1
|
Osugo M, Wall MB, Selvaggi P, Zahid U, Finelli V, Chapman GE, Whitehurst T, Onwordi EC, Statton B, McCutcheon RA, Murray RM, Marques TR, Mehta MA, Howes OD. Striatal dopamine D2/D3 receptor regulation of human reward processing and behaviour. Nat Commun 2025; 16:1852. [PMID: 39984436 PMCID: PMC11845780 DOI: 10.1038/s41467-025-56663-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/23/2025] [Indexed: 02/23/2025] Open
Abstract
Signalling at dopamine D2/D3 receptors is thought to underlie motivated behaviour, pleasure experiences and emotional expression based on animal studies, but it is unclear if this is the case in humans or how this relates to neural processing of reward stimuli. Using a randomised, double-blind, placebo-controlled, crossover neuroimaging study, we show in healthy humans that sustained dopamine D2/D3 receptor antagonism for 7 days results in negative symptoms (impairments in motivated behaviour, hedonic experience, verbal and emotional expression) and that this is related to blunted striatal response to reward stimuli. In contrast, 7 days of partial D2/D3 agonism does not disrupt reward signalling, motivated behaviour or hedonic experience. Both D2/D3 antagonism and partial agonism induce motor impairments, which are not related to striatal reward response. These findings identify a central role for D2/D3 signalling and reward processing in the mechanism underlying motivated behaviour and emotional responses in humans, with implications for understanding neuropsychiatric disorders such as schizophrenia and Parkinson's disease.
Collapse
Affiliation(s)
- Martin Osugo
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK.
- South London and Maudsley NHS Foundation Trust, London, UK.
| | - Matthew B Wall
- Perceptive, London, UK
- Faculty of Medicine, Imperial College London, London, UK
| | - Pierluigi Selvaggi
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", Bari, Italy
| | - Uzma Zahid
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Valeria Finelli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - George E Chapman
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK
- Division of Psychiatry, Faculty of Brain Sciences, University College London, London, UK
- North London NHS Foundation Trust, London, UK
| | - Thomas Whitehurst
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK
- East London NHS Foundation Trust, London, UK
| | - Ellis Chika Onwordi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK
- East London NHS Foundation Trust, London, UK
- Centre for Psychiatry and Mental Health, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Ben Statton
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK
- Faculty of Medicine, Imperial College London, London, UK
| | - Robert A McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
- Oxford Health NHS Foundation Trust, Oxford, UK
| | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Tiago Reis Marques
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK
| | - Mitul A Mehta
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK.
- South London and Maudsley NHS Foundation Trust, London, UK.
| |
Collapse
|
2
|
Harsing LG, Szénási G, Fehér B, Miklya I. Regulation by Trace Amine-Associated Receptor 1 (TAAR1) of Dopaminergic-GABAergic Interaction in the Striatum: Effects of the Enhancer Drug (-)BPAP. Neurochem Res 2025; 50:94. [PMID: 39903411 PMCID: PMC11794408 DOI: 10.1007/s11064-025-04337-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 02/06/2025]
Abstract
Although it is well documented that the striatal GABAergic projection neurons receive excitatory and inhibitory dopaminergic innervation via D1 and D2 receptors, the trace amine-associated receptor 1 (TAAR1)-mediated regulation of this neural connection is much less studied. The presence of TAAR1 was originally detected in brain aminergic neurons, with recent evidence indicating its presence in striatal GABAergic neurons as well. The objective of the present study was to demonstrate the role of TAAR1 and signaling in dopaminergic-GABAergic interaction in the neural circuitry of the striatum. Besides trace amines, which are considered natural ligands for TAAR1, series of different exogenous drugs were identified to act on this receptor. Using the dopaminergic activity enhancer compound (-)BPAP ((-)-1-(benzofuran-2-yl)-2-propylaminopentane HCl), a potential agonist for TAAR1, we have found that it increased the electrical stimulation-induced [3H]dopamine release in rat striatal slices. This effect of (-)BPAP occurred parallel with increases of [3H]GABA release in striatum when used in 10-13-10-11 mol/L concentrations. The effects of (-)BPAP on the release of both neurotransmitters were bell-shaped. We speculated that the rising phase of the concentration-effect curves was evoked by an agonist effect of (-)BPAP on TAAR1 whereas the declining phase was a result of heterodimerization of TAAR1 with pre- and postsynaptic dopamine D2 receptors. The bell-shaped curves suggest that the (-)BPAP-induced heterodimerization of TAAR1 with dopamine D2 receptors may switch off TAAR1 signaling and switch on transduction coupled to D2 receptors. We also suggest that (-)BPAP increases synaptic strength in a hypothetical quadrilateral neuronal organization consisting of dopaminergic nerve ending, GABAergic neurons, trace amine-producing D cells, and supportive glial cell processes.
Collapse
Affiliation(s)
- Laszlo G Harsing
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Gábor Szénási
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Balázs Fehér
- Budapest University of Technology and Economics, Budapest, Hungary
| | - Ildikó Miklya
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
3
|
Palasz E, Gasiorowska-Bien A, Drapich P, Niewiadomski W, Niewiadomska G. Steady Moderate Exercise Confers Resilience Against Neurodegeneration and Neuroinflammation in a Mouse Model of Parkinson's Disease. Int J Mol Sci 2025; 26:1146. [PMID: 39940916 PMCID: PMC11818830 DOI: 10.3390/ijms26031146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Intensive aerobic exercise slows the progression of movement disorders in Parkinson's disease (PD) and is therefore recommended as an important component of treatment for PD patients. Studies in animal models of PD have shown that vigorous exercise has neuroprotective effects, and emerging evidence suggests that it may be a disease-modifying treatment in humans. However, many people with PD may not be able to participate in vigorous exercise because of multiple medical conditions that severely limit their physical activity. In this study, we have shown that chronic MPTP treatment in sedentary mice resulted in loss of dopaminergic neurons in the SNpc, decreased levels of neurotrophins, BDNF and GDNF, and increased levels of inflammatory markers and pro-inflammatory changes in immunocompetent cells. Moderate exercise, initiated both before and after chronic MPTP treatment, significantly attenuated the loss of dopaminergic neurons and increased BDNF and GDNF levels even above those in sedentary control mice. No signs of inflammation were observed in MPTP-treated mice, either when training began before or after MPTP treatment. Training induced beneficial changes in the dopaminergic system, increased levels of neurotrophins and suppression of inflammation were similar for both steady moderate (present data) and intense training (our previously published data). This suggests that there is a kind of saturation when the percentage of rescued dopaminergic neurons reaches the highest possible value, and therefore further increases in exercise intensity do not enhance neuroprotection. In conclusion, our present results compared with the previous data show that increasing exercise intensity beyond the level used in this study does not increase the neuroprotective effect of aerobic training in a mouse model of Parkinson's disease.
Collapse
Affiliation(s)
- Ewelina Palasz
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Anna Gasiorowska-Bien
- Clinical and Research Department of Applied Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.G.-B.); (P.D.); (W.N.)
| | - Patrycja Drapich
- Clinical and Research Department of Applied Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.G.-B.); (P.D.); (W.N.)
| | - Wiktor Niewiadomski
- Clinical and Research Department of Applied Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.G.-B.); (P.D.); (W.N.)
| | - Grazyna Niewiadomska
- Clinical and Research Department of Applied Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.G.-B.); (P.D.); (W.N.)
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| |
Collapse
|
4
|
Goto S. Functional pathology of neuroleptic-induced dystonia based on the striatal striosome-matrix dopamine system in humans. J Neurol Neurosurg Psychiatry 2025; 96:177-183. [PMID: 39631787 DOI: 10.1136/jnnp-2024-334545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024]
Abstract
Neuroleptic-induced dystonia is a source of great concern in clinical practice because of its iatrogenic nature which can potentially lead to life-threatening conditions. Since all neuroleptics (antipsychotics) share the ability to block the dopamine D2-type receptors (D2Rs) that are highly enriched in the striatum, this drug-induced dystonia is thought to be caused by decreased striatal D2R activity. However, how associations of striatal D2R inactivation with dystonia are formed remains elusive.A growing body of evidence suggests that imbalanced activities between D1R-expressing medium spiny neurons and D2R-expressing medium spiny neurons (D1-MSNs and D2-MSNs) in the striatal striosome-matrix system underlie the pathophysiology of various basal ganglia disorders including dystonia. Given the specificity of the striatal dopamine D1 system in 'humans', this article highlights the striatal striosome hypothesis in causing 'repetitive' and 'stereotyped' motor symptoms which are key clinical features of dystonia. It is suggested that exposure to neuroleptics may reduce striosomal D1-MSN activity and thereby cause dystonia symptoms. This may occur through an increase in the striatal cholinergic activity and the collateral inhibitory action of D2-MSNs onto neighbouring D1-MSNs within the striosome subfields. The article proposes a functional pathology of the striosome-matrix dopamine system for neuroleptic-induced acute dystonia or neuroleptic-withdrawal dystonia. A rationale for the effectiveness of dopaminergic or cholinergic pharmacotherapy is also provided for treating dystonias. This narrative review covers various aspects of the relevant field and provides a detailed discussion of the mechanisms of neuroleptic-induced dystonia.
Collapse
Affiliation(s)
- Satoshi Goto
- Research Organization of Science and Technology, Ritsumeikan University, Kyoto, Japan
| |
Collapse
|
5
|
Vounatsos MV, Gittis AH. GPe Projections to the Retrorubral Field Give Rise to Diverging GABAergic and DAergic Circuits. J Neurosci 2025; 45:e1446242024. [PMID: 39510836 PMCID: PMC11714346 DOI: 10.1523/jneurosci.1446-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024] Open
Abstract
The external segment of the globus pallidus (GPe) is involved in the modulation of the motor output and limbic components of behavior. The circuitry by which the GPe contributes to limbic components of behavior remains unknown. While many investigations have focused on the local circuitry within the basal ganglia, numerous GPe projections to target regions outside of the basal ganglia including the midbrain, thalamus, and cortex exist and remain largely unexplored. Here, by anatomical and electrophysiological means, we investigate the projections of the GPe to the retrorubral field (RRF), a dopaminergic nucleus in the caudal midbrain, in both male and female mice. We find that the GPe targets both GABAergic and DAergic neurons in the RRF (RRFDA and RRFGABA). Viral-assisted circuit mapping to trace the cell-type-specific projection patterns of RRFDA and RRFGABA populations revealed diverging pathways. The connectivity of GPe-recipient RRFDA neurons followed the traditional medial forebrain bundle path, innervating the ventral striatum and to a lesser extent the dorsal striatum. GPe-recipient RRFGABA neurons, on the other hand, displayed broad projections targeting numerous brain regions involved in limbic function including the parabrachial nucleus, amygdala, and hypothalamus. These contrasting projection profiles reveal multiple nodes by which the GPe is disynaptically connected to the limbic system, representing novel access points for the GPe to modulate limbic components of behavior.
Collapse
Affiliation(s)
- Maxime V Vounatsos
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
- Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania 15213
| | - Aryn H Gittis
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
- Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania 15213
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
6
|
Pruett DG, Hunter C, Scartozzi A, Shaw DM, Kraft SJ, Jones RM, Shuey MM, Below JE. Characterizing drug-induced stuttering in electronic health records. JOURNAL OF COMMUNICATION DISORDERS 2025; 113:106475. [PMID: 39615072 PMCID: PMC11948996 DOI: 10.1016/j.jcomdis.2024.106475] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 02/09/2025]
Abstract
PURPOSE Drug-induced stuttering is a phenomenon where the onset of stuttered speech is caused by exposure to pharmaceutical chemical substances. This acquired form of stuttering features many of the same overt speech behaviors as developmental stuttering. Investigations of drug-induced stuttering have been limited to adverse drug reaction reports and case studies. This study leveraged electronic health records (EHRs) at a major university medical center to identify drug-induced stuttering within medical notes, followed by classification of implicated drug types. METHODS A previous systematic EHR review of approximately 3 million individuals to identify cases of developmental stuttering resulted in 40 suspected cases of drug-induced stuttering. In the present study, these cases were reviewed comprehensively to evaluate: name, class, and mechanism of action of suspected drug, level of evidence for the implicated drug as a causal agent, therapeutic measures taken, and progression or remission of stuttering. RESULTS Eighteen different drugs were linked to possible drug-induced stuttering in 22 individuals. Antiseizure agents, CNS stimulants, and antidepressants were the most common drug classes implicated in drug-induced stuttering. topiramate (Topamax) was the most commonly implicated drug across all records reviewed. CONCLUSIONS This study represents the first analysis of health system data examining drugs implicated in drug-induced stuttering in a clinical setting. Augmenting previous case reports and database reviews, a variety of drugs were identified; however, improved reporting of drug-associated speech fluency changes within the EHR are needed to further amass evidence for suspected drugs and their associated epidemiological and clinical characteristics.
Collapse
Affiliation(s)
- Dillon G Pruett
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, USA.
| | - Christine Hunter
- Lipscomb University College of Pharmacy and Health Sciences, USA
| | - Alyssa Scartozzi
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, USA
| | - Douglas M Shaw
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, USA
| | - Shelly Jo Kraft
- Department of Communication Sciences and Disorders, Wayne State University, USA
| | - Robin M Jones
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, USA
| | - Megan M Shuey
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, USA
| | - Jennifer E Below
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, USA
| |
Collapse
|
7
|
Stanisavljević Ilić A, Filipović D. Mapping of c-Fos Expression in Rat Brain Sub/Regions Following Chronic Social Isolation: Effective Treatments of Olanzapine, Clozapine or Fluoxetine. Pharmaceuticals (Basel) 2024; 17:1527. [PMID: 39598437 PMCID: PMC11597560 DOI: 10.3390/ph17111527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
The c-Fos as a marker of cell activation is used to identify brain regions involved in stimuli processing. This review summarizes a pattern of c-Fos immunoreactivity and the overlapping brain sub/regions which may provide hints for the identification of neural circuits that underlie depressive- and anxiety-like behaviors of adult male rats following three and six weeks of chronic social isolation (CSIS), relative to controls, as well as the antipsychotic-like effects of olanzapine (Olz), and clozapine (Clz), and the antidepressant-like effect of fluoxetine (Flx) in CSIS relative to CSIS alone. Additionally, drug-treated controls relative to control rats were also characterized. The overlapping rat brain sub/regions with increased expression of c-Fos immunoreactivity following three or six weeks of CSIS were the retrosplenial granular cortex, c subregion, retrosplenial dysgranular cortex, dorsal dentate gyrus, paraventricular nucleus of the thalamus (posterior part, PVP), lateral/basolateral (LA/BL) complex of the amygdala, caudate putamen, and nucleus accumbens shell. Increased activity of the nucleus accumbens core following exposure of CSIS rats either to Olz, Clz, and Flx treatments was found, whereas these treatments in controls activated the LA/BL complex of the amygdala and PVP. We also outline sub/regions that might represent potential neuroanatomical targets for the aforementioned antipsychotics or antidepressant treatments.
Collapse
Affiliation(s)
| | - Dragana Filipović
- Department of Molecular Biology and Endocrinology, “VINČA” Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| |
Collapse
|
8
|
Abstract
Neuroscience has convinced people that much of their behavior is determined by causes unknown to them and beyond their control. However, are advances in neuroscience truly a prerequisite for such beliefs? Robert Kane's theory of ultimate responsibility is libertarian theory. Its innovative nature makes it possible to discuss the neurophysiological basis of its postulates. Using the functions of the midbrain dopaminergic system as an example, this article provides an overview of this neurophysiological basis. According to Kane, if we are to be ultimately responsible for our wills as well as for our actions, some actions in our lives must lack sufficient motives and causes. These are self-forming actions. Dopamine is hypothesized to mediate self-forming action execution. Dopamine not only mediates action but also ensures synaptic plasticity in the brain, that is, learning from action; hence, dopamine changes the acting individual and provides the formation of our own wills. The basal ganglia, which are the main target of dopamine in the brain, act through parallel pathways and are involved in decision-making processes. Dopamine is also involved in the regulation of the neurodynamical properties of prefrontal cortex networks with random spiking noise. It can be assumed that the activity of the dopaminergic system is closely related to the physiological basis of free will.
Collapse
Affiliation(s)
- Natalia Ivlieva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova Str., 5a, Moscow, 117485, Russia.
| |
Collapse
|
9
|
Wolf D, Ayon-Olivas M, Sendtner M. BDNF-Regulated Modulation of Striatal Circuits and Implications for Parkinson's Disease and Dystonia. Biomedicines 2024; 12:1761. [PMID: 39200225 PMCID: PMC11351984 DOI: 10.3390/biomedicines12081761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
Neurotrophins, particularly brain-derived neurotrophic factor (BDNF), act as key regulators of neuronal development, survival, and plasticity. BDNF is necessary for neuronal and functional maintenance in the striatum and the substantia nigra, both structures involved in the pathogenesis of Parkinson's Disease (PD). Depletion of BDNF leads to striatal degeneration and defects in the dendritic arborization of striatal neurons. Activation of tropomyosin receptor kinase B (TrkB) by BDNF is necessary for the induction of long-term potentiation (LTP), a form of synaptic plasticity, in the hippocampus and striatum. PD is characterized by the degeneration of nigrostriatal neurons and altered striatal plasticity has been implicated in the pathophysiology of PD motor symptoms, leading to imbalances in the basal ganglia motor pathways. Given its essential role in promoting neuronal survival and meditating synaptic plasticity in the motor system, BDNF might have an important impact on the pathophysiology of neurodegenerative diseases, such as PD. In this review, we focus on the role of BDNF in corticostriatal plasticity in movement disorders, including PD and dystonia. We discuss the mechanisms of how dopaminergic input modulates BDNF/TrkB signaling at corticostriatal synapses and the involvement of these mechanisms in neuronal function and synaptic plasticity. Evidence for alterations of BDNF and TrkB in PD patients and animal models are reviewed, and the potential of BDNF to act as a therapeutic agent is highlighted. Advancing our understanding of these mechanisms could pave the way toward innovative therapeutic strategies aiming at restoring neuroplasticity and enhancing motor function in these diseases.
Collapse
Affiliation(s)
| | | | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078 Wuerzburg, Germany (M.A.-O.)
| |
Collapse
|
10
|
Hernández-del Caño C, Varela-Andrés N, Cebrián-León A, Deogracias R. Neurotrophins and Their Receptors: BDNF's Role in GABAergic Neurodevelopment and Disease. Int J Mol Sci 2024; 25:8312. [PMID: 39125882 PMCID: PMC11311851 DOI: 10.3390/ijms25158312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Neurotrophins and their receptors are distinctly expressed during brain development and play crucial roles in the formation, survival, and function of neurons in the nervous system. Among these molecules, brain-derived neurotrophic factor (BDNF) has garnered significant attention due to its involvement in regulating GABAergic system development and function. In this review, we summarize and compare the expression patterns and roles of neurotrophins and their receptors in both the developing and adult brains of rodents, macaques, and humans. Then, we focus on the implications of BDNF in the development and function of GABAergic neurons from the cortex and the striatum, as both the presence of BDNF single nucleotide polymorphisms and disruptions in BDNF levels alter the excitatory/inhibitory balance in the brain. This imbalance has different implications in the pathogenesis of neurodevelopmental diseases like autism spectrum disorder (ASD), Rett syndrome (RTT), and schizophrenia (SCZ). Altogether, evidence shows that neurotrophins, especially BDNF, are essential for the development, maintenance, and function of the brain, and disruptions in their expression or signaling are common mechanisms in the pathophysiology of brain diseases.
Collapse
Affiliation(s)
- Carlos Hernández-del Caño
- Instituto de Neurociencias de Castilla y León (INCyL), 37007 Salamanca, Spain; (C.H.-d.C.); (N.V.-A.); (A.C.-L.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Biología Celular y Patología, Facultad de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Natalia Varela-Andrés
- Instituto de Neurociencias de Castilla y León (INCyL), 37007 Salamanca, Spain; (C.H.-d.C.); (N.V.-A.); (A.C.-L.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Biología Celular y Patología, Facultad de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Alejandro Cebrián-León
- Instituto de Neurociencias de Castilla y León (INCyL), 37007 Salamanca, Spain; (C.H.-d.C.); (N.V.-A.); (A.C.-L.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Biología Celular y Patología, Facultad de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Rubén Deogracias
- Instituto de Neurociencias de Castilla y León (INCyL), 37007 Salamanca, Spain; (C.H.-d.C.); (N.V.-A.); (A.C.-L.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Biología Celular y Patología, Facultad de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
11
|
Blum K, Bowirrat A, Sunder K, Thanos PK, Hanna C, Gold MS, Dennen CA, Elman I, Murphy KT, Makale MT. Dopamine Dysregulation in Reward and Autism Spectrum Disorder. Brain Sci 2024; 14:733. [PMID: 39061473 PMCID: PMC11274922 DOI: 10.3390/brainsci14070733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Autism spectrum disorder (ASD) is primarily characterized by core deficits in social skills, communication, and cognition and by repetitive stereotyped behaviors. These manifestations are variable between individuals, and ASD pathogenesis is complex, with over a thousand implicated genes, many epigenetic factors, and multiple environmental influences. The mesolimbic dopamine (DA) mediated brain reward system is held to play a key role, but the rapidly expanding literature reveals intricate, nuanced signaling involving a wide array of mesolimbic loci, neurotransmitters and receptor subtypes, and neuronal variants. How altered DA signaling may constitute a downstream convergence of the manifold causal origins of ASD is not well understood. A clear working framework of ASD pathogenesis may help delineate common stages and potential diagnostic and interventional opportunities. Hence, we summarize the known natural history of ASD in the context of emerging data and perspectives to update ASD reward signaling. Then, against this backdrop, we proffer a provisional framework that organizes ASD pathogenesis into successive levels, including (1) genetic and epigenetic changes, (2) disrupted mesolimbic reward signaling pathways, (3) dysregulated neurotransmitter/DA signaling, and finally, (4) altered neurocognitive and social behavior and possible antagonist/agonist based ASD interventions. This subdivision of ASD into a logical progression of potentially addressable parts may help facilitate the rational formulation of diagnostics and targeted treatments.
Collapse
Affiliation(s)
- Kenneth Blum
- Division of Addiction Research & Education, Center for Exercise Sports, Mental Health, Western University of Health Sciences, Pomona, CA 91766, USA
- Sunder Foundation, Palm Springs, CA 92264, USA
- Division of Personalized Neuromodulations, PeakLogic, LLC, Del Mar, CA 92130, USA
| | - Abdalla Bowirrat
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | | | - Panayotis K. Thanos
- Department of Pharmacology and Toxicology, State University of New York, SUNY, Buffalo, NY 14215, USA
| | - Colin Hanna
- Department of Pharmacology and Toxicology, State University of New York, SUNY, Buffalo, NY 14215, USA
| | - Mark S. Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Catherine A. Dennen
- Department of Family Medicine, Jefferson Health Northeast, Philadelphia, PA 19145, USA
| | - Igor Elman
- Department of Psychiatry, Harvard University School of Medicine, Cambridge, MA 02215, USA
| | - Kevin T. Murphy
- Division of Personalized Neuromodulations, PeakLogic, LLC, Del Mar, CA 92130, USA
| | - Milan T. Makale
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
12
|
Conn K, Huang K, Gorrell S, Foldi CJ. A transdiagnostic and translational framework for delineating the neuronal mechanisms of compulsive exercise in anorexia nervosa. Int J Eat Disord 2024; 57:1406-1417. [PMID: 38174745 PMCID: PMC11222308 DOI: 10.1002/eat.24130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
OBJECTIVE The development of novel treatments for anorexia nervosa (AN) requires a detailed understanding of the biological underpinnings of specific, commonly occurring symptoms, including compulsive exercise. There is considerable bio-behavioral overlap between AN and obsessive-compulsive disorder (OCD), therefore it is plausible that similar mechanisms underlie compulsive behavior in both populations. While the association between these conditions is widely acknowledged, defining the shared mechanisms for compulsive behavior in AN and OCD requires a novel approach. METHODS We present an argument that a better understanding of the neurobiological mechanisms that underpin compulsive exercise in AN can be achieved in two critical ways. First, by applying a framework of the neuronal control of OCD to exercise behavior in AN, and second, by taking better advantage of the activity-based anorexia (ABA) rodent model to directly test this framework in the context of feeding pathology. RESULTS A cross-disciplinary approach that spans preclinical, neuroimaging, and clinical research as well as compulsive neurocircuitry and behavior can advance our understanding of when, why, and how compulsive exercise develops in the context of AN and provide targets for novel treatment strategies. DISCUSSION In this article, we (i) link the expression of compulsive behavior in AN and OCD via a transition between goal-directed and habitual behavior, (ii) present disrupted cortico-striatal circuitry as a key substrate for the development of compulsive behavior in both conditions, and (iii) highlight the utility of the ABA rodent model to better understand the mechanisms of compulsive behavior relevant to AN. PUBLIC SIGNIFICANCE Individuals with AN who exercise compulsively are at risk of worse health outcomes and have poorer responses to standard treatments. However, when, why, and how compulsive exercise develops in AN remains inadequately understood. Identifying whether the neural circuitry underlying compulsive behavior in OCD also controls hyperactivity in the activity-based anorexia model will aid in the development of novel eating disorder treatment strategies for this high-risk population.
Collapse
Affiliation(s)
- K Conn
- Monash University, Department of Physiology, 26 Innovation Walk, 3800, Clayton, Australia
- Monash Biomedicine Discovery Institute, 23 Innovation Walk, 3800, Clayton, Australia
| | - K Huang
- Monash University, Department of Physiology, 26 Innovation Walk, 3800, Clayton, Australia
- Monash Biomedicine Discovery Institute, 23 Innovation Walk, 3800, Clayton, Australia
| | - S Gorrell
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, 675 18th street, San Francisco, CA 94143, USA
| | - CJ Foldi
- Monash University, Department of Physiology, 26 Innovation Walk, 3800, Clayton, Australia
- Monash Biomedicine Discovery Institute, 23 Innovation Walk, 3800, Clayton, Australia
| |
Collapse
|
13
|
Wang Y, Wei L, Tan M, Yang Z, Gao B, Li J, Liu Y, Zikereya T, Shi K, Chen W. Aerobic exercise improves motor dysfunction in Parkinson's model mice via differential regulation of striatal medium spiny neuron. Sci Rep 2024; 14:12132. [PMID: 38802497 PMCID: PMC11130133 DOI: 10.1038/s41598-024-63045-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024] Open
Abstract
The striatum plays a crucial role in providing input to the basal ganglia circuit and is implicated in the pathological process of Parkinson's disease (PD). Disruption of the dynamic equilibrium in the basal ganglia loop can be attributed to the abnormal functioning of the medium spiny neurons (MSNs) within the striatum, potentially acting as a trigger for PD. Exercise has been shown to mitigate striatal neuronal dysfunction through neuroprotective and neurorestorative effects and to improve behavioral deficits in PD model mice. In addition, this effect is offset by the activation of MSNs expressing dopamine D2 receptors (D2-MSNs). In the current study, we investigated the underlying neurobiological mechanisms of this effect. Our findings indicated that exercise reduces the power spectral density of the beta-band in the striatum and decreases the overall firing frequency of MSNs, particularly in the case of striatal D2-MSNs. These observations were consistent with the results of molecular biology experiments, which revealed that aerobic training specifically enhanced the expression of striatal dopamine D2 receptors (D2R). Taken together, our results suggest that aerobic training aimed at upregulating striatal D2R expression to inhibit the functional activity of D2-MSNs represents a potential therapeutic strategy for the amelioration of motor dysfunction in PD.
Collapse
Affiliation(s)
- Yinhao Wang
- School of Physical Education, Hebei Normal University, Shijiazhuang, China
- Key Laboratory of Measurement and Evaluation in Exercise Bioinformation of Hebei Province, Shijiazhuang, China
| | - Longwei Wei
- School of Physical Education, Hebei Normal University, Shijiazhuang, China
- Key Laboratory of Measurement and Evaluation in Exercise Bioinformation of Hebei Province, Shijiazhuang, China
| | - Mingli Tan
- School of Physical Education, Hebei Normal University, Shijiazhuang, China
- Key Laboratory of Measurement and Evaluation in Exercise Bioinformation of Hebei Province, Shijiazhuang, China
| | - Zizheng Yang
- School of Physical Education, Hebei Normal University, Shijiazhuang, China
- Key Laboratory of Measurement and Evaluation in Exercise Bioinformation of Hebei Province, Shijiazhuang, China
| | - Bo Gao
- School of Physical Education, Hebei Normal University, Shijiazhuang, China
- Key Laboratory of Measurement and Evaluation in Exercise Bioinformation of Hebei Province, Shijiazhuang, China
| | - Juan Li
- School of Physical Education, Hebei Normal University, Shijiazhuang, China
- Key Laboratory of Measurement and Evaluation in Exercise Bioinformation of Hebei Province, Shijiazhuang, China
| | - Yang Liu
- School of Physical Education, Hebei Normal University, Shijiazhuang, China
- Key Laboratory of Measurement and Evaluation in Exercise Bioinformation of Hebei Province, Shijiazhuang, China
| | - Talifu Zikereya
- Department of Physical Education, China University of Geoscience, Beijing, China
| | - Kaixuan Shi
- Department of Physical Education, China University of Geoscience, Beijing, China.
| | - Wei Chen
- School of Physical Education, Hebei Normal University, Shijiazhuang, China.
- Key Laboratory of Measurement and Evaluation in Exercise Bioinformation of Hebei Province, Shijiazhuang, China.
| |
Collapse
|
14
|
Parise EM, Gyles TM, Godino A, Sial OK, Browne CJ, Parise LF, Torres-Berrío A, Salery M, Durand-de Cuttoli R, Rivera MT, Cardona-Acosta AM, Holt L, Markovic T, van der Zee YY, Lorsch ZS, Cathomas F, Garon JB, Teague C, Issler O, Hamilton PJ, Bolaños-Guzmán CA, Russo SJ, Nestler EJ. Sex-Specific Regulation of Stress Susceptibility by the Astrocytic Gene Htra1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.588724. [PMID: 38659771 PMCID: PMC11042238 DOI: 10.1101/2024.04.12.588724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Major depressive disorder (MDD) is linked to impaired structural and synaptic plasticity in limbic brain regions. Astrocytes, which regulate synapses and are influenced by chronic stress, likely contribute to these changes. We analyzed astrocyte gene profiles in the nucleus accumbens (NAc) of humans with MDD and mice exposed to chronic stress. Htra1 , which encodes an astrocyte-secreted protease targeting the extracellular matrix (ECM), was significantly downregulated in the NAc of males but upregulated in females in both species. Manipulating Htra1 in mouse NAc astrocytes bidirectionally controlled stress susceptibility in a sex-specific manner. Such Htra1 manipulations also altered neuronal signaling and ECM structural integrity in NAc. These findings highlight astroglia and the brain's ECM as key mediators of sex-specific stress vulnerability, offering new approaches for MDD therapies.
Collapse
|
15
|
Rocha GS, Freire MAM, Paiva KM, Oliveira RF, Morais PLAG, Santos JR, Cavalcanti JRLP. The neurobiological effects of senescence on dopaminergic system: A comprehensive review. J Chem Neuroanat 2024; 137:102415. [PMID: 38521203 DOI: 10.1016/j.jchemneu.2024.102415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/26/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024]
Abstract
Over time, the body undergoes a natural, multifactorial, and ongoing process named senescence, which induces changes at the molecular, cellular, and micro-anatomical levels in many body systems. The brain, being a highly complex organ, is particularly affected by this process, potentially impairing its numerous functions. The brain relies on chemical messengers known as neurotransmitters to function properly, with dopamine being one of the most crucial. This catecholamine is responsible for a broad range of critical roles in the central nervous system, including movement, learning, cognition, motivation, emotion, reward, hormonal release, memory consolidation, visual performance, sexual drive, modulation of circadian rhythms, and brain development. In the present review, we thoroughly examine the impact of senescence on the dopaminergic system, with a primary focus on the classic delimitations of the dopaminergic nuclei from A8 to A17. We provide in-depth information about their anatomy and function, particularly addressing how senescence affects each of these nuclei.
Collapse
Affiliation(s)
- Gabriel S Rocha
- Behavioral and Evolutionary Neurobiology Laboratory, Federal University of Sergipe (UFS), Itabaiana, Brazil
| | - Marco Aurelio M Freire
- Behavioral and Evolutionary Neurobiology Laboratory, Federal University of Sergipe (UFS), Itabaiana, Brazil
| | - Karina M Paiva
- Laboratory of Experimental Neurology, State University of Rio Grande do Norte (UERN), Mossoró, Brazil
| | - Rodrigo F Oliveira
- Laboratory of Experimental Neurology, State University of Rio Grande do Norte (UERN), Mossoró, Brazil
| | - Paulo Leonardo A G Morais
- Laboratory of Experimental Neurology, State University of Rio Grande do Norte (UERN), Mossoró, Brazil
| | - José Ronaldo Santos
- Behavioral and Evolutionary Neurobiology Laboratory, Federal University of Sergipe (UFS), Itabaiana, Brazil
| | | |
Collapse
|
16
|
Reich N, Hölscher C. Cholecystokinin (CCK): a neuromodulator with therapeutic potential in Alzheimer's and Parkinson's disease. Front Neuroendocrinol 2024; 73:101122. [PMID: 38346453 DOI: 10.1016/j.yfrne.2024.101122] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/04/2024] [Accepted: 01/25/2024] [Indexed: 02/16/2024]
Abstract
Cholecystokinin (CCK) is a neuropeptide modulating digestion, glucose levels, neurotransmitters and memory. Recent studies suggest that CCK exhibits neuroprotective effects in Alzheimer's disease (AD) and Parkinson's disease (PD). Thus, we review the physiological function and therapeutic potential of CCK. The neuropeptide facilitates hippocampal glutamate release and gates GABAergic basket cell activity, which improves declarative memory acquisition, but inhibits consolidation. Cortical CCK alters recognition memory and enhances audio-visual processing. By stimulating CCK-1 receptors (CCK-1Rs), sulphated CCK-8 elicits dopamine release in the substantia nigra and striatum. In the mesolimbic pathway, CCK release is triggered by dopamine and terminates reward responses via CCK-2Rs. Importantly, activation of hippocampal and nigral CCK-2Rs is neuroprotective by evoking AMPK activation, expression of mitochondrial fusion modulators and autophagy. Other benefits include vagus nerve/CCK-1R-mediated expression of brain-derived neurotrophic factor, intestinal protection and suppression of inflammation. We also discuss caveats and the therapeutic combination of CCK with other peptide hormones.
Collapse
Affiliation(s)
- Niklas Reich
- The ALBORADA Drug Discovery Institute, University of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, UK; Faculty of Health and Medicine, Biomedical & Life Sciences Division, Lancaster University, Lancaster LA1 4YQ, UK.
| | - Christian Hölscher
- Second associated Hospital, Neurology Department, Shanxi Medical University, Taiyuan, Shanxi, China; Henan Academy of Innovations in Medical Science, Neurodegeneration research group, Xinzhen, Henan province, China
| |
Collapse
|
17
|
Avilés‐Rosas VH, Rendón‐Ochoa EA, Hernández-Flores T, Flores-León M, Arias C, Galarraga E, Bargas J. Role of M 4 -receptor cholinergic signaling in direct pathway striatal projection neurons during dopamine depletion. Synapse 2024; 78:e22287. [PMID: 38427384 DOI: 10.1002/syn.22287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/12/2024] [Accepted: 01/21/2024] [Indexed: 03/02/2024]
Abstract
Direct pathway striatal projection neurons (dSPNs) are characterized by the expression of dopamine (DA) class 1 receptors (D1 R), as well as cholinergic muscarinic M1 and M4 receptors (M1 R, M4 R). D1 R enhances neuronal firing through phosphorylation of voltage-gate calcium channels (CaV 1 Ca2+ channels) activating Gs proteins and protein kinase A (PKA). Concurrently, PKA suppresses phosphatase PP-1 through DARPP-32, thus extending this facilitatory modulation. M1 R also influences Ca2+ channels in SPNs through Gq proteins and protein kinase C. However, the signaling mechanisms of M4 R in dSPNs are less understood. Two pathways are attributed to M4 R: an inhibitory one through Gi/o proteins, and a facilitatory one via the cyclin Cdk5. Our study reveals that a previously observed facilitatory modulation via CaV 1 Ca2+ channels is linked to the Cdk5 pathway in dSPNs. This result could be significant in treating parkinsonism. Therefore, we questioned whether this effect persists post DA-depletion in experimental parkinsonism. Our findings indicate that in such conditions, M4 R activation leads to a decrease in Ca2+ current and an increased M4 R protein level, contrasting with the control response. Nevertheless, parkinsonian and control actions are inhibited by the Cdk5 inhibitor roscovitine, suggesting Cdk5's role in both conditions. Cdk5 may activate PP-1 via PKA inhibition in DA depletion. Indeed, we found that inhibiting PP-1 restores control M4 R actions, implying that PP-1 is overly active via M4 Rs in DA-depleted condition. These insights contribute to understanding how DA-depletion alters modulatory signaling in striatal neurons. Additional working hypotheses are discussed.
Collapse
Affiliation(s)
- V H Avilés‐Rosas
- Instituto de Fisiología Celular, División de Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - E A Rendón‐Ochoa
- Laboratorio de Psicofarmacología, Unidad de Investigación Interdisciplinaria y de Ciencias de la Salud y Educación, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, México
| | - T Hernández-Flores
- Instituto de Fisiología Celular, División de Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - M Flores-León
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - C Arias
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - E Galarraga
- Instituto de Fisiología Celular, División de Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - J Bargas
- Instituto de Fisiología Celular, División de Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
18
|
Wen K, Shi Z, Yu P, Mo L, Sullere S, Yang V, Westneat N, Beeler JA, McGehee DS, Doiron B, Zhuang X. Opposing Motor Memories in the Direct and Indirect Pathways of the Basal Ganglia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582159. [PMID: 38463990 PMCID: PMC10925233 DOI: 10.1101/2024.02.26.582159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Loss of dopamine neurons causes motor deterioration in Parkinson's disease patients. We have previously reported that in addition to acute motor impairment, the impaired motor behavior is encoded into long-term memory in an experience-dependent and task-specific manner, a phenomenon we refer to as aberrant inhibitory motor learning. Although normal motor learning and aberrant inhibitory learning oppose each other and this is manifested in apparent motor performance, in the present study, we found that normal motor memory acquired prior to aberrant inhibitory learning remains preserved in the brain, suggesting the existence of independent storage. To investigate the neuronal circuits underlying these two opposing memories, we took advantage of the RNA-binding protein YTHDF1, an m 6 A RNA methylation reader involved in the regulation of protein synthesis and learning/memory. Conditional deletion of Ythdf1 in either D1 or D2 receptor-expressing neurons revealed that normal motor memory is stored in the D1 (direct) pathway of the basal ganglia, while inhibitory memory is stored in the D2 (indirect) pathway. Furthermore, fiber photometry recordings of GCaMP signals from striatal D1 (dSPN) and D2 (iSPN) receptor-expressing neurons support the preservation of normal memory in the direct pathway after aberrant inhibitory learning, with activities of dSPN predictive of motor performance. Finally, a computational model based on activities of motor cortical neurons, dSPN and iSPN neurons, and their interactions through the basal ganglia loops supports the above observations. These findings have important implications for novel approaches in treating Parkinson's disease by reactivating preserved normal memory, and in treating hyperkinetic movement disorders such as chorea or tics by erasing aberrant motor memories.
Collapse
|
19
|
Liu Y, Zhao ZD, Xie G, Chen R, Zhang Y. A molecularly defined NAcSh D1 subtype controls feeding and energy homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.27.530275. [PMID: 36909586 PMCID: PMC10002697 DOI: 10.1101/2023.02.27.530275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Orchestrating complex behavioral states, such as approach and consumption of food, is critical for survival. In addition to hypothalamus neuronal circuits, the nucleus accumbens (NAc) also plays an important role in controlling appetite and satiety in responses to changing external stimuli. However, the specific neuronal subtypes of NAc involved as well as how the humoral and neuronal signals coordinate to regulate feeding remain incompletely understood. Here, we deciphered the spatial diversity of neuron subtypes of the NAc shell (NAcSh) and defined a dopamine receptor D1(Drd1)- and Serpinb2-expressing subtype located in NAcSh encoding food consumption. Chemogenetics- and optogenetics-mediated regulation of Serpinb2 + neurons bidirectionally regulates food seeking and consumption specifically. Circuitry stimulation revealed the NAcSh Serpinb2 →LH LepR projection controls refeeding and can overcome leptin-mediated feeding suppression. Furthermore, NAcSh Serpinb2 + neuron ablation reduces food intake and upregulates energy expenditure resulting in body weight loss. Together, our study reveals a neural circuit consisted of molecularly distinct neuronal subtype that bidirectionally regulates energy homeostasis, which can serve as a potential therapeutic target for eating disorders.
Collapse
Affiliation(s)
- Yiqiong Liu
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
| | - Zheng-dong Zhao
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
| | - Guoguang Xie
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
| | - Renchao Chen
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
| | - Yi Zhang
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Harvard Stem Cell Institute, WAB-149G, 200 Longwood Avenue, Boston, Massachusetts 02115, USA
| |
Collapse
|
20
|
Liu QQ, Mi J, Du YY, Rong Z, Qin Y, Jiang W, Li X, Yu JY, Yang L, Du XY, Yang Q, Guo YY. Lotusine ameliorates propionic acid-induced autism spectrum disorder-like behavior in mice by activating D1 dopamine receptor in medial prefrontal cortex. Phytother Res 2024; 38:1089-1103. [PMID: 38168755 DOI: 10.1002/ptr.8098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/10/2023] [Accepted: 11/26/2023] [Indexed: 01/05/2024]
Abstract
Autism spectrum disorder (ASD) is a multifaceted neuropsychiatric condition for which effective drug therapy for core clinical symptoms remains elusive. Lotusine, known for its neuroprotective properties in the treatment of neurological disorders, holds potential in addressing ASD. Nevertheless, its specific efficacy in ASD remains uncertain. This study aims to investigate the therapeutic potential of lotusine in ASD and elucidate the underlying molecular mechanisms. We induced an ASD mouse model through intracerebroventricular-propionic acid (ICV-PPA) injection for 7 days, followed by lotusine administration for 5 days. The efficacy of lotusine was evaluated through a battery of behavioral tests, including the three-chamber social test. The underlying mechanisms of lotusine action in ameliorating ASD-like behavior were investigated in the medial prefrontal cortex (mPFC) using whole-cell patch-clamp recordings, western blotting, immunofluorescence staining, molecular docking, and cellular thermal shift assay. The efficacy and mechanisms of lotusine were further validated in vitro. Lotusine effectively alleviated social deficits induced by ICV-PPA injection in mice by counteracting the reduction in miniature excitatory postsynaptic current frequency within the mPFC. Moreover, lotusine enhanced neuronal activity and ameliorated α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor dysfunction in ICV-PPA infusion mice by upregulating c-fos, p-GluA1 Ser 845, and p-GluA1 Ser 831 protein levels within the mPFC. Our findings also suggest that lotusine may exert its effects through modulation of the D1 dopamine receptor (DRD1). Furthermore, the rescuing effects of lotusine were nullified by a DRD1 antagonist in PC12 cells. In summary, our results revealed that lotusine ameliorates ASD-like behavior through targeted modulation of DRD1, ultimately enhancing excitatory synaptic transmission. These findings highlight the potential of lotusine as a nutritional supplement in the treatment of ASD.
Collapse
Affiliation(s)
- Qing-Qing Liu
- Department of Pharmacy, Tangdu Hospital, The Fourth Military Medical University, Xi'An, PR China
| | - Jie Mi
- Department of Clinical Laboratory, Xi'an Children's Hospital, Xi'An, PR China
| | - Ya-Ya Du
- Department of Pharmacy, Tangdu Hospital, The Fourth Military Medical University, Xi'An, PR China
| | - Zheng Rong
- Department of Pharmacy, Tangdu Hospital, The Fourth Military Medical University, Xi'An, PR China
| | - Yan Qin
- Department of Pharmacy, Tangdu Hospital, The Fourth Military Medical University, Xi'An, PR China
| | - Wei Jiang
- Department of Pharmacy, Tangdu Hospital, The Fourth Military Medical University, Xi'An, PR China
| | - Xi Li
- Department of Pharmacy, Tangdu Hospital, The Fourth Military Medical University, Xi'An, PR China
| | - Jiao-Yan Yu
- Department of Pharmacy, Tangdu Hospital, The Fourth Military Medical University, Xi'An, PR China
| | - Le Yang
- Department of Pharmacy, Tangdu Hospital, The Fourth Military Medical University, Xi'An, PR China
| | - Xiao-Yan Du
- Department of Pharmacy, Tangdu Hospital, The Fourth Military Medical University, Xi'An, PR China
| | - Qi Yang
- Department of Pharmacy, Tangdu Hospital, The Fourth Military Medical University, Xi'An, PR China
| | - Yan-Yan Guo
- Department of Pharmacy, Tangdu Hospital, The Fourth Military Medical University, Xi'An, PR China
| |
Collapse
|
21
|
Chen APF, Chen L, Shi KW, Cheng E, Ge S, Xiong Q. Nigrostriatal dopamine modulates the striatal-amygdala pathway in auditory fear conditioning. Nat Commun 2023; 14:7231. [PMID: 37945595 PMCID: PMC10636191 DOI: 10.1038/s41467-023-43066-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
The auditory striatum, a sensory portion of the dorsal striatum, plays an essential role in learning and memory. In contrast to its roles and underlying mechanisms in operant conditioning, however, little is known about its contribution to classical auditory fear conditioning. Here, we reveal the function of the auditory striatum in auditory-conditioned fear memory. We find that optogenetically inhibiting auditory striatal neurons impairs fear memory formation, which is mediated through the striatal-amygdala pathway. Using calcium imaging in behaving mice, we find that auditory striatal neuronal responses to conditioned tones potentiate across memory acquisition and expression. Furthermore, nigrostriatal dopaminergic projections plays an important role in modulating conditioning-induced striatal potentiation. Together, these findings demonstrate the existence of a nigro-striatal-amygdala circuit for conditioned fear memory formation and expression.
Collapse
Affiliation(s)
- Allen P F Chen
- Department of Neurobiology and Behavior, SUNY Stony Brook, Stony Brook, NY, 11794, USA
- Medical Scientist Training Program, Renaissance School of Medicine at SUNY Stony Brook, Stony Brook, NY, 11794, USA
| | - Lu Chen
- Department of Neurobiology and Behavior, SUNY Stony Brook, Stony Brook, NY, 11794, USA
| | - Kaiyo W Shi
- Department of Neurobiology and Behavior, SUNY Stony Brook, Stony Brook, NY, 11794, USA
| | - Eileen Cheng
- Department of Neurobiology and Behavior, SUNY Stony Brook, Stony Brook, NY, 11794, USA
- Department of Physiology and Biophysics, SUNY Stony Brook, Stony Brook, NY, 11794, USA
| | - Shaoyu Ge
- Department of Neurobiology and Behavior, SUNY Stony Brook, Stony Brook, NY, 11794, USA
| | - Qiaojie Xiong
- Department of Neurobiology and Behavior, SUNY Stony Brook, Stony Brook, NY, 11794, USA.
| |
Collapse
|
22
|
Ahmed MR, Zheng C, Dunning JL, Ahmed MS, Ge C, Sanders Pair F, Gurevich VV, Gurevich EV. Arrestin-3-assisted activation of JNK3 mediates dopaminergic behavioral and signaling plasticity in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.27.564447. [PMID: 37961199 PMCID: PMC10634923 DOI: 10.1101/2023.10.27.564447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In rodents with unilateral ablation of the substantia nigra neurons supplying dopamine to the striatum, chronic treatment with the dopamine precursor L-DOPA or dopamine agonists induces a progressive increase of behavioral responses, a process known as behavioral sensitization. The sensitization is blunted in arrestin-3 knockout mice. Using virus-mediated gene delivery to the dopamine-depleted striatum of arrestin-3 knockout mice, we found that the restoration of arrestin-3 fully rescued behavioral sensitization, whereas its mutant defective in JNK activation did not. A 25-residue arrestin-3-derived peptide that facilitates JNK3 activation in cells, expressed ubiquitously or selectively in the direct pathway striatal neurons, fully rescued sensitization, whereas an inactive homologous arrestin-2-derived peptide did not. Behavioral rescue was accompanied by the restoration of JNK3 activity and of JNK-dependent phosphorylation of the transcription factor c-Jun in the dopamine-depleted striatum. Thus, arrestin-3-dependent JNK3 activation in direct pathway neurons is a critical element of the molecular mechanism underlying sensitization.
Collapse
Affiliation(s)
- Mohamed R. Ahmed
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232
| | - Chen Zheng
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232
| | | | - Mohamed S. Ahmed
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232
| | | | | | | | | |
Collapse
|
23
|
Ayon-Olivas M, Wolf D, Andreska T, Granado N, Lüningschrör P, Ip CW, Moratalla R, Sendtner M. Dopaminergic Input Regulates the Sensitivity of Indirect Pathway Striatal Spiny Neurons to Brain-Derived Neurotrophic Factor. BIOLOGY 2023; 12:1360. [PMID: 37887070 PMCID: PMC10604681 DOI: 10.3390/biology12101360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
Motor dysfunction in Parkinson's disease (PD) is closely linked to the dopaminergic depletion of striatal neurons and altered synaptic plasticity at corticostriatal synapses. Dopamine receptor D1 (DRD1) stimulation is a crucial step in the formation of long-term potentiation (LTP), whereas dopamine receptor D2 (DRD2) stimulation is needed for the formation of long-term depression (LTD) in striatal spiny projection neurons (SPNs). Tropomyosin receptor kinase B (TrkB) and its ligand brain-derived neurotrophic factor (BDNF) are centrally involved in plasticity regulation at the corticostriatal synapses. DRD1 activation enhances TrkB's sensitivity for BDNF in direct pathway spiny projection neurons (dSPNs). In this study, we showed that the activation of DRD2 in cultured striatal indirect pathway spiny projection neurons (iSPNs) and cholinergic interneurons causes the retraction of TrkB from the plasma membrane. This provides an explanation for the opposing synaptic plasticity changes observed upon DRD1 or DRD2 stimulation. In addition, TrkB was found within intracellular structures in dSPNs and iSPNs from Pitx3-/- mice, a genetic model of PD with early onset dopaminergic depletion in the dorsolateral striatum (DLS). This dysregulated BDNF/TrkB signaling might contribute to the pathophysiology of direct and indirect pathway striatal projection neurons in PD.
Collapse
Affiliation(s)
- Maurilyn Ayon-Olivas
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078 Wuerzburg, Germany
| | - Daniel Wolf
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078 Wuerzburg, Germany
| | - Thomas Andreska
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078 Wuerzburg, Germany
| | - Noelia Granado
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), 28002 Madrid, Spain
- CIBERNED, Instituto de Salud Carlos III, 28002 Madrid, Spain
| | - Patrick Lüningschrör
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078 Wuerzburg, Germany
| | - Chi Wang Ip
- Department of Neurology, University Hospital Wuerzburg, 97080 Wuerzburg, Germany
| | - Rosario Moratalla
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), 28002 Madrid, Spain
- CIBERNED, Instituto de Salud Carlos III, 28002 Madrid, Spain
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078 Wuerzburg, Germany
| |
Collapse
|
24
|
Andraka E, Phillips RA, Brida KL, Day JJ. Chst9 Marks a Spatially and Transcriptionally Unique Population of Oprm1 -Expressing Neurons in the Nucleus Accumbens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562623. [PMID: 37904940 PMCID: PMC10614864 DOI: 10.1101/2023.10.16.562623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Opioids produce addictive, analgesic, and euphoric effects via actions at mu opioid receptors (μORs). The μOR is encoded by the Oprm1 gene and is expressed in multiple brain regions that regulate reward and motivation, such as the nucleus accumbens (NAc). Oprm1 expression in NAc medium spiny neurons (MSNs) mediates opioid place preference, seeking, and consumption. However, recent single nucleus RNA sequencing (snRNA-seq) studies in rodent, primate, and human NAc have revealed that multiple subpopulations of NAc neurons express Oprm1 mRNA, making it unclear which populations mediate diverse behaviors resulting from μOR activation. Using published snRNA-seq datasets from the rat NAc, we identified a novel population of MSNs that express the highest levels of Oprm1 of any NAc cell type. Here, we show that this population is selectively marked by expression of Chst9 , a gene encoding a carbohydrate sulfotransferase. To validate this observation and characterize spatial localization of this population in the rat NAc, we performed multiplexed RNAscope fluorescence in situ hybridization studies to detect expression of Oprm1 and Chst9 mRNA along with well-validated markers of MSNs. Notably, Chst9 + neurons exhibited more abundant expression of Oprm1 as compared to other cell types, and formed discrete cellular clusters along the medial and ventral borders of the NAc shell subregion. Moreover, CHST9 mRNA was also found to mark specific MSN populations in published human and primate snRNA-seq studies, indicating that this unique population may be conserved across species. Together, these results identify a spatially and transcriptionally distinct NAc neuron population characterized by the expression of Chst9 . The abundant expression of Oprm1 in this population and the conservation of these cells across species suggests that they may play a key functional role in opioid response and identify this subpopulation as a target for further investigation.
Collapse
|
25
|
Custodio RJP, Hobloss Z, Myllys M, Hassan R, González D, Reinders J, Bornhorst J, Weishaupt AK, Seddek AL, Abbas T, Friebel A, Hoehme S, Getzmann S, Hengstler JG, van Thriel C, Ghallab A. Cognitive Functions, Neurotransmitter Alterations, and Hippocampal Microstructural Changes in Mice Caused by Feeding on Western Diet. Cells 2023; 12:2331. [PMID: 37759553 PMCID: PMC10529844 DOI: 10.3390/cells12182331] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Metabolic Dysfunction Associated Steatotic Liver Disease (MASLD) is the most common chronic liver disease in Western countries. It is becoming increasingly evident that peripheral organ-centered inflammatory diseases, including liver diseases, are linked with brain dysfunctions. Therefore, this study aims to unravel the effect of MASLD on brain histology, cognitive functions, and neurotransmitters. For this purpose, mice fed for 48 weeks on standard (SD) or Western diet (WD) were evaluated by behavioral tests, followed by sacrifice and analysis of the liver-brain axis including histopathology, immunohistochemistry, and biochemical analyses. Histological analysis of the liver showed features of Metabolic Dysfunction-Associated Steatohepatitis (MASH) in the WD-fed mice including lipid droplet accumulation, inflammation, and fibrosis. This was accompanied by an elevation of transaminase and alkaline phosphatase activities, increase in inflammatory cytokine and bile acid concentrations, as well as altered amino acid concentrations in the blood. Interestingly, compromised blood capillary morphology coupled with astrogliosis and microgliosis were observed in brain hippocampus of the WD mice, indicating neuroinflammation or a disrupted neurovascular unit. Moreover, attention was impaired in WD-fed mice along with the observations of impaired motor activity and balance, enhanced anxiety, and stereotyped head-twitch response (HTR) behaviors. Analysis of neurotransmitters and modulators including dopamine, serotonin, GABA, glutamate, and acetylcholine showed region-specific dysregulation in the brain of the WD-fed mice. In conclusion, the induction of MASH in mice is accompanied by the alteration of cellular morphology and neurotransmitter expression in the brain, associated with compromised cognitive functions.
Collapse
Affiliation(s)
- Raly James Perez Custodio
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany; (R.J.P.C.); (Z.H.); (M.M.); (R.H.); (D.G.); (J.R.); (S.G.)
| | - Zaynab Hobloss
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany; (R.J.P.C.); (Z.H.); (M.M.); (R.H.); (D.G.); (J.R.); (S.G.)
| | - Maiju Myllys
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany; (R.J.P.C.); (Z.H.); (M.M.); (R.H.); (D.G.); (J.R.); (S.G.)
| | - Reham Hassan
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany; (R.J.P.C.); (Z.H.); (M.M.); (R.H.); (D.G.); (J.R.); (S.G.)
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt;
| | - Daniela González
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany; (R.J.P.C.); (Z.H.); (M.M.); (R.H.); (D.G.); (J.R.); (S.G.)
| | - Jörg Reinders
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany; (R.J.P.C.); (Z.H.); (M.M.); (R.H.); (D.G.); (J.R.); (S.G.)
| | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany; (J.B.); (A.-K.W.)
| | - Ann-Kathrin Weishaupt
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany; (J.B.); (A.-K.W.)
| | - Abdel-latif Seddek
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt;
| | - Tahany Abbas
- Histology Department, Faculty of Medicine, South Valley University, Qena 83523, Egypt;
| | - Adrian Friebel
- Institute of Computer Science & Saxonian Incubator for Clinical Research (SIKT), University of Leipzig, Haertelstraße 16-18, 04107 Leipzig, Germany; (A.F.); (S.H.)
| | - Stefan Hoehme
- Institute of Computer Science & Saxonian Incubator for Clinical Research (SIKT), University of Leipzig, Haertelstraße 16-18, 04107 Leipzig, Germany; (A.F.); (S.H.)
| | - Stephan Getzmann
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany; (R.J.P.C.); (Z.H.); (M.M.); (R.H.); (D.G.); (J.R.); (S.G.)
| | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany; (R.J.P.C.); (Z.H.); (M.M.); (R.H.); (D.G.); (J.R.); (S.G.)
| | - Christoph van Thriel
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany; (R.J.P.C.); (Z.H.); (M.M.); (R.H.); (D.G.); (J.R.); (S.G.)
| | - Ahmed Ghallab
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany; (R.J.P.C.); (Z.H.); (M.M.); (R.H.); (D.G.); (J.R.); (S.G.)
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt;
| |
Collapse
|
26
|
Passeri A, Municchi D, Cavalieri G, Babicola L, Ventura R, Di Segni M. Linking drug and food addiction: an overview of the shared neural circuits and behavioral phenotype. Front Behav Neurosci 2023; 17:1240748. [PMID: 37767338 PMCID: PMC10520727 DOI: 10.3389/fnbeh.2023.1240748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Despite a lack of agreement on its definition and inclusion as a specific diagnosable disturbance, the food addiction construct is supported by several neurobiological and behavioral clinical and preclinical findings. Recognizing food addiction is critical to understanding how and why it manifests. In this overview, we focused on those as follows: 1. the hyperpalatable food effects in food addiction development; 2. specific brain regions involved in both food and drug addiction; and 3. animal models highlighting commonalities between substance use disorders and food addiction. Although results collected through animal studies emerged from protocols differing in several ways, they clearly highlight commonalities in behavioral manifestations and neurobiological alterations between substance use disorders and food addiction characteristics. To develop improved food addiction models, this heterogeneity should be acknowledged and embraced so that research can systematically investigate the role of specific variables in the development of the different behavioral features of addiction-like behavior in preclinical models.
Collapse
Affiliation(s)
- Alice Passeri
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology and Center “Daniel Bovet”, Sapienza University, Rome, Italy
| | - Diana Municchi
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology and Center “Daniel Bovet”, Sapienza University, Rome, Italy
| | - Giulia Cavalieri
- Department of Psychology and Center “Daniel Bovet”, Sapienza University, Rome, Italy
| | | | - Rossella Ventura
- Department of Psychology and Center “Daniel Bovet”, Sapienza University, Rome, Italy
- IRCCS San Raffaele, Rome, Italy
| | - Matteo Di Segni
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology and Center “Daniel Bovet”, Sapienza University, Rome, Italy
| |
Collapse
|
27
|
Godino A, Salery M, Minier-Toribio AM, Patel V, Fullard JF, Parise EM, Martinez-Rivera FJ, Morel C, Roussos P, Blitzer RD, Nestler EJ. Dopaminoceptive D1 and D2 neurons in ventral hippocampus arbitrate approach and avoidance in anxiety. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550554. [PMID: 37546856 PMCID: PMC10402022 DOI: 10.1101/2023.07.25.550554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The hippocampus 1-7, as well as dopamine circuits 8-11, coordinate decision-making in anxiety-eliciting situations. Yet, little is known about how dopamine modulates hippocampal representations of emotionally-salient stimuli to inform appropriate resolution of approach versus avoidance conflicts. We here study dopaminoceptive neurons in mouse ventral hippocampus (vHipp), molecularly distinguished by their expression of dopamine D1 or D2 receptors. We show that these neurons are transcriptionally distinct and topographically organized across vHipp subfields and cell types. In the ventral subiculum where they are enriched, both D1 and D2 neurons are recruited during anxiogenic exploration, yet with distinct profiles related to investigation and behavioral selection. In turn, they mediate opposite approach/avoidance responses, and are differentially modulated by dopaminergic transmission in that region. Together, these results suggest that vHipp dopamine dynamics gate exploratory behaviors under contextual uncertainty, implicating dopaminoception in the complex computation engaged in vHipp to govern emotional states.
Collapse
Affiliation(s)
- Arthur Godino
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Marine Salery
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Angelica M. Minier-Toribio
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Vishwendra Patel
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - John F. Fullard
- Department of Psychiatry & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences & Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eric M. Parise
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Freddyson J. Martinez-Rivera
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carole Morel
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Panos Roussos
- Department of Psychiatry & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences & Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mental Illness Research, Education and Clinical Centers, James J. Peters VA Medical Center, Bronx, NY 10468, USA
| | - Robert D. Blitzer
- Department of Psychiatry & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eric J. Nestler
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|