammal behavior and its involvement in disease, however, are not known. Here we examined the temporal and spatial expression profile of GlyR α4 in the mouse brain and subjected Glra4 mutant mice to a comprehensive behavioral analysis to elucidate the role of GlyR α4 in behavior. The GlyR α4 subunit was mainly enriched in the hindbrain and midbrain, and had relatively lower expression in the thalamus, cerebellum, hypothalamus, and olfactory bulb. In addition, expression of the GlyR α4 subunit gradually increased during brain development. Glra4 mutant mice exhibited a decreased amplitude and delayed onset of the startle response compared with wild-type littermates, and increased social interaction in the home cage during the dark period. Glra4 mutants also had a low percentage of entries into open arms in the elevated plus-maze test. Although mice with GlyR α4 deficiency did not show motor and learning abnormalities reported to be associated in human genomics studies, they exhibited behavioral changes in startle response and social and anxiety-like behavior. Our data clarify the spatiotemporal expression pattern of the GlyR α4 subunit and suggest that glycinergic signaling modulates social, startle, and anxiety-like behaviors in mice.
Collapse
Affiliation(s)
- Mohamed Darwish
- Department of Behavioral Physiology, Graduate School of Innovative Life Science, University of Toyama, Toyama, Japan
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Synthetic Biology Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Satoko Hattori
- Division of Systems Medical Science, Center for Comprehensive Medical Science, Fujita Health University, Aichi, Toyoake, Japan
| | - Hirofumi Nishizono
- Medical Research Institute, Kanazawa Medical University, Kahoku, Ishikawa, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Center for Comprehensive Medical Science, Fujita Health University, Aichi, Toyoake, Japan
| | - Nozomu Yachie
- Synthetic Biology Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
- School of Biomedical Engineering, The University of British Columbia, Vancouver, Canada
| | - Keizo Takao
- Department of Behavioral Physiology, Graduate School of Innovative Life Science, University of Toyama, Toyama, Japan.
- Department of Behavioral Physiology, Faculty of Medicine, University of Toyama, Toyama, Japan.
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan.
| |
Collapse
|
7
|
Koskinen MK, Hovatta I. Genetic insights into the neurobiology of anxiety. Trends Neurosci 2023; 46:318-331. [PMID: 36828693 DOI: 10.1016/j.tins.2023.01.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/25/2023]
Abstract
Anxiety and fear are evolutionarily conserved emotions that increase the likelihood of an organism surviving threatening situations. Anxiety and vigilance states are regulated by neural networks involving multiple brain regions. In anxiety disorders, this intricate regulatory system is disturbed, leading to excessive or prolonged anxiety or fear. Anxiety disorders have both genetic and environmental risk factors. Genetic research has the potential to identify specific genetic variants causally associated with specific phenotypes. In recent decades, genome-wide association studies (GWASs) have revealed variants predisposing to neuropsychiatric disorders, suggesting novel neurobiological pathways in the etiology of these disorders. Here, we review recent human GWASs of anxiety disorders, and genetic studies of anxiety-like behavior in rodent models. These studies are paving the way for a better understanding of the neurobiological mechanisms underlying anxiety disorders.
Collapse
Affiliation(s)
- Maija-Kreetta Koskinen
- SleepWell Research Program and Department of Psychology and Logopedics, Faculty of Medicine, PO Box 21, 00014, University of Helsinki, Helsinki, Finland
| | - Iiris Hovatta
- SleepWell Research Program and Department of Psychology and Logopedics, Faculty of Medicine, PO Box 21, 00014, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
8
|
Fischhaber N, Faber J, Bakirci E, Dalton PD, Budday S, Villmann C, Schaefer N. Spinal Cord Neuronal Network Formation in a 3D Printed Reinforced Matrix-A Model System to Study Disease Mechanisms. Adv Healthc Mater 2021; 10:e2100830. [PMID: 34350717 PMCID: PMC11469053 DOI: 10.1002/adhm.202100830] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/24/2021] [Indexed: 12/29/2022]
Abstract
3D cell cultures allow a better mimicry of the biological and mechanical environment of cells in vivo compared to 2D cultures. However, 3D cell cultures have been challenging for ultrasoft tissues such as the brain. The present study uses a microfiber reinforcement approach combining mouse primary spinal cord neurons in Matrigel with melt electrowritten (MEW) frames. Within these 3D constructs, neuronal network development is followed for 21 days in vitro. To evaluate neuronal development in 3D constructs, the maturation of inhibitory glycinergic synapses is analyzed using protein expression, the complex mechanical properties by assessing nonlinearity, conditioning, and stress relaxation, and calcium imaging as readouts. Following adaptation to the 3D matrix-frame, mature inhibitory synapse formation is faster than in 2D demonstrated by a steep increase in glycine receptor expression between days 3 and 10. The 3D expression pattern of marker proteins at the inhibitory synapse and the mechanical properties resemble the situation in native spinal cord tissue. Moreover, 3D spinal cord neuronal networks exhibit intensive neuronal activity after 14 days in culture. The spinal cord cell culture model using ultrasoft matrix reinforced by MEW fibers provides a promising tool to study and understand biomechanical mechanisms in health and disease.
Collapse
Affiliation(s)
- Natalie Fischhaber
- Institute for Clinical NeurobiologyUniversity Hospital WürzburgVersbacherstr. 597078WürzburgGermany
| | - Jessica Faber
- Department of Mechanical EngineeringInstitute of Applied MechanicsFriedrich‐Alexander‐University Erlangen‐NürnbergEgerlandstrasse 591058ErlangenGermany
| | - Ezgi Bakirci
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer InstituteUniversity Hospital WürzburgPleicherwall 297070WürzburgGermany
| | - Paul D. Dalton
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer InstituteUniversity Hospital WürzburgPleicherwall 297070WürzburgGermany
- Phil and Penny Knight Campus for Accelerating Scientific ImpactUniversity of Oregon1505 Franklin Blvd.EugeneOR97403USA
| | - Silvia Budday
- Department of Mechanical EngineeringInstitute of Applied MechanicsFriedrich‐Alexander‐University Erlangen‐NürnbergEgerlandstrasse 591058ErlangenGermany
| | - Carmen Villmann
- Institute for Clinical NeurobiologyUniversity Hospital WürzburgVersbacherstr. 597078WürzburgGermany
| | - Natascha Schaefer
- Institute for Clinical NeurobiologyUniversity Hospital WürzburgVersbacherstr. 597078WürzburgGermany
| |
Collapse
|
9
|
Li S, Sun X, Bi L, Tong Y, Liu X. Research Progress on Natural Product Ingredients' Therapeutic Effects on Parkinson's Disease by Regulating Autophagy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5538200. [PMID: 33981351 PMCID: PMC8088354 DOI: 10.1155/2021/5538200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/17/2021] [Accepted: 04/15/2021] [Indexed: 12/23/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease in middle-aged and older adults. Abnormal proteins such as α-synuclein are essential factors in PD's pathogenesis. Autophagy is the main participant in the clearance of abnormal proteins. The overactive or low function of autophagy leads to autophagy stress. Not only is it difficult to clear abnormal proteins but also it can cause damage to neurons. In this article, the effects of natural products ingredients, such as salidroside, paeoniflorin, curcumin, resveratrol, corynoxine, and baicalein, on regulating autophagy and protecting neurons were discussed in detail to provide a reference for the research and development of drugs for the treatment of PD.
Collapse
Affiliation(s)
- Sicong Li
- School of Pharmacy, Peking University Health Science Centre, Beijing, China
| | - Xu Sun
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Lei Bi
- School of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Yujia Tong
- Institute of Medical Information, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Xin Liu
- School of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| |
Collapse
|