1
|
Wang J, Jung WB, Gertner RS, Park H, Ham D. Synaptic connectivity mapping among thousands of neurons via parallelized intracellular recording with a microhole electrode array. Nat Biomed Eng 2025:10.1038/s41551-025-01352-5. [PMID: 39934437 DOI: 10.1038/s41551-025-01352-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/15/2025] [Indexed: 02/13/2025]
Abstract
The massive parallelization of neuronal intracellular recording, which enables the measurement of synaptic signals across a neuronal network, and thus the mapping and characterization of synaptic connections, is an open challenge, with the state of the art being limited to the mapping of about 300 synaptic connections. Here we report a 4,096 platinum/platinum-black microhole electrode array fabricated on a complementary metal-oxide semiconductor chip for parallel intracellular recording and thus for synaptic-connectivity mapping. The microhole-neuron interface, together with current-clamp electronics in the underlying semiconductor chip, allowed a 90% average intracellular coupling rate in rat neuronal cultures, generating network-wide intracellular-recording data with abundant synaptic signals. From these data, we extracted more than 70,000 plausible synaptic connections among more than 2,000 neurons and catalogued them into electrical synaptic connections and into inhibitory, weak/uneventful excitatory and strong/eventful excitatory chemical synaptic connections, with an estimated overall error rate of about 5%. This scale of synaptic-connectivity mapping and the ability to characterize synaptic connections is a step towards the functional connectivity mapping of large-scale neuronal networks.
Collapse
Affiliation(s)
- Jun Wang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Woo-Bin Jung
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Rona S Gertner
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Hongkun Park
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Department of Physics, Harvard University, Cambridge, MA, USA.
| | - Donhee Ham
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
2
|
Tian X, Lin TY, Lin PT, Tsai MJ, Chen H, Chen WJ, Lee CM, Tu CH, Hsu JC, Hsieh TH, Tung YC, Wang CK, Lin S, Chu LA, Tseng FG, Hsueh YP, Lee CH, Chen P, Chen BC. Rapid lightsheet fluorescence imaging of whole Drosophila brains at nanoscale resolution by potassium acrylate-based expansion microscopy. Nat Commun 2024; 15:10911. [PMID: 39738207 PMCID: PMC11685761 DOI: 10.1038/s41467-024-55305-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 12/08/2024] [Indexed: 01/01/2025] Open
Abstract
Taking advantage of the good mechanical strength of expanded Drosophila brains and to tackle their relatively large size that can complicate imaging, we apply potassium (poly)acrylate-based hydrogels for expansion microscopy (ExM), resulting in a 40x plus increased resolution of transgenic fluorescent proteins preserved by glutaraldehyde fixation in the nervous system. Large-volume ExM is realized by using an axicon-based Bessel lightsheet microscope, featuring gentle multi-color fluorophore excitation and intrinsic optical sectioning capability, enabling visualization of Tm5a neurites and L3 lamina neurons with photoreceptors in the optic lobe. We also image nanometer-sized dopaminergic neurons across the same intact iteratively expanded Drosophila brain, enabling us to measure the 3D expansion ratio. Here we show that at a tile scanning speed of ~1 min/mm3 with 1012 pixels over 14 hours, we image the centimeter-sized fly brain at an effective resolution comparable to electron microscopy, allowing us to visualize mitochondria within presynaptic compartments and Bruchpilot (Brp) scaffold proteins distributed in the central complex, enabling robust analyses of neurobiological topics.
Collapse
Affiliation(s)
- Xuejiao Tian
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Tzu-Yang Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Po-Ting Lin
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Min-Ju Tsai
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Hsin Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Wen-Jie Chen
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei, 11529, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Chia-Ming Lee
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Chiao-Hui Tu
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Jui-Cheng Hsu
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Tung-Han Hsieh
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Chung Tung
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Chien-Kai Wang
- Department of Mechanical Engineering, National Taiwan University, Taipei, 106319, Taiwan
| | - Suewei Lin
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Li-An Chu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Fan-Gang Tseng
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Chi-Hon Lee
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Peilin Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Bi-Chang Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan.
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
3
|
Kim HY, Lee J, Kim HJ, Lee BE, Jeong J, Cho EJ, Jang HJ, Shin KJ, Kim MJ, Chae YC, Lee SE, Myung K, Baik JH, Suh PG, Kim JI. PLCγ1 in dopamine neurons critically regulates striatal dopamine release via VMAT2 and synapsin III. Exp Mol Med 2023; 55:2357-2375. [PMID: 37907739 PMCID: PMC10689754 DOI: 10.1038/s12276-023-01104-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 08/05/2023] [Accepted: 08/06/2023] [Indexed: 11/02/2023] Open
Abstract
Dopamine neurons are essential for voluntary movement, reward learning, and motivation, and their dysfunction is closely linked to various psychological and neurodegenerative diseases. Hence, understanding the detailed signaling mechanisms that functionally modulate dopamine neurons is crucial for the development of better therapeutic strategies against dopamine-related disorders. Phospholipase Cγ1 (PLCγ1) is a key enzyme in intracellular signaling that regulates diverse neuronal functions in the brain. It was proposed that PLCγ1 is implicated in the development of dopaminergic neurons, while the physiological function of PLCγ1 remains to be determined. In this study, we investigated the physiological role of PLCγ1, one of the key effector enzymes in intracellular signaling, in regulating dopaminergic function in vivo. We found that cell type-specific deletion of PLCγ1 does not adversely affect the development and cellular morphology of midbrain dopamine neurons but does facilitate dopamine release from dopaminergic axon terminals in the striatum. The enhancement of dopamine release was accompanied by increased colocalization of vesicular monoamine transporter 2 (VMAT2) at dopaminergic axon terminals. Notably, dopamine neuron-specific knockout of PLCγ1 also led to heightened expression and colocalization of synapsin III, which controls the trafficking of synaptic vesicles. Furthermore, the knockdown of VMAT2 and synapsin III in dopamine neurons resulted in a significant attenuation of dopamine release, while this attenuation was less severe in PLCγ1 cKO mice. Our findings suggest that PLCγ1 in dopamine neurons could critically modulate dopamine release at axon terminals by directly or indirectly interacting with synaptic machinery, including VMAT2 and synapsin III.
Collapse
Affiliation(s)
- Hye Yun Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jieun Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hyun-Jin Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Byeong Eun Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jaewook Jeong
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Eun Jeong Cho
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hyun-Jun Jang
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, 58245, Republic of Korea
| | - Kyeong Jin Shin
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Min Ji Kim
- Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Young Chan Chae
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Seung Eun Lee
- Research Animal Resource Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Ja-Hyun Baik
- Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Pann-Ghill Suh
- Korea Brain Research Institute (KBRI), Daegu, 41062, Republic of Korea
| | - Jae-Ick Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
4
|
Dual-expression system for blue fluorescent protein optimization. Sci Rep 2022; 12:10190. [PMID: 35715437 PMCID: PMC9206027 DOI: 10.1038/s41598-022-13214-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/23/2022] [Indexed: 11/08/2022] Open
Abstract
Spectrally diverse fluorescent proteins (FPs) provide straightforward means for multiplexed imaging of biological systems. Among FPs fitting standard color channels, blue FPs (BFPs) are characterized by lower brightness compared to other spectral counterparts. Furthermore, available BFPs were not systematically characterized for imaging in cultured mammalian cells and common model organisms. Here we introduce a pair of new BFPs, named Electra1 and Electra2, developed through hierarchical screening in bacterial and mammalian cells using a novel dual-expression vector. We performed systematic benchmarking of Electras against state-of-art BFPs in cultured mammalian cells and demonstrated their utility as fluorescent tags for structural proteins. The Electras variants were validated for multicolor neuroimaging in Caenorhabditis elegans, zebrafish larvae, and mice in comparison with one of the best in the class BFP mTagBFP2 using one-photon and two-photon microscopy. The developed BFPs are suitable for multicolor imaging of cultured cells and model organisms in vivo. We believe that the described dual-expression vector has a great potential to be adopted by protein engineers for directed molecular evolution of FPs.
Collapse
|