1
|
Adermark L, Cadeddu D, Lucente E, Danielsson K, Söderpalm B, Ericson M. Morphine self-administration decreases intrinsic excitability of accumbal medium spiny neurons and suppresses the innate immune system in male Wistar rats. Neurochem Int 2025; 186:105965. [PMID: 40127781 DOI: 10.1016/j.neuint.2025.105965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/18/2025] [Accepted: 03/21/2025] [Indexed: 03/26/2025]
Abstract
INTRODUCTION Morphine alleviates severe pain but is addictive and associated with weakened immune system. Interestingly, the immunosuppressive effects have been linked to central circuits including the nucleus accumbens shell (NAc), suggesting that there might be a direct link between reward processing in the NAc and weakened immune system. The overall aim with this study was to assess the impact displayed by morphine self-administration on neuroplasticity in the NAc shell and circulating white blood cells. METHODS Wistar rats received morphine injections over ten days, and locomotor activity was monitored. Next, morphine self-administration, and relapse drinking after forced abstinence, were assessed. Lastly, electrophysiological recordings were conducted in the NAc ex vivo to define neurophysiological adaptations, and hematological analysis were conducted in parallel. RESULTS While ten days of morphine injections were not sufficient to affect morphine self-administration, behavioral sensitization to the locomotor stimulatory properties of morphine was observed and further correlated with the amount of morphine consumed following forced abstinence. Electrophysiological slice recordings demonstrated no effect on excitatory neurotransmission, but the intrinsic excitability of NAc neurons was significantly depressed compared to water drinking controls. In addition, hematological analysis demonstrated a significant decline in the number of white blood cells, especially monocytes and neutrophils, while erythrocytes were not affected. The amount of circulating white blood cells further correlated with morphine intake, but not with neurophysiological parameters. CONCLUSION The data presented here demonstrates that morphine self-administration produces accumbal neuroplasticity and biological transformations that could contribute to the addictive and immunosuppressive properties of morphine.
Collapse
Affiliation(s)
- Louise Adermark
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Davide Cadeddu
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Erika Lucente
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Klara Danielsson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bo Söderpalm
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Beroendekliniken, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mia Ericson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
2
|
Domi A, Cadeddu D, Lucente E, Gobbo F, Edvardsson C, Petrella M, Jerlhag E, Ericson M, Söderpalm B, Adermark L. Pre- and postsynaptic signatures in the prelimbic cortex associated with "alcohol use disorder" in the rat. Neuropsychopharmacology 2024; 49:1851-1860. [PMID: 38755284 PMCID: PMC11473806 DOI: 10.1038/s41386-024-01887-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/20/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
The transition to alcohol use disorder (AUD) involves persistent neuroadaptations in executive control functions primarily regulated by the medial prefrontal cortex. However, the neurophysiological correlates to behavioral manifestations of AUD are not fully defined. The association between cortical neuroadaptations and behavioral manifestations of addiction was studied using a multi-symptomatic operant model based on the DSM-5 diagnostic criteria for AUD. This model aimed to characterize an AUD-vulnerable and AUD-resistant subpopulation of outbred male Wistar rats and was combined with electrophysiological measurements in the prelimbic cortex (PL). Mirroring clinical observations, rats exhibited individual variability in their vulnerability to develop AUD-like behavior, including motivation to seek for alcohol (crit 1), increased effort to obtain the substance (crit 2), and continued drinking despite negative consequences (crit 3). Only a small subset of rats met all the aforementioned AUD criteria (3 crit, AUD-vulnerable), while a larger fraction was considered AUD-resilient (0 crit). The development of AUD-like behavior was characterized by disruptions in glutamatergic synaptic activity, involving decreased frequency of spontaneous excitatory postsynaptic currents (sEPSCs) and heightened intrinsic excitability in layers 2/3 PL pyramidal neurons. These alterations were concomitant with a significant impairment in the ability of mGlu2/3 receptors to negatively regulate glutamate release in the PL but not in downstream regions like the basolateral amygdala or nucleus accumbens core. In conclusion alterations in PL synaptic activity were strongly associated with individual addiction scores, indicating their role as potential markers of the behavioral manifestations linked to AUD psychopathology.
Collapse
Affiliation(s)
- Ana Domi
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, 413 90, Sweden.
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, 413 45, Sweden.
| | - Davide Cadeddu
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, 413 90, Sweden
| | - Erika Lucente
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, 413 90, Sweden
| | - Francesco Gobbo
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Christian Edvardsson
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, 413 90, Sweden
| | - Michele Petrella
- Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences, Linköping, Sweden
| | - Elisabet Jerlhag
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, 413 90, Sweden
| | - Mia Ericson
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, 413 90, Sweden
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, 413 45, Sweden
| | - Bo Söderpalm
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, 413 45, Sweden
- The Clinic for Addiction and Dependency, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Louise Adermark
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, 413 90, Sweden
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, 413 45, Sweden
| |
Collapse
|
3
|
Andersson J, Berglund K, Irmel R, Adermark L. Prospective Association Between Tobacco Use and at-Risk Alcohol Consumption Among Swedish Adolescents: Outlining the Influence of Tobacco Product, Frequency of Use and Gender in the LoRDIA Cohort. Tob Use Insights 2024; 17:1179173X241298524. [PMID: 39494130 PMCID: PMC11528605 DOI: 10.1177/1179173x241298524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024] Open
Abstract
Introduction: Tobacco use is not only a major risk factor for morbidity and mortality but also associated with alcohol misuse. While personality traits may be driving this association, the psychoactive component of tobacco, nicotine, may also be a major risk factor. The aim with this study was to further assess the prospective association between tobacco use and alcohol consumption, with special emphasis on the role of the tobacco product used (cigarettes and Swedish snus), frequency of use, and gender. Methods: Data was extracted from the prospective cohort Longitudinal Research on Development In Adolescence (LoRDIA), following Swedish adolescents over four waves (∼13 to 17 years of age). Tobacco use was reported with respect to product used and frequency of use, while alcohol use was assessed using AUDIT-C, as well as frequency of use within the last year. Results: Use of tobacco, independent of product used and gender, was associated with increased alcohol consumption. High frequency of use and dual use strengthened to association. Individuals initiating tobacco use during the study period progressively increased their frequency of alcohol consumption compared to non-users during consecutive waves. Furthermore, tobacco use was associated with at-risk consumption of alcohol at follow up, even when adjusting for previous alcohol inebriation, socioeconomical factors, gender and novelty seeking. Conclusions: The data presented here suggests that nicotine use during adolescence, and especially dual use, is a major risk factor for future hazardous alcohol intake. This finding is especially important considering the escalated use of nicotine pouches, which in many ways resembles Swedish snus. From a public health perspective, preventive measures and policies designed to counteract all forms of nicotine use among youths is warranted.
Collapse
Affiliation(s)
- Johanna Andersson
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kristina Berglund
- Institute of Psychology, The Faculty of Social Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Robin Irmel
- Institute of Psychology, The Faculty of Social Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Louise Adermark
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Chellian R, Behnood-Rod A, Bruijnzeel AW. Mifepristone decreases nicotine intake in dependent and non-dependent adult rats. J Psychopharmacol 2024; 38:280-296. [PMID: 38332661 PMCID: PMC11061865 DOI: 10.1177/02698811241230255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
BACKGROUND Addiction to tobacco and nicotine products has adverse health effects and afflicts more than a billion people worldwide. Therefore, there is an urgent need for new treatments to reduce tobacco and nicotine use. Glucocorticoid receptor blockade shows promise as a novel treatment for drug abuse and stress-related disorders. AIM These studies aim to investigate whether glucocorticoid receptor blockade with mifepristone diminishes the reinforcing properties of nicotine in rats with intermittent or daily long access to nicotine. METHODS The rats self-administered 0.06 mg/kg/inf of nicotine for 6 h per day, with either intermittent or daily access for 4 weeks before treatment with mifepristone. Daily nicotine self-administration models regular smoking, while intermittent nicotine self-administration models occasional smoking. To determine whether the rats were dependent, they were treated with the nicotinic acetylcholine receptor antagonist mecamylamine, and somatic signs were recorded. RESULTS The rats with intermittent access to nicotine had a higher level of nicotine intake per session than those with daily access but only the rats with daily access to nicotine showed signs of physical dependence. Furthermore, mecamylamine increased nicotine intake during the first hour of access in rats with daily access but not in those with intermittent access. Mifepristone decreased total nicotine intake in rats with intermittent and daily access to nicotine. Moreover, mifepristone decreased the distance traveled and rearing in the open field test and operant responding for food pellets. CONCLUSION These findings indicate that mifepristone decreases nicotine intake but this effect may be partially attributed to the sedative effects of mifepristone.
Collapse
Affiliation(s)
| | - Azin Behnood-Rod
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
5
|
Lagström O, Vestin E, Söderpalm B, Ericson M, Adermark L. Subregion specific neuroadaptations in the female rat striatum during acute and protracted withdrawal from nicotine. J Neural Transm (Vienna) 2024; 131:83-94. [PMID: 37500938 PMCID: PMC10769920 DOI: 10.1007/s00702-023-02678-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023]
Abstract
Epidemiological studies and clinical observations suggest that nicotine, a major contributor of the global burden of disease, acts in a partially sex specific manner. Still, preclinical research has primarily been conducted in males. More research is thus required to define the effects displayed by nicotine on the female brain. To this end, female rats received 15 injections of either nicotine (0.36mg/kg) or saline, over a 3-week period and were then followed for up to 3 months. Behavioral effects of nicotine were assessed using locomotor activity measurements and elevated plus maze, while neurophysiological changes were monitored using ex vivo electrophysiological field potential recordings conducted in subregions of the dorsal and ventral striatum. Behavioral assessments demonstrated a robust sensitization to the locomotor stimulatory properties of nicotine, but monitored behaviors on the elevated plus maze were not affected during acute (24 h) or protracted (3 months) withdrawal. Electrophysiological recordings revealed a selective increase in excitatory neurotransmission in the nucleus accumbens shell and dorsomedial striatum during acute withdrawal. Importantly, accumbal neuroadaptations in nicotine-treated rats correlated with locomotor behavior, supporting a role for the nucleus accumbens in behavioral sensitization. While no sustained neuroadaptations were observed following 3 months withdrawal, there was an overall trend towards reduced inhibitory tone. Together, these findings suggest that nicotine produces selective transformations of striatal brain circuits that may drive specific behaviors associated with nicotine exposure. Furthermore, our observations suggest that sex-specificity should be considered when evaluating long-term effects by nicotine on the brain.
Collapse
Affiliation(s)
- Oona Lagström
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Edvin Vestin
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bo Söderpalm
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Beroendekliniken, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mia Ericson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Louise Adermark
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|