1
|
Vernon LE. Fetal Consultation, Delivery Planning, and Perinatal Transition for Congenital Neurologic Disorders. Clin Perinatol 2025; 52:199-213. [PMID: 40350208 DOI: 10.1016/j.clp.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Anomalies of the central nervous system (CNS) are a frequent referral indication for perinatal evaluation and management through fetal neurology consultation. This multidisciplinary field is evolving quickly to provide adequate care throughout the perinatal continuum. In this article, we will highlight current practice standards in fetal neurology as well as unique challenges, important considerations for fetal and postnatal care of infants with congenital neurologic conditions, and future outlooks for improving the care of patients and families impacted by CNS anomalies.
Collapse
Affiliation(s)
- Laura E Vernon
- Division of Pediatric Neurology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, 225 East Chicago Avenue, Box 51, Chicago, IL 60611, USA.
| |
Collapse
|
2
|
Catakli D, Erzurumlu Y, Asci H, Savran M, Sezer S. Evaluation of cytoprotective effects of cannabidiol on neuroinflammation and neurogenesis process in rat offsprings. Reprod Toxicol 2025; 132:108761. [PMID: 39615608 DOI: 10.1016/j.reprotox.2024.108761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024]
Abstract
Natural compounds include complex chemical compounds that exist in plants, animals and microbes. Due to their broad spectrum of pharmacological and biochemical actions, they have been widely used to treat multifactorial diseases, including cancer. In addition, their demonstrated neuroprotective properties strongly support their use in the treatment of neurological diseases. The present study investigated the effect of cannabidiol (CBD), which can easily cross the placental barrier and is known to have anti-inflammatory effects, on fetal neuroinflammation and neurogenesis in a systemic inflammation model during pregnancy. Herein, 12 weeks adult pregnant rats (n = 30) were randomly divided into 5 groups with 6 rats in each group as follows: Control, LPS (lipopolysaccharide, i.p.), LPS+CBD 5 mg/kg (i.p.), LPS+CBD10 mg/kg (i.p.) and LPS+CBD30 mg/kg (i.p.). After the injections, blood samples of rats were collected, fetuses and placentas were taken by hysterectomy. Histopathological analysis, immunohistochemical staining, ELISA and immunoblotting analysis were performed to investigate neuroinflammatory and neurogenesis parameters in fetal brain and placenta tissues. Our findings indicated that CBD administration importantly suppressed the inflammatory process in the rat fetal brain by decreasing interleukin-1beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) levels and diminishing nuclear factor kappa B (NF-κB) activation. Moreover, CBD inhibited lipopolysaccharide (LPS)-induced increasing levels of neuroinflammation-associated proteins, including glial fibrillary acidic protein (GFAP), S100B and cAMP-response element binding protein (CREB). These results suggest that CBD usage in pregnancy with inflammation conditions may be an effective therapeutic option for preventing conditions that may cause neuroinflammation in the fetal brain and adversely affect neurogenesis.
Collapse
Affiliation(s)
- Deniz Catakli
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Yalcin Erzurumlu
- Department of Biochemistry, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Turkey; Department of Drug Research and Development, Institute of Health Sciences, Suleyman Demirel University, Isparta, Turkey.
| | - Halil Asci
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Mehtap Savran
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Serdar Sezer
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey.
| |
Collapse
|
3
|
Kozin S, Kravtsov A, Ivashchenko L, Dotsenko V, Vasilyeva L, Vasilyev A, Tekutskaya E, Aksenov N, Baryshev M, Dorohova A, Fedulova L, Dzhimak S. Study of the Magnesium Comenate Structure, Its Neuroprotective and Stress-Protective Activity. Int J Mol Sci 2023; 24:ijms24098046. [PMID: 37175753 PMCID: PMC10178379 DOI: 10.3390/ijms24098046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
The crystal structure and the biological activity of a new coordination compound of magnesium ions with comenic acid, magnesium comenate, was characterized and studied. Quantitative and qualitative analysis of the compound was investigated in detail using elemental X-ray fluorescent analysis, thermal analysis, IR-Fourier spectrometry, UV spectroscopy, NMR spectroscopy, and X-ray diffraction analysis. Based on experimental analytical data, the empirical formula of magnesium comenate [Mg(HCom)2(H2O)6]·2H2O was established. This complex compound crystallizes with eight water molecules, six of which are the hydration shell of the Mg2+ cation, and two more molecules bind the [Mg(H2O)6]2+ aquacation with ionized ligand molecules by intermolecular hydrogen bonds. The packing of molecules in the crystal lattice is stabilized by a branched system of hydrogen bonds with the participation of solvate water molecules and oxygen atoms of various functional groups of ionized ligand molecules. With regard to the biological activity of magnesium comenate, a neuroprotective, stress-protective, and antioxidant effect was established in in vitro and in vivo models. In in vitro experiments, magnesium comenate protected cerebellar neurons from the toxic effects of glutamate and contributed to the preservation of neurite growth parameters under oxidative stress caused by hydrogen peroxide. In animal studies, magnesium comenate had a stress-protective and antioxidant effect in models of immobilization-cold stress. Oral administration of magnesium comenate at a dose of 2 mg/kg of animal body weight for 3 days before stress exposure and for 3 days during the stress period led to a decrease in oxidative damage and normalization of the antioxidant system of brain tissues against the background of induced stress. The obtained results indicate the advisability of further studies of magnesium comenate as a compound potentially applicable in medicine for the pharmacological correction of conditions associated with oxidative and excitotoxic damage to nerve cells.
Collapse
Affiliation(s)
- Stanislav Kozin
- Physics and Technology Faculty, Kuban State University, 350040 Krasnodar, Russia
- Laboratory of Problems of Stable Isotope Spreading in Living Systems, Federal Research Center the Southern Scientific Center, Russian Academy of Sciences, 344006 Rostov-on-Don, Russia
- Laboratory of Technologies for the Production of Physiologically Active Substances, Kuban State Technological University, 350072 Krasnodar, Russia
| | - Alexandr Kravtsov
- Physics and Technology Faculty, Kuban State University, 350040 Krasnodar, Russia
- Laboratory of Problems of Stable Isotope Spreading in Living Systems, Federal Research Center the Southern Scientific Center, Russian Academy of Sciences, 344006 Rostov-on-Don, Russia
- Laboratory of Technologies for the Production of Physiologically Active Substances, Kuban State Technological University, 350072 Krasnodar, Russia
| | - Lev Ivashchenko
- Laboratory of Technologies for the Production of Physiologically Active Substances, Kuban State Technological University, 350072 Krasnodar, Russia
- Faculty of Chemistry and High Technologies, Kuban State University, 350040 Krasnodar, Russia
| | - Victor Dotsenko
- Faculty of Chemistry and High Technologies, Kuban State University, 350040 Krasnodar, Russia
| | - Lada Vasilyeva
- Faculty of Chemistry and High Technologies, Kuban State University, 350040 Krasnodar, Russia
| | - Alexander Vasilyev
- Faculty of Chemistry and High Technologies, Kuban State University, 350040 Krasnodar, Russia
| | - Elena Tekutskaya
- Physics and Technology Faculty, Kuban State University, 350040 Krasnodar, Russia
| | - Nicolai Aksenov
- Faculty of Chemistry and Pharmacy, North Caucasus Federal University, 355017 Stavropol, Russia
| | - Mikhail Baryshev
- Physics and Technology Faculty, Kuban State University, 350040 Krasnodar, Russia
- Laboratory of Problems of Stable Isotope Spreading in Living Systems, Federal Research Center the Southern Scientific Center, Russian Academy of Sciences, 344006 Rostov-on-Don, Russia
| | - Anna Dorohova
- Physics and Technology Faculty, Kuban State University, 350040 Krasnodar, Russia
- Laboratory of Problems of Stable Isotope Spreading in Living Systems, Federal Research Center the Southern Scientific Center, Russian Academy of Sciences, 344006 Rostov-on-Don, Russia
| | - Lilia Fedulova
- Experimental Clinic-Laboratory of Biologically Active Substances of Animal Origin, The V. M. Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences, 109316 Moscow, Russia
| | - Stepan Dzhimak
- Physics and Technology Faculty, Kuban State University, 350040 Krasnodar, Russia
- Laboratory of Problems of Stable Isotope Spreading in Living Systems, Federal Research Center the Southern Scientific Center, Russian Academy of Sciences, 344006 Rostov-on-Don, Russia
| |
Collapse
|
4
|
Peyvandi S, Rollins C. Fetal Brain Development in Congenital Heart Disease. Can J Cardiol 2023; 39:115-122. [PMID: 36174913 PMCID: PMC9905309 DOI: 10.1016/j.cjca.2022.09.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/08/2022] [Accepted: 09/18/2022] [Indexed: 02/07/2023] Open
Abstract
Neurodevelopmental impairments are the most common extracardiac morbidities among patients with complex congenital heart disease (CHD) across the lifespan. Robust clinical research in this area has revealed several cardiac, medical, and social factors that can contribute to neurodevelopmental outcome in the context of CHD. Studies using brain magnetic resonance imaging (MRI) have been instrumental in identifying quantitative and qualitative difference in brain structure and maturation in this patient population. Full-term newborns with complex CHD are known to have abnormal microstructural and metabolic brain development with patterns similar to those seen in premature infants at approximately 34 to 36 weeks' gestation. With the advent of fetal brain MRI, these brain abnormalities are now documented as they begin in utero, as early as the third trimester. Importantly, disturbed brain development in utero is now known to be independently associated with neurodevelopmental outcome in early childhood, making the prenatal period an important timeframe for potential interventions. Advances in fetal brain MRI provide a robust imaging tool to use in future neuroprotective clinical trials. The causes of abnormal fetal brain development are multifactorial and include cardiovascular physiology, genetic abnormalities, placental impairment, and other environmental and social factors. This review provides an overview of current knowledge of brain development in the context of CHD, common prenatal imaging tools to evaluate the developing fetal brain in CHD, and known risk factors contributing to brain immaturity.
Collapse
Affiliation(s)
- Shabnam Peyvandi
- University of California San Francisco Benioff Children's Hospital, San Francisco, California, USA.
| | - Caitlin Rollins
- Boston Children's Hospital and Harvard University Departments of Neurology, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Kratimenos P, Vij A, Vidva R, Koutroulis I, Delivoria-Papadopoulos M, Gallo V, Sathyanesan A. Computational analysis of cortical neuronal excitotoxicity in a large animal model of neonatal brain injury. J Neurodev Disord 2022; 14:26. [PMID: 35351004 PMCID: PMC8966144 DOI: 10.1186/s11689-022-09431-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/23/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Neonatal hypoxic brain injury is a major cause of intellectual and developmental disability. Hypoxia causes neuronal dysfunction and death in the developing cerebral cortex due to excitotoxic Ca2+-influx. In the translational piglet model of hypoxic encephalopathy, we have previously shown that hypoxia overactivates Ca2+/Calmodulin (CaM) signaling via Sarcoma (Src) kinase in cortical neurons, resulting in overexpression of proapoptotic genes. However, identifying the exact relationship between alterations in neuronal Ca2+-influx, molecular determinants of cell death, and the degree of hypoxia in a dynamic system represents a significant challenge. METHODS We used experimental and computational methods to identify molecular events critical to the onset of excitotoxicity-induced apoptosis in the cerebral cortex of newborn piglets. We used 2-3-day-old piglets (normoxic [Nx], hypoxic [Hx], and hypoxic + Src-inhibitor-treatment [Hx+PP2] groups) for biochemical analysis of ATP production, Ca2+-influx, and Ca2+/CaM-dependent protein kinase kinase 2 (CaMKK2) expression. We then used SimBiology to build a computational model of the Ca2+/CaM-Src-kinase signaling cascade, simulating Nx, Hx, and Hx+PP2 conditions. To evaluate our model, we used Sobol variance decomposition, multiparametric global sensitivity analysis, and parameter scanning. RESULTS Our model captures important molecular trends caused by hypoxia in the piglet brain. Incorporating the action of Src kinase inhibitor PP2 further validated our model and enabled predictive analysis of the effect of hypoxia on CaMKK2. We determined the impact of a feedback loop related to Src phosphorylation of NMDA receptors and activation kinetics of CaMKII. We also identified distinct modes of signaling wherein Ca2+ level alterations following Src kinase inhibition may not be a linear predictor of changes in Bax expression. Importantly, our model indicates that while pharmacological pre-treatment significantly reduces the onset of abnormal Ca2+-influx, there exists a window of intervention after hypoxia during which targeted modulation of Src-NMDAR interaction kinetics in combination with PP2 administration can reduce Ca2+-influx and Bax expression to similar levels as pre-treatment. CONCLUSIONS Our model identifies new dynamics of critical components in the Ca2+/CaM-Src signaling pathway leading to neuronal injury and provides a feasible framework for drug efficacy studies in translational models of neonatal brain injury for the prevention of intellectual and developmental disabilities.
Collapse
Affiliation(s)
- Panagiotis Kratimenos
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, 111 Michigan Avenue, Washington, DC, 20010, USA. .,Department of Pediatrics, Division of Neonatology, Children's National Hospital, Washington DC, USA. .,George Washington University School of Medicine and Health Sciences, Washington DC, USA.
| | - Abhya Vij
- George Washington University School of Medicine and Health Sciences, Washington DC, USA
| | | | - Ioannis Koutroulis
- George Washington University School of Medicine and Health Sciences, Washington DC, USA.,Department of Pediatrics, Division of Emergency Medicine, Children's National Hospital, Washington, DC, USA.,Center for Genetic Medicine Research, Children's National Research Institute and Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | | | - Vittorio Gallo
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, 111 Michigan Avenue, Washington, DC, 20010, USA.,George Washington University School of Medicine and Health Sciences, Washington DC, USA
| | - Aaron Sathyanesan
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, 111 Michigan Avenue, Washington, DC, 20010, USA. .,George Washington University School of Medicine and Health Sciences, Washington DC, USA.
| |
Collapse
|
6
|
Chen S, Xu D, Fan L, Fang Z, Wang X, Li M. Roles of N-Methyl-D-Aspartate Receptors (NMDARs) in Epilepsy. Front Mol Neurosci 2022; 14:797253. [PMID: 35069111 PMCID: PMC8780133 DOI: 10.3389/fnmol.2021.797253] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Epilepsy is one of the most common neurological disorders characterized by recurrent seizures. The mechanism of epilepsy remains unclear and previous studies suggest that N-methyl-D-aspartate receptors (NMDARs) play an important role in abnormal discharges, nerve conduction, neuron injury and inflammation, thereby they may participate in epileptogenesis. NMDARs belong to a family of ionotropic glutamate receptors that play essential roles in excitatory neurotransmission and synaptic plasticity in the mammalian CNS. Despite numerous studies focusing on the role of NMDAR in epilepsy, the relationship appeared to be elusive. In this article, we reviewed the regulation of NMDAR and possible mechanisms of NMDAR in epilepsy and in respect of onset, development, and treatment, trying to provide more evidence for future studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Man Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|