1
|
Ravegnini E, Trabocchi A, Lenci E. Small-molecule RNA ligands: a patent review (2018-2024). Expert Opin Ther Pat 2025:1-19. [PMID: 40219716 DOI: 10.1080/13543776.2025.2492759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/17/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
INTRODUCTION Targeting three-dimensional RNA structures with traditional drug-like small molecules is gaining wide attention in both the academia and the pharmaceutical industries, due to their good oral bioavailability, cheap production cost, and the possibility of fine-tuning ADMET properties, which represent a powerful alternative to the current RNA-targeted therapies, including ASO and siRNA. As RNAs are involved in nearly all the physiological and pathological processes, small molecules RNA ligands can have a plethora of different therapeutic applications, spanning from cancer to infectious and neurological diseases. AREAS COVERED This review describes patents concerning small molecules RNA ligands published within January 2018 and October 2024, searched through Espacenet, Patentscope, and Google Patents databases. EXPERT OPINION The number of patents that has been released in the last few years demonstrates the relevance of targeting RNA structures for the development of next generation chemotherapeutic agents and antiviral/antibacterial drugs, even though this field is still in its infancy and many issues still need to be resolved, in particular related to selectivity. An emerging approach to considerably limiting side effects is presented by RIBOTAC derivatives, as promoting a selective RNase-L mediated RNA degradation allows to significantly reduce the dose of the compound.
Collapse
Affiliation(s)
- Elia Ravegnini
- Department of Chemistry "Ugo Schiff", University of Florence, Florence, Italy
| | - Andrea Trabocchi
- Department of Chemistry "Ugo Schiff", University of Florence, Florence, Italy
| | - Elena Lenci
- Department of Chemistry "Ugo Schiff", University of Florence, Florence, Italy
| |
Collapse
|
2
|
Pourhoseini Dehkordi N, Saffar B, Mokhtari A, Asadi Samani L, Amini A. Utilizing shRNA-expressing lentivectors for viral hemorrhagic septicemia virus suppression via NV gene targeting. Front Vet Sci 2025; 12:1508470. [PMID: 40256606 PMCID: PMC12006114 DOI: 10.3389/fvets.2025.1508470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 03/18/2025] [Indexed: 04/22/2025] Open
Abstract
Background Viral hemorrhagic septicemia virus or VHSV, is a single-stranded negative-sense RNA virus that is a member of the Rhabdoviridae family's genus Novirhabdovirus. Its major host is rainbow trout. Severe clinical symptoms and a higher mortality rate in fish populations are caused by this virus. Regretfully, there is currently no medication or vaccination available to treat it. Recently, there has been a lot of interest in developing antiviral therapies employing interfering RNA (RNAi), particularly shRNA. This study used shRNAs targeting the NV gene of VHSV to test its effectiveness in preventing VHSV proliferation in cell culture. Using the VHSV-Fil3 strain, the appropriate oligonucleotide sequence for NV gene coding was chosen for this purpose. Subsequently, shRNA molecules were designed and synthesized with the aid of shRNA design tools. The shRNAs were transfected into HEK293T cells after being cloned into the suitable vectors using the third generation of lentiviral packaging system. The CS2-2 cell line was subsequently transduced with these shRNA-expressing lentiviruses in order to challenge the VHS virus. Finally, TCID50 was employed to calculate the viral infectious titer in order to assess the effectiveness of shRNAs. Results According to the final calculations, all shRNAs exhibited antiviral activity. When compared to the control groups, the shRNAs 1, 2, and 3 considerably lowered VHSV output in the TCID50 test (nearly 99.99, 99.99, and 99.99%, respectively, compared to cells with VHSV inoculation and nearly 99.98, 99.98, and 99.97%, respectively, compared to cells with VHSV and scrambled vector inoculation). Conclusion Thus, it can be declared that RNA interference (RNAi) has the potential to be an exceptionally effective therapeutic option against viruses like VHSV.
Collapse
Affiliation(s)
| | - Behnaz Saffar
- Department of Genetics, Shahrekord University, Shahrekord, Iran
| | - Azam Mokhtari
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | | | - Azam Amini
- Department of Genetics, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
3
|
Driscoll J, Gondaliya P, Zinn DA, Jain R, Yan IK, Dong H, Patel T. Using aptamers for targeted delivery of RNA therapies. Mol Ther 2025; 33:1344-1367. [PMID: 40045577 PMCID: PMC11997499 DOI: 10.1016/j.ymthe.2025.02.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/15/2025] [Accepted: 02/28/2025] [Indexed: 03/21/2025] Open
Abstract
RNA-based treatments that can silence, introduce, or restore gene expression to target human diseases are emerging as a new class of therapeutics. Despite their potential for use in broad applications, their clinical translation has been hampered by a need for delivery to specific cells and tissues. Cell targeting based on the use of aptamers provides an approach for improving their delivery to the desired sites of action. Aptamers are nucleic acid oligonucleotides with structural conformations that provide a robust capacity for the recognition of cell surface molecules and that can be used for directed targeting. Aptamers can be directly conjugated to therapeutic RNA molecules, in the form of aptamer-oligonucleotide chimeras, or incorporated into nanoparticles used as vehicles for the delivery of these therapeutics. Herein, we discuss the use of aptamers for cell-directed RNA therapies, provide an overview of different types of aptamer-targeting RNA therapeutics, and review examples of their therapeutic applications. Challenges associated with manufacturing and scaling up production, and key considerations for their clinical implementation, are also outlined.
Collapse
Affiliation(s)
- Julia Driscoll
- Department of Transplantation, Mayo Clinic, Jacksonville, FL, USA
| | - Piyush Gondaliya
- Department of Transplantation, Mayo Clinic, Jacksonville, FL, USA
| | - Dylan A Zinn
- Department of Transplantation, Mayo Clinic, Jacksonville, FL, USA
| | - Rupesh Jain
- Department of Transplantation, Mayo Clinic, Jacksonville, FL, USA
| | - Irene K Yan
- Department of Transplantation, Mayo Clinic, Jacksonville, FL, USA
| | - Haidong Dong
- Department of Urology, Mayo Clinic, Rochester, MN, USA; Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - Tushar Patel
- Department of Transplantation, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
4
|
Dehghan F, Metanat Y, Askarizadeh M, Ahmadi E, Moradi V. Novel gene manipulation approaches to unlock the existing bottlenecks of CAR-NK cell therapy. Front Cell Dev Biol 2025; 12:1511931. [PMID: 40007761 PMCID: PMC11850336 DOI: 10.3389/fcell.2024.1511931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/10/2024] [Indexed: 02/27/2025] Open
Abstract
Currently, CAR-T cell therapy is known as an efficacious treatment for patients with relapsed/refractory hematologic malignancies. Nonetheless, this method faces several bottlenecks, including low efficacy for solid tumors, lethal adverse effects, high cost of autologous products, and the risk of GvHD in allogeneic settings. As a potential alternative, CAR-NK cell therapy can overcome most of the limitations of CAR-T cell therapy and provide an off-the-shelf, safer, and more affordable product. Although published results from preclinical and clinical studies with CAR-NK cells are promising, several bottlenecks must be unlocked to maximize the effectiveness of CAR-NK cell therapy. These bottlenecks include low in vivo persistence, low trafficking into tumor sites, modest efficacy in solid tumors, and sensitivity to immunosuppressive tumor microenvironment. In recent years, advances in gene manipulation tools and strategies have laid the groundwork to overcome the current bottlenecks of CAR-NK cell therapy. This review will introduce the existing gene manipulation tools and discuss their advantages and disadvantages. We will also explore how these tools can enhance CAR-NK cell therapy's safety and efficacy.
Collapse
Affiliation(s)
- Fatemeh Dehghan
- Department of Anatomy and Molecular Biology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Yekta Metanat
- Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Sistan and Baluchestan Province, Iran
| | - Mandana Askarizadeh
- School of Biology and Ecology, University of Maine, Orono, ME, United States
| | - Ehsan Ahmadi
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Moradi
- Department of Hematology and Blood Transfusion Sciences, School of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Doctor Y, Sanghvi M, Mali P. A Manual for Genome and Transcriptome Engineering. IEEE Rev Biomed Eng 2025; 18:250-267. [PMID: 39514364 PMCID: PMC11875898 DOI: 10.1109/rbme.2024.3494715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Genome and transcriptome engineering have emerged as powerful tools in modern biotechnology, driving advancements in precision medicine and novel therapeutics. In this review, we provide a comprehensive overview of the current methodologies, applications, and future directions in genome and transcriptome engineering. Through this, we aim to provide a guide for tool selection, critically analyzing the strengths, weaknesses, and best use cases of these tools to provide context on their suitability for various applications. We explore standard and recent developments in genome engineering, such as base editors and prime editing, and provide insight into tool selection for change of function (knockout, deletion, insertion, substitution) and change of expression (repression, activation) contexts. Advancements in transcriptome engineering are also explored, focusing on established technologies like antisense oligonucleotides (ASOs) and RNA interference (RNAi), as well as recent developments such as CRISPR-Cas13 and adenosine deaminases acting on RNA (ADAR). This review offers a comparison of different approaches to achieve similar biological goals, and consideration of high-throughput applications that enable the probing of a variety of targets. This review elucidates the transformative impact of genome and transcriptome engineering on biological research and clinical applications that will pave the way for future innovations in the field.
Collapse
Affiliation(s)
| | | | - Prashant Mali
- Department of Bioengineering, University of California, San Diego, CA 92039, USA
| |
Collapse
|
6
|
Razavi Z, Soltani M, Souri M, van Wijnen AJ. CRISPR innovations in tissue engineering and gene editing. Life Sci 2024; 358:123120. [PMID: 39426588 DOI: 10.1016/j.lfs.2024.123120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/22/2024] [Accepted: 10/05/2024] [Indexed: 10/21/2024]
Abstract
The CRISPR/Cas9 system is a powerful tool for genome editing, utilizing the Cas9 nuclease and programmable single guide RNA (sgRNA). However, the Cas9 nuclease activity can be disabled by mutation, resulting in catalytically deactivated Cas9 (dCas9). By combining the customizable sgRNA with dCas9, researchers can inhibit specific gene expression (CRISPR interference, CRISPRi) or activate the expression of a target gene (CRISPR activation, CRISPRa). In this review, we present the principles and recent advancements of these CRISPR technologies, as well as their delivery vectors. We also explore their applications in stem cell engineering and regenerative medicine, with a focus on in vitro stem cell fate manipulation and in vivo treatments. These include the prevention of retinal and muscular degeneration, neural regeneration, bone regeneration, cartilage tissue engineering, and the treatment of blood, skin, and liver diseases. Furthermore, we discuss the challenges of translating CRISPR technologies into regenerative medicine and provide future perspectives. Overall, this review highlights the potential of CRISPR in advancing regenerative medicine and offers insights into its application in various areas of research and therapy.
Collapse
Affiliation(s)
- ZahraSadat Razavi
- Physiology Research Center, Iran University Medical Sciences, Tehran, Iran; Biochemistry Research Center, Iran University Medical Sciences, Tehran, Iran
| | - Madjid Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran; Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada; Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, Canada; Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada; Centre for Sustainable Business, International Business University, Toronto, Canada.
| | - Mohammad Souri
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Andre J van Wijnen
- Department of Biochemistry, University of Vermont, Burlington, VT, USA; Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
7
|
Syahrani RA, Wanandi SI, Arumsari S, Nihayah S, Watanabe Y, Mizuno S, Louisa M, Wuyung PE. Dual sgRNA-directed knockout survivin gene expression using CRISPR/Cas9 technology for editing survivin gene in triple-negative breast cancer. NARRA J 2024; 4:e1177. [PMID: 39816115 PMCID: PMC11731936 DOI: 10.52225/narra.v4i3.1177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/11/2024] [Indexed: 01/18/2025]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-associated nuclease 9 (CRISPR/Cas9) offers a robust approach for genome manipulation, particularly in cancer therapy. Given its high expression in triple-negative breast cancer (TNBC), targeting survivin with CRISPR/Cas9 holds promise as a therapeutic strategy. The aim of this study was to design specific single guide ribonucleic acid (sgRNA) for CRISPR/Cas9 to permanently knock out the survivin gene, exploring its potential as a therapeutic approach in breast cancer while addressing potential off-target effects. Survivin gene knockout was conducted in the TNBC cell line BT549. Intron 1, exon 2, and intron 2 of the survivin gene were selected as sgRNA targets. These sgRNAs were designed in silico and then cloned into a CRISPR/Cas9 expression plasmid. The cleavage activity was assessed using an enhanced green fluorescent protein (EGFP) expression plasmid. The sgRNAs with higher cleavage activity were selected for the establishment of knockout cells. After transfecting the plasmid into the cells, the success of the survivin gene knockout was validated at the deoxyribonucleic acid (DNA) level using polymerase chain reaction (PCR) and sequencing analysis, and at the protein expression level using Western blotting. The study found that sgRNAs survin1A (targeting intron 1), survex2A (targeting intron 2), and survin2A (targeting intron 2) demonstrated higher cleavage activities compared to the other sgRNAs. However, using the single sgRNA, survex2A did not generate mutations in the survivin gene. At the protein level, survivin was still expressed, indicating that a single sgRNA was ineffective in knocking out the survivin gene. In contrast, the combination of sgRNA survin1A and sgRNA survin2A was more effective in generating mutations in the survivin gene, resulting in the deletion of the entire exon 2 and leading to a loss of survivin protein expression. In conclusion, our work provides specific sgRNAs and demonstrates the utilization of dual sgRNAs strategy in the CRISPR/Cas9 technology to knock out the survivin gene, showing potential in breast cancer therapy.
Collapse
Affiliation(s)
- Resda A. Syahrani
- Doctoral Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Molecular Biology and Proteomics Core Facilities, Indonesia Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Septelia I. Wanandi
- Molecular Biology and Proteomics Core Facilities, Indonesia Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Sekar Arumsari
- Molecular Biology and Proteomics Core Facilities, Indonesia Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Silviatun Nihayah
- Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Yukihide Watanabe
- Department of Experimental Pathology, Graduate School of Comprehensive Human Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center and Trans-border Medical Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Melva Louisa
- Department of Pharmacology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Puspita E. Wuyung
- Animal Research Facilities, Indonesia Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
8
|
Zuo Y, He J, Zhou Z, Sun J, Ouyang C, Huang H, Wang Y, Liu H, Reed SH. Long non-coding RNA LIP interacts with PARP-1 influencing the efficiency of base excision repair. Noncoding RNA Res 2024; 9:649-658. [PMID: 38577022 PMCID: PMC10987297 DOI: 10.1016/j.ncrna.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/07/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024] Open
Abstract
In recent years, various long non-coding RNAs (lncRNAs) involved in DNA damage response (DDR) have been identified and studied to deepen our understanding. However, there are rare reports on the association between lncRNAs and base excision repair (BER). Our designed DNA microarray identified dozens of functionally unknown lncRNAs, and their transcription levels significantly increased upon exposure to DNA damage inducers. One of them, named LIP (Long noncoding RNA Interacts with PARP-1), exhibited a significant alteration in transcription in response to methyl methanesulfonate (MMS) and temozolomide (TMZ) treatments. LIP knockdown or knockout cell lines are sensitive to MMS and TMZ, indicating that LIP plays a crucial role in DDR. The loss or insufficiency of LIP significantly influences the efficiency of BER in human cells, and it suggests that LIP participates in the BER pathway. The interaction between LIP and a key factor in BER, poly (ADP-ribose) polymerase 1 (PARP-1), has been confirmed. We identified and characterized LIP, a lncRNA, which is involved in DDR, significantly influences BER efficiency, and interacts with the BER key factor PARP-1. This advances our understanding of the connection between lncRNAs and BER, presenting the potential for the discovery of new drug targets.
Collapse
Affiliation(s)
- You Zuo
- College of Biology, Hunan University, Changsha, 410082, PR China
| | - Jiaqian He
- College of Biology, Hunan University, Changsha, 410082, PR China
| | - Zheng Zhou
- College of Biology, Hunan University, Changsha, 410082, PR China
| | - Jingjing Sun
- College of Biology, Hunan University, Changsha, 410082, PR China
| | - Can Ouyang
- College of Biology, Hunan University, Changsha, 410082, PR China
| | - Hui Huang
- College of Biology, Hunan University, Changsha, 410082, PR China
| | - Yajuan Wang
- College of Biology, Hunan University, Changsha, 410082, PR China
| | - Hairong Liu
- College of Material Science and Engineering, Hunan University, Changsha, 410082, PR China
| | - Simon H. Reed
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, United Kingdom
| |
Collapse
|
9
|
Mahmood N, Choi JH, Wu PY, Dooling SW, Watkins TA, Huang Z, Lipman J, Zhao H, Yang A, Silversmith J, Inglebert Y, Koumenis C, Sharma V, Lacaille JC, Sossin WS, Khoutorsky A, McKinney RA, Costa-Mattioli M, Sonenberg N. The ISR downstream target ATF4 represses long-term memory in a cell type-specific manner. Proc Natl Acad Sci U S A 2024; 121:e2407472121. [PMID: 39047038 PMCID: PMC11295034 DOI: 10.1073/pnas.2407472121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
The integrated stress response (ISR), a pivotal protein homeostasis network, plays a critical role in the formation of long-term memory (LTM). The precise mechanism by which the ISR controls LTM is not well understood. Here, we report insights into how the ISR modulates the mnemonic process by using targeted deletion of the activating transcription factor 4 (ATF4), a key downstream effector of the ISR, in various neuronal and non-neuronal cell types. We found that the removal of ATF4 from forebrain excitatory neurons (but not from inhibitory neurons, cholinergic neurons, or astrocytes) enhances LTM formation. Furthermore, the deletion of ATF4 in excitatory neurons lowers the threshold for the induction of long-term potentiation, a cellular model for LTM. Transcriptomic and proteomic analyses revealed that ATF4 deletion in excitatory neurons leads to upregulation of components of oxidative phosphorylation pathways, which are critical for ATP production. Thus, we conclude that ATF4 functions as a memory repressor selectively within excitatory neurons.
Collapse
Affiliation(s)
- Niaz Mahmood
- Department of Biochemistry, McGill University, Montréal, QCH3A 1A3, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QCH3A 1A3, Canada
| | - Jung-Hyun Choi
- Department of Biochemistry, McGill University, Montréal, QCH3A 1A3, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QCH3A 1A3, Canada
| | - Pei You Wu
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QCH3G 0B1, Canada
| | - Sean W. Dooling
- Department of Neuroscience, Baylor College of Medicine, Houston, TX77030
| | - Trent A. Watkins
- Department of Neuroscience, Baylor College of Medicine, Houston, TX77030
| | - Ziying Huang
- Department of Biochemistry, McGill University, Montréal, QCH3A 1A3, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QCH3A 1A3, Canada
| | - Jesse Lipman
- Department of Biochemistry, McGill University, Montréal, QCH3A 1A3, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QCH3A 1A3, Canada
| | - Hanjie Zhao
- Department of Biochemistry, McGill University, Montréal, QCH3A 1A3, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QCH3A 1A3, Canada
| | - Anqi Yang
- Department of Biochemistry, McGill University, Montréal, QCH3A 1A3, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QCH3A 1A3, Canada
| | - Jake Silversmith
- Department of Biochemistry, McGill University, Montréal, QCH3A 1A3, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QCH3A 1A3, Canada
| | - Yanis Inglebert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QCH3G 0B1, Canada
- Department of Neurosciences, Center for Interdisciplinary Research on Brain and Learning, Research Group on Neural Signaling and Circuitry, University of Montréal, Montréal, QCH3T1J4, Canada
| | - Constantinos Koumenis
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA19104-5156
| | - Vijendra Sharma
- Department of Biomedical Sciences, University of Windsor, Windsor, ONN9B 3P4, Canada
| | - Jean-Claude Lacaille
- Department of Neurosciences, Center for Interdisciplinary Research on Brain and Learning, Research Group on Neural Signaling and Circuitry, University of Montréal, Montréal, QCH3T1J4, Canada
| | - Wayne S. Sossin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QCH3A 2B4, Canada
| | - Arkady Khoutorsky
- Department of Anesthesia and Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, QCH4A3J1, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QCH3A 2B4, Canada
| | - R. Anne McKinney
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QCH3G 0B1, Canada
| | - Mauro Costa-Mattioli
- Department of Neuroscience, Baylor College of Medicine, Houston, TX77030
- Memory and Brain Research Center, Baylor College of Medicine, Houston, TX77030
- Altos Labs Inc., Bay Area Institute of Science, Redwood City, CA94065
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montréal, QCH3A 1A3, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QCH3A 1A3, Canada
| |
Collapse
|
10
|
Khamaikawin W, Saisawang C, Tassaneetrithep B, Bhukhai K, Phanthong P, Borwornpinyo S, Phuphuakrat A, Pasomsub E, Chaisavaneeyakorn S, Anurathapan U, Apiwattanakul N, Hongeng S. CRISPR/Cas9 genome editing of CCR5 combined with C46 HIV-1 fusion inhibitor for cellular resistant to R5 and X4 tropic HIV-1. Sci Rep 2024; 14:10852. [PMID: 38741006 PMCID: PMC11091187 DOI: 10.1038/s41598-024-61626-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
Hematopoietic stem-cell (HSC) transplantation using a donor with a homozygous mutation in the HIV co-receptor CCR5 (CCR5Δ32/Δ32) holds great promise as a cure for HIV-1. Previously, there were three patients that had been reported to be completely cured from HIV infection by this approach. However, finding a naturally suitable Human Leukocyte Antigen (HLA)-matched homozygous CCR5Δ32 donor is very difficult. The prevalence of this allele is only 1% in the Caucasian population. Therefore, additional sources of CCR5Δ32/Δ32 HSCs are required. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated (Cas) system is one method to mediate CCR5 knockout in HSCs that has been successfully employed as a gene editing tool in clinical trials. Additional anti-HIV-1 strategies are still required for broad-spectrum inhibition of HIV-1 replication. Here in this study, we combined an additional anti-HIV-1 therapy, which is C46, a cell membrane-anchored HIV-1 fusion inhibitor with the CRISPR/Cas9 mediated knockout CCR5. The combined HIV-1 therapeutic genes were investigated for the potential prevention of both CCR5 (R5)- and CXCR4 (X4)-tropic HIV-1 infections in the MT4CCR5 cell line. The combinatorial CRISPR/Cas9 therapies were superior compared to single method therapy for achieving the HIV-1 cure strategy and shows potential for future applications.
Collapse
Affiliation(s)
- Wannisa Khamaikawin
- Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Chonticha Saisawang
- Center for Advanced Therapeutics, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, 73170, Thailand
| | - Boonrat Tassaneetrithep
- Center of Research Excellence in Immunoregulation, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Kanit Bhukhai
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Phetcharat Phanthong
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Suparerk Borwornpinyo
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Angsana Phuphuakrat
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Ekawat Pasomsub
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Sujittra Chaisavaneeyakorn
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Usanarat Anurathapan
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Nopporn Apiwattanakul
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
11
|
Hruska-Plochan M, Wiersma VI, Betz KM, Mallona I, Ronchi S, Maniecka Z, Hock EM, Tantardini E, Laferriere F, Sahadevan S, Hoop V, Delvendahl I, Pérez-Berlanga M, Gatta B, Panatta M, van der Bourg A, Bohaciakova D, Sharma P, De Vos L, Frontzek K, Aguzzi A, Lashley T, Robinson MD, Karayannis T, Mueller M, Hierlemann A, Polymenidou M. A model of human neural networks reveals NPTX2 pathology in ALS and FTLD. Nature 2024; 626:1073-1083. [PMID: 38355792 PMCID: PMC10901740 DOI: 10.1038/s41586-024-07042-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/08/2024] [Indexed: 02/16/2024]
Abstract
Human cellular models of neurodegeneration require reproducibility and longevity, which is necessary for simulating age-dependent diseases. Such systems are particularly needed for TDP-43 proteinopathies1, which involve human-specific mechanisms2-5 that cannot be directly studied in animal models. Here, to explore the emergence and consequences of TDP-43 pathologies, we generated induced pluripotent stem cell-derived, colony morphology neural stem cells (iCoMoNSCs) via manual selection of neural precursors6. Single-cell transcriptomics and comparison to independent neural stem cells7 showed that iCoMoNSCs are uniquely homogenous and self-renewing. Differentiated iCoMoNSCs formed a self-organized multicellular system consisting of synaptically connected and electrophysiologically active neurons, which matured into long-lived functional networks (which we designate iNets). Neuronal and glial maturation in iNets was similar to that of cortical organoids8. Overexpression of wild-type TDP-43 in a minority of neurons within iNets led to progressive fragmentation and aggregation of the protein, resulting in a partial loss of function and neurotoxicity. Single-cell transcriptomics revealed a novel set of misregulated RNA targets in TDP-43-overexpressing neurons and in patients with TDP-43 proteinopathies exhibiting a loss of nuclear TDP-43. The strongest misregulated target encoded the synaptic protein NPTX2, the levels of which are controlled by TDP-43 binding on its 3' untranslated region. When NPTX2 was overexpressed in iNets, it exhibited neurotoxicity, whereas correcting NPTX2 misregulation partially rescued neurons from TDP-43-induced neurodegeneration. Notably, NPTX2 was consistently misaccumulated in neurons from patients with amyotrophic lateral sclerosis and frontotemporal lobar degeneration with TDP-43 pathology. Our work directly links TDP-43 misregulation and NPTX2 accumulation, thereby revealing a TDP-43-dependent pathway of neurotoxicity.
Collapse
Affiliation(s)
| | - Vera I Wiersma
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Katharina M Betz
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Izaskun Mallona
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Silvia Ronchi
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- MaxWell Biosystems AG, Zurich, Switzerland
| | - Zuzanna Maniecka
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Eva-Maria Hock
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Elena Tantardini
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Florent Laferriere
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Sonu Sahadevan
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Vanessa Hoop
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Igor Delvendahl
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | | - Beatrice Gatta
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Martina Panatta
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | | | - Dasa Bohaciakova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| | - Puneet Sharma
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
- NCCR RNA and Disease Technology Platform, Bern, Switzerland
| | - Laura De Vos
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Karl Frontzek
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Tammaryn Lashley
- Queen Square Brain Bank for Neurological diseases, Department of Movement Disorders, UCL Institute of Neurology, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Mark D Robinson
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | | | - Martin Mueller
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Andreas Hierlemann
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | | |
Collapse
|
12
|
Chen Y, Luo X, Kang R, Cui K, Ou J, Zhang X, Liang P. Current therapies for osteoarthritis and prospects of CRISPR-based genome, epigenome, and RNA editing in osteoarthritis treatment. J Genet Genomics 2024; 51:159-183. [PMID: 37516348 DOI: 10.1016/j.jgg.2023.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/31/2023]
Abstract
Osteoarthritis (OA) is one of the most common degenerative joint diseases worldwide, causing pain, disability, and decreased quality of life. The balance between regeneration and inflammation-induced degradation results in multiple etiologies and complex pathogenesis of OA. Currently, there is a lack of effective therapeutic strategies for OA treatment. With the development of CRISPR-based genome, epigenome, and RNA editing tools, OA treatment has been improved by targeting genetic risk factors, activating chondrogenic elements, and modulating inflammatory regulators. Supported by cell therapy and in vivo delivery vectors, genome, epigenome, and RNA editing tools may provide a promising approach for personalized OA therapy. This review summarizes CRISPR-based genome, epigenome, and RNA editing tools that can be applied to the treatment of OA and provides insights into the development of CRISPR-based therapeutics for OA treatment. Moreover, in-depth evaluations of the efficacy and safety of these tools in human OA treatment are needed.
Collapse
Affiliation(s)
- Yuxi Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Xiao Luo
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Rui Kang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Kaixin Cui
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Jianping Ou
- Center for Reproductive Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Xiya Zhang
- Center for Reproductive Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong 510630, China.
| | - Puping Liang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| |
Collapse
|
13
|
Martinsen E, Jinnurine T, Subramani S, Rogne M. Advances in RNA therapeutics for modulation of 'undruggable' targets. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 204:249-294. [PMID: 38458740 DOI: 10.1016/bs.pmbts.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Over the past decades, drug discovery utilizing small pharmacological compounds, fragment-based therapeutics, and antibody therapy have significantly advanced treatment options for many human diseases. However, a major bottleneck has been that>70% of human proteins/genomic regions are 'undruggable' by the above-mentioned approaches. Many of these proteins constitute essential drug targets against complex multifactorial diseases like cancer, immunological disorders, and neurological diseases. Therefore, alternative approaches are required to target these proteins or genomic regions in human cells. RNA therapeutics is a promising approach for many of the traditionally 'undruggable' targets by utilizing methods such as antisense oligonucleotides, RNA interference, CRISPR/Cas-based genome editing, aptamers, and the development of mRNA therapeutics. In the following chapter, we will put emphasis on recent advancements utilizing these approaches against challenging drug targets, such as intranuclear proteins, intrinsically disordered proteins, untranslated genomic regions, and targets expressed in inaccessible tissues.
Collapse
Affiliation(s)
| | | | - Saranya Subramani
- Pioneer Research AS, Oslo Science Park, Oslo, Norway; Department of Pharmacy, Section for Pharmacology and Pharmaceutical Biosciences, University of Oslo, Oslo, Norway
| | - Marie Rogne
- Pioneer Research AS, Oslo Science Park, Oslo, Norway; Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
14
|
Czarnek M, Kochan J, Wawro M, Myrczek R, Bereta J. Construction of a Set of Novel Transposon Vectors for Efficient Silencing of Protein and lncRNA Genes via CRISPR Interference. Mol Biotechnol 2023; 65:1598-1607. [PMID: 36707469 PMCID: PMC10471651 DOI: 10.1007/s12033-023-00675-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 01/16/2023] [Indexed: 01/29/2023]
Abstract
In recent years, CRISPR interference (CRISPRi) technology of gene silencing has emerged as a promising alternative to RNA interference (RNAi) surpassing the latter in terms of efficiency and accuracy. Here, we describe the construction of a set of transposon vectors suitable for constitutive or tetracycline (doxycycline)-inducible silencing of genes of interest via CRISPRi method and conferring three different antibiotic resistances, using vectors available via Addgene repository. We have analyzed the performance of the new vectors in the silencing of mouse Adam10 and human lncRNA, NORAD. The empty vector variants can be used to efficiently silence any genes of interest.
Collapse
Affiliation(s)
- Maria Czarnek
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7, 30-387, Kraków, Poland
| | - Jakub Kochan
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7, 30-387, Kraków, Poland
| | - Mateusz Wawro
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7, 30-387, Kraków, Poland
| | - Rafał Myrczek
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7, 30-387, Kraków, Poland
| | - Joanna Bereta
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
15
|
Lloyd BA, Han Y, Roth R, Zhang B, Aoto J. Neurexin-3 subsynaptic densities are spatially distinct from Neurexin-1 and essential for excitatory synapse nanoscale organization in the hippocampus. Nat Commun 2023; 14:4706. [PMID: 37543682 PMCID: PMC10404257 DOI: 10.1038/s41467-023-40419-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/26/2023] [Indexed: 08/07/2023] Open
Abstract
Proteins critical for synaptic transmission are non-uniformly distributed and assembled into regions of high density called subsynaptic densities (SSDs) that transsynaptically align in nanocolumns. Neurexin-1 and neurexin-3 are essential presynaptic adhesion molecules that non-redundantly control NMDAR- and AMPAR-mediated synaptic transmission, respectively, via transsynaptic interactions with distinct postsynaptic ligands. Despite their functional relevance, fundamental questions regarding the nanoscale properties of individual neurexins, their influence on the subsynaptic organization of excitatory synapses and the mechanisms controlling how individual neurexins engage in precise transsynaptic interactions are unknown. Using Double Helix 3D dSTORM and neurexin mouse models, we identify neurexin-3 as a critical presynaptic adhesion molecule that regulates excitatory synapse nano-organization in hippocampus. Furthermore, endogenous neurexin-1 and neurexin-3 form discrete and non-overlapping SSDs that are enriched opposite their postsynaptic ligands. Thus, the nanoscale organization of neurexin-1 and neurexin-3 may explain how individual neurexins signal in parallel to govern different synaptic properties.
Collapse
Affiliation(s)
- Brian A Lloyd
- University of Colorado Anschutz School of Medicine, Department of Pharmacology, Aurora, CO, 80045, USA
| | - Ying Han
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Rebecca Roth
- University of Colorado Anschutz School of Medicine, Department of Pharmacology, Aurora, CO, 80045, USA
| | - Bo Zhang
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Jason Aoto
- University of Colorado Anschutz School of Medicine, Department of Pharmacology, Aurora, CO, 80045, USA.
| |
Collapse
|
16
|
Yap CC, Digilio L, McMahon L, Winckler B. "Disruption of Golgi markers by two RILP-directed shRNAs in neurons: a new role for RILP or a neuron-specific off-target phenotype?". J Biol Chem 2023:104916. [PMID: 37315786 PMCID: PMC10362152 DOI: 10.1016/j.jbc.2023.104916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/04/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023] Open
Abstract
In neurons, degradation of dendritic cargos requires RAB7 and dynein-mediated retrograde transport to somatic lysosomes. To test if the dynein adaptor RILP (RAB-interacting lysosomal protein) mediated the recruitment of dynein to late endosomes for retrograde transport in dendrites, we obtained several knockdown reagents previously validated in non-neuronal cells. Striking endosomal phenotypes elicited by one shRILP plasmid were not reproduced by another one. Furthermore, we discovered a profound depletion of Golgi/TGN markers for both shRILP plasmids. This Golgi disruption was only observed in neurons and could not be rescued by re-expression of RILP. This Golgi phenotype was also not found in neurons treated with siRILP or gRILP/Cas9. Lastly, we tested if a different RAB protein that interacts with RILP, namely the Golgi-associated RAB34, might be responsible for the loss of Golgi markers. Expression of a dominant-negative RAB34 did indeed cause changes in Golgi staining in a small subset of neurons but manifested as fragmentation rather than loss of staining. Unlike in non-neuronal cells, interference with RAB34 did not cause dispersal of lysosomes in neurons. Based on multiple lines of experimentation, we conclude that the neuronal Golgi phenotype observed with shRILP is likely off-target in this cell type specifically. Any observed disruptions of endosomal trafficking caused by shRILP in neurons might thus be downstream of Golgi disruption. It would be interesting to identify the actual target for this neuronal Golgi phenotype. Cell type-specific off-target phenotypes therefore likely occur in neurons, necessitating re-validation of reagents that were previously validated in other cell types.
Collapse
Affiliation(s)
- Chan Choo Yap
- Department of Cell Biology, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall 3226, Charlottesville, VA 22908, USA.
| | - Laura Digilio
- Department of Cell Biology, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall 3226, Charlottesville, VA 22908, USA
| | - Lloyd McMahon
- Department of Cell Biology, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall 3226, Charlottesville, VA 22908, USA
| | - Bettina Winckler
- Department of Cell Biology, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall 3226, Charlottesville, VA 22908, USA.
| |
Collapse
|
17
|
Bemben MA, Sandoval M, Le AA, Won S, Chau VN, Lauterborn JC, Incontro S, Li KH, Burlingame AL, Roche KW, Gall CM, Nicoll RA, Diaz-Alonso J. Contrastsing synaptic roles of MDGA1 and MDGA2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542333. [PMID: 37720016 PMCID: PMC10503827 DOI: 10.1101/2023.05.25.542333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Neurodevelopmental disorders are frequently linked to mutations in synaptic organizing molecules. MAM domain containing glycosylphosphatidylinositol anchor 1 and 2 (MDGA1 and MDGA2) are a family of synaptic organizers suggested to play an unusual role as synaptic repressors, but studies offer conflicting evidence for their localization. Using epitope-tagged MDGA1 and MDGA2 knock-in mice, we found that native MDGAs are expressed throughout the brain, peaking early in postnatal development. Surprisingly, endogenous MDGA1 was enriched at excitatory, but not inhibitory, synapses. Both shRNA knockdown and CRISPR/Cas9 knockout of MDGA1 resulted in cell-autonomous, specific impairment of AMPA receptor-mediated synaptic transmission, without affecting GABAergic transmission. Conversely, MDGA2 knockdown/knockout selectively depressed NMDA receptor-mediated transmission but enhanced inhibitory transmission. Our results establish that MDGA2 acts as a synaptic repressor, but only at inhibitory synapses, whereas both MDGAs are required for excitatory transmission. This nonoverlapping division of labor between two highly conserved synaptic proteins is unprecedented.
Collapse
Affiliation(s)
- Michael A. Bemben
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Matthew Sandoval
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92617, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| | - Aliza A. Le
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92617, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| | - Sehoon Won
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Vivian N. Chau
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92617, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| | - Julie C. Lauterborn
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92617, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| | - Salvatore Incontro
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, CA 94158, USA
- Present address: Unité de Neurobiologie des canaux Ioniques et de la Synapse (UNIS), UMR1072, INSERM, Aix-Marseille University, Marseille, 13015, France
| | - Kathy H. Li
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alma L. Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Katherine W. Roche
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Christine M. Gall
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92617, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| | - Roger A. Nicoll
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, CA 94158, USA
- Department of Physiology, University of California at San Francisco, San Francisco, CA, 94158, USA
| | - Javier Diaz-Alonso
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92617, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| |
Collapse
|
18
|
Yap CC, Digilio L, McMahon L, Winckler B. "Disruption of Golgi markers by two RILP-directed shRNAs in neurons: a new role for RILP or a neuron-specific off-target phenotype?". BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.08.531742. [PMID: 36945482 PMCID: PMC10028860 DOI: 10.1101/2023.03.08.531742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In neurons, degradation of dendritic cargos requires RAB7 and dynein-mediated retrograde transport to somatic lysosomes. In order to test if the dynein adaptor RILP (RAB-interacting lysosomal protein) mediated the recruitment of dynein to late endosomes for retrograde transport in dendrites, we obtained several knockdown reagents which had been previously validated in non-neuronal cells. We found that striking endosomal phenotypes elicited by one shRILP plasmid were not reproduced by another one. Furthermore, we discovered a profound depletion of Golgi/TGN markers for both shRILP plasmids. This Golgi disruption was only observed in neurons and could not be rescued by re-expression of RILP. This Golgi phenotype was also not found in neurons treated with siRILP or gRILP/Cas9. Lastly, we tested if a different RAB protein that interacts with RILP, namely the Golgi-associated RAB34, might be responsible for the loss of Golgi markers. Expression of a dominant-negative RAB34 did indeed cause changes in Golgi staining in a small subset of neurons but manifested as fragmentation rather than loss of markers. Unlike in non-neuronal cells, interference with RAB34 did not cause dispersal of lysosomes in neurons. Based on multiple lines of experimentation, we conclude that the neuronal Golgi phenotype observed with shRILP is likely off-target in this cell type specifically. Any observed disruptions of endosomal trafficking caused by shRILP in neurons might thus be downstream of Golgi disruption. Different approaches will be needed to test if RILP is required for late endosomal transport in dendrites. Cell type-specific off-target phenotypes therefore likely occur in neurons, making it prudent to re-validate reagents that were previously validated in other cell types.
Collapse
Affiliation(s)
- Chan Choo Yap
- Corresponding authors: Bettina Winckler and Chan Choo Yap, Phone: (434)924-5528/5526. ,
| | | | | | - Bettina Winckler
- Corresponding authors: Bettina Winckler and Chan Choo Yap, Phone: (434)924-5528/5526. ,
| |
Collapse
|