1
|
Jin N, Sha S, Ruan Y, Ouyang Y. Identification and analysis of oxidative stress-related genes in hypoxic-ischemic brain damage using bioinformatics and experimental verification. Immun Inflamm Dis 2024; 12:e70000. [PMID: 39172048 PMCID: PMC11340634 DOI: 10.1002/iid3.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/19/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Oxidative stress (OS) plays a major role in the progress of hypoxic-ischemic brain damage (HIBD). This study aimed to investigate OS-related genes and their underlying molecular mechanisms in neonatal HIBD. METHODS Microarray data sets were acquired from the Gene Expression Omnibus (GEO) database to screen the differentially expressed genes (DEGs) between control samples and HIBD samples. OS-related genes were drawn from GeneCards and OS-DEGs in HIBD were obtained by intersecting with the DEGs. Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) were conducted to determine the underlying mechanisms and functions of OS-DEGs in HIBD. Moreover, the hub genes were screened using the protein-protein interaction network and identified in the GSE144456 data set. CIBERSORT was then performed to evaluate the expression of immunocytes in each sample and perform a correlation analysis of the optimal OS-DEGs and immunocytes. Finally, quantitative reverse transcription polymerase chain reaction (RT-qPCR) and immunohistochemistry were performed to validate the expression levels of the optimal OS-DEGs. RESULTS In total, 93 OS-DEGs were identified. GO, KEGG, and GSEA enrichment analyses indicated that these genes were predominantly enriched in OS and inflammation. Four OS-related biomarker genes (Jun, Fos, Tlr2, and Atf3) were identified and verified. CIBERSORT analysis revealed the dysregulation of six types of immune cells in the HIBD group. Moreover, 47 drugs that might target four OS-related biomarker genes were screened. Eventually, RT-qPCR and immunohistochemistry results for rat samples further validated the expression levels of Fos, Tlr2, and Atf3. CONCLUSIONS Fos, Tlr2 and Atf3 are potential OS-related biomarkers of HIBD progression. The mechanisms of OS are associated with those of neonatal HIBD.
Collapse
Affiliation(s)
- Ni Jin
- Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Sha Sha
- Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Yanghao Ruan
- Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina
| | - Ying Ouyang
- Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
2
|
Hagan B, Mujumdar R, Sahoo JP, Das A, Dutta A. Technical feasibility of multimodal imaging in neonatal hypoxic-ischemic encephalopathy from an ovine model to a human case series. Front Pediatr 2023; 11:1072663. [PMID: 37425273 PMCID: PMC10323750 DOI: 10.3389/fped.2023.1072663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 06/02/2023] [Indexed: 07/11/2023] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) secondary to perinatal asphyxia occurs when the brain does not receive enough oxygen and blood. A surrogate marker for "intact survival" is necessary for the successful management of HIE. The severity of HIE can be classified based on clinical presentation, including the presence of seizures, using a clinical classification scale called Sarnat staging; however, Sarnat staging is subjective, and the score changes over time. Furthermore, seizures are difficult to detect clinically and are associated with a poor prognosis. Therefore, a tool for continuous monitoring on the cot side is necessary, for example, an electroencephalogram (EEG) that noninvasively measures the electrical activity of the brain from the scalp. Then, multimodal brain imaging, when combined with functional near-infrared spectroscopy (fNIRS), can capture the neurovascular coupling (NVC) status. In this study, we first tested the feasibility of a low-cost EEG-fNIRS imaging system to differentiate between normal, hypoxic, and ictal states in a perinatal ovine hypoxia model. Here, the objective was to evaluate a portable cot-side device and perform autoregressive with extra input (ARX) modeling to capture the perinatal ovine brain states during a simulated HIE injury. So, ARX parameters were tested with a linear classifier using a single differential channel EEG, with varying states of tissue oxygenation detected using fNIRS, to label simulated HIE states in the ovine model. Then, we showed the technical feasibility of the low-cost EEG-fNIRS device and ARX modeling with support vector machine classification for a human HIE case series with and without sepsis. The classifier trained with the ovine hypoxia data labeled ten severe HIE human cases (with and without sepsis) as the "hypoxia" group and the four moderate HIE human cases as the "control" group. Furthermore, we showed the feasibility of experimental modal analysis (EMA) based on the ARX model to investigate the NVC dynamics using EEG-fNIRS joint-imaging data that differentiated six severe HIE human cases without sepsis from four severe HIE human cases with sepsis. In conclusion, our study showed the technical feasibility of EEG-fNIRS imaging, ARX modeling of NVC for HIE classification, and EMA that may provide a biomarker of sepsis effects on the NVC in HIE.
Collapse
Affiliation(s)
- Brian Hagan
- School of Engineering, University of Lincoln, Lincoln, United Kingdom
| | - Radhika Mujumdar
- School of Engineering, University of Lincoln, Lincoln, United Kingdom
| | - Jagdish P. Sahoo
- Department of Neonatology, IMS & SUM Hospital, Bhubaneswar, India
| | - Abhijit Das
- Department of Neurology, The Lancashire Teaching Hospitals NHS Foundation Trust, Preston, United Kingdom
| | - Anirban Dutta
- School of Engineering, University of Lincoln, Lincoln, United Kingdom
| |
Collapse
|
3
|
Gao T, Qian T, Wang T, Su Y, Qiu H, Tang W, Xing Q, Wang L. T0901317, a liver X receptor agonist, ameliorates perinatal white matter injury induced by ischemia and hypoxia in neonatal rats. Neurosci Lett 2023; 793:136994. [PMID: 36460235 DOI: 10.1016/j.neulet.2022.136994] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022]
Abstract
Perinatal white matter injury (PWMI) can lead to permanent neurological damage in preterm infants and bring a huge economic burden to their families and society. Liver X receptors (LXRs) are transcription factors that have been confirmed to mediate the myelination process under physiological conditions and are involved in regulating neurogenesis in adult animal models of acute and chronic cerebral ischemia. However, the role of LXRs in PWMI induced by both ischemic and hypoxic stimulation in the immature brain has not been reported. Herein, we investigated the role of LXRs in a neonatal rat model of white matter loss after hypoxia-ischemia (HI) injury through intraperitoneal injection of the LXR agonist T0901317 (T09) 1 day before and 15 min postinjury. The in vivo data showed that T09 treatment significantly facilitated myelination and ameliorated neurological behavior after PWMI. Moreover, T09 enhanced the proliferation of oligodendrocyte lineage cells and reduced microgliosis and astrogliosis in the microenvironment for oligodendrocytes (OLs), maintaining a healthy microenvironment for myelinating OLs. In vitro data suggested that the expression of the myelin-related genes Plp and Cnpase was increased in OLN-93 cells after T09 intervention compared with OLN-93 cells injured by oxygen and glucose deprivation (OGD). In primary mixed astrocytes/microglia cells, T09 also reduced the expression of Il6, Cox2, Tnfa and Il10 that was induced by OGD. Mechanistically, the mRNA expression level and the protein level of ATP binding cassette subfamily A member 1 (Abca1) decreased after HI injury, and the protective effect of T09 might be related to the activation of the LXRβ-ABCA1 signaling pathway. Our study revealed the protective role of LXRs in myelination and white matter homeostasis, providing a potential therapeutic option for PWMI.
Collapse
Affiliation(s)
- Ting Gao
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China; Department of Neonatology, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Tianyang Qian
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Tianwei Wang
- Department of Neurosurgery, Shanghai Jiaotong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Yu Su
- Department of Neonatology, Children's Hospital of Fudan University and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Han Qiu
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Wan Tang
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Qinghe Xing
- Department of Neonatology, Children's Hospital of Fudan University and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Laishuan Wang
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China; Department of Neonatology, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai 201102, China.
| |
Collapse
|
4
|
Li S, Wan L, Sun J, Yan W, Wang J, Gao X, Ren C, Hao L. New Insights into Mechanisms of Ferroptosis Associated with Immune Infiltration in Neonatal Hypoxic-Ischemic Brain Damage. Cells 2022; 11:3778. [PMID: 36497037 PMCID: PMC9736049 DOI: 10.3390/cells11233778] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The mechanisms underlying ferroptosis in neonatal hypoxic-ischemic brain damage (HIBD) remain unclear. METHOD Four microarray datasets were collected from the GEO database (three mRNA datasets GSE23317, GSE144456, and GSE112137, and one miRNA microarray dataset GSE184939). Weighted gene co-expression network analysis (WGCNA) was used to identify modules of HIBD-related genes. The ferroptosis-related genes were extracted from FerrDb, of which closely correlated to HIBD were obtained after the intersection with existing HIBD's DEGs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, as well as protein-protein interaction (PPI) network analysis were subsequently conducted. Cytoscape was used to identify central genes. Immune cell infiltration analysis was performed by the CIBERSORT algorithm. RESULT Fifty-six ferroptosis-related differentially expressed genes (FRDEGs) were screened, mainly related to ferroptosis, autophagy, hypoxia response, metabolic pathways, and immune inflammation. The seven optimal hub FRDEGs were obtained by intersecting with key modules of WGCNA. Then, the expression levels of the seven optimal hub FRDEGs were validated in the GSE144456 and GSE112137 datasets, and the ferroptosis-related mRNA-miRNA network was established. In addition, this study revealed immune cell infiltration in the HIBD cerebral cortex and the interaction between immune cells. Moreover, notably, specific FRDEGs were strongly positively correlated with immune function. CONCLUSIONS The mechanism of ferroptosis is intricate and closely related to neonatal HIBD. Therefore, targeting ferroptosis-related gene therapy and immunotherapy may have therapeutic prospects for neonatal HIBD.
Collapse
Affiliation(s)
- Shangbin Li
- Department of Pediatrics, First Affiliated Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang 050000, China
| | - Li Wan
- Institute for Epidemic Disease Control, Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang 050000, China
| | - Jingfei Sun
- Department of Pediatrics, Zhengding People’s Hospital, Shijiazhuang 050000, China
| | - Weichen Yan
- Department of Pediatrics, First Affiliated Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang 050000, China
| | - Jie Wang
- Department of Pediatrics, First Affiliated Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang 050000, China
| | - Xiong Gao
- Department of Pediatrics, First Affiliated Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang 050000, China
| | - Changjun Ren
- Department of Pediatrics, First Affiliated Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang 050000, China
| | - Ling Hao
- Department of Pediatrics, First Affiliated Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang 050000, China
| |
Collapse
|
5
|
Lu F, Ferriero DM, Jiang X. Cholesterol in Brain Development and Perinatal Brain Injury: More than a Building Block. Curr Neuropharmacol 2022; 20:1400-1412. [PMID: 34766894 PMCID: PMC9881076 DOI: 10.2174/1570159x19666211111122311] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/21/2021] [Accepted: 10/06/2021] [Indexed: 11/22/2022] Open
Abstract
The central nervous system (CNS) is enriched with important classes of lipids, in which cholesterol is known to make up a major portion of myelin sheaths, besides being a structural and functional unit of CNS cell membranes. Unlike in the adult brain, where the cholesterol pool is relatively stable, cholesterol is synthesized and accumulated at the highest rate in the developing brain to meet the needs of rapid brain growth at this stage, which is also a critical period for neuroplasticity. In addition to its biophysical role in membrane organization, cholesterol is crucial for brain development due to its involvement in brain patterning, myelination, neuronal differentiation, and synaptogenesis. Thus any injuries to the immature brain that affect cholesterol homeostasis may have long-term adverse neurological consequences. In this review, we describe the unique features of brain cholesterol biosynthesis and metabolism, cholesterol trafficking between different cell types, and highlight cholesterol-dependent biological processes during brain maturation. We also discuss the association of impaired cholesterol homeostasis with several forms of perinatal brain disorders in term and preterm newborns, including hypoxic-ischemic encephalopathy. Strategies targeting the cholesterol pathways may open new avenues for the diagnosis and treatment of developmental brain injury.
Collapse
Affiliation(s)
- Fuxin Lu
- Departments of Neurology, University of California San Francisco, San Francisco, CA, USA;
| | - Donna M. Ferriero
- Departments of Neurology, University of California San Francisco, San Francisco, CA, USA; ,Departments of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Xiangning Jiang
- Departments of Neurology, University of California San Francisco, San Francisco, CA, USA; ,Address correspondence to this author at the Department of Neurology, University of California, San Francisco, 675 Nelson Rising Lane Room 494, San Francisco, CA 94158, USA; Tel/Fax: 415-502-7285; E-mail:
| |
Collapse
|
6
|
Network Pharmacology Study to Elucidate the Key Targets of Underlying Antihistamines against COVID-19. Curr Issues Mol Biol 2022; 44:1597-1609. [PMID: 35723367 PMCID: PMC9164076 DOI: 10.3390/cimb44040109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/02/2022] [Accepted: 04/06/2022] [Indexed: 12/19/2022] Open
Abstract
Antihistamines have potent efficacy to alleviate COVID-19 (Coronavirus disease 2019) symptoms such as anti-inflammation and as a pain reliever. However, the pharmacological mechanism(s), key target(s), and drug(s) are not documented well against COVID-19. Thus, we investigated to decipher the most significant components and how its research methodology was utilized by network pharmacology. The list of 32 common antihistamines on the market were retrieved via drug browsing databases. The targets associated with the selected antihistamines and the targets that responded to COVID-19 infection were identified by the Similarity Ensemble Approach (SEA), SwissTargetPrediction (STP), and PubChem, respectively. We described bubble charts, the Pathways-Targets-Antihistamines (PTA) network, and the protein–protein interaction (PPI) network on the RPackage via STRING database. Furthermore, we utilized the AutoDock Tools software to perform molecular docking tests (MDT) on the key targets and drugs to evaluate the network pharmacological perspective. The final 15 targets were identified as core targets, indicating that Neuroactive ligand–receptor interaction might be the hub-signaling pathway of antihistamines on COVID-19 via bubble chart. The PTA network was constructed by the RPackage, which identified 7 pathways, 11 targets, and 30 drugs. In addition, GRIN2B, a key target, was identified via topological analysis of the PPI network. Finally, we observed that the GRIN2B-Loratidine complex was the most stable docking score with −7.3 kcal/mol through molecular docking test. Our results showed that Loratadine might exert as an antagonist on GRIN2B via the neuroactive ligand–receptor interaction pathway. To sum up, we elucidated the most potential antihistamine, a key target, and a key pharmacological pathway as alleviating components against COVID-19, supporting scientific evidence for further research.
Collapse
|
7
|
Effect of Neuroprotective Magnesium Sulfate Treatment on Brain Transcription Response to Hypoxia Ischemia in Neonate Mice. Int J Mol Sci 2021; 22:ijms22084253. [PMID: 33923910 PMCID: PMC8074012 DOI: 10.3390/ijms22084253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 11/21/2022] Open
Abstract
MgSO4 is widely used in the prevention of preterm neurological disabilities but its modes of action remain poorly established. We used a co-hybridization approach using the transcriptome in 5-day old mice treated with a single dose of MgSO4 (600 mg/kg), and/or exposed to hypoxia-ischemia (HI). The transcription of hundreds of genes was altered in all the groups. MgSO4 mainly produced repressions culminating 6 h after injection. Bio-statistical analysis revealed the repression of synaptogenesis and axonal development. The putative targets of MgSO4 were Mnk1 and Frm1. A behavioral study of adults did not detect lasting effects of neonatal MgSO4 and precluded NMDA-receptor-mediated side effects. The effects of MgSO4 plus HI exceeded the sum of the effects of separate treatments. MgSO4 prior to HI reduced inflammation and the innate immune response probably as a result of cytokine inhibition (Ccl2, Ifng, interleukins). Conversely, MgSO4 had little effect on HI-induced transcription by RNA-polymerase II. De novo MgSO4-HI affected mitochondrial function through the repression of genes of oxidative phosphorylation and many NAD-dehydrogenases. It also likely reduced protein translation by the repression of many ribosomal proteins, essentially located in synapses. All these effects appeared under the putative regulatory MgSO4 induction of the mTORC2 Rictor coding gene. Lasting effects through Sirt1 and Frm1 could account for this epigenetic footprint.
Collapse
|