1
|
Deliz CLR, Lee GM, Bushnell BN, Majaj NJ, Movshon JA, Kiorpes L. Neural sensitivity to radial frequency patterns in the visual cortex of developing macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.634810. [PMID: 39975154 PMCID: PMC11838248 DOI: 10.1101/2025.01.27.634810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Visual resolution, contrast sensitivity and form perception improve gradually with age. In nonhuman primates, the sensitivity and resolution of cells in the retina, lateral geniculate nucleus and primary visual cortex (V1) also improve, but not enough to account for the perceptual changes. So, what aspects of visual system development limit visual sensitivity in infants? Improvements in behavioral sensitivity might arise from maturation of regions downstream of V1 such as V2, V4 and IT, which are thought to support increasingly complex perceptual abilities. We recorded the responses of populations of neurons in areas V1, V2, V4, and IT to radial frequency patterns - a type of global form stimulus. Subjects were three young monkeys between the ages of 19 and 54 weeks, and a single adult animal. We found that neurons and neural populations in V4 reliably encoded global form in radial frequency stimuli at the earliest ages we studied, while V1 neurons do not. V2 and IT populations also showed some degree of selectivity for these patterns at early ages, especially at higher radial frequency values. We did not find significant, systematic changes in neural decoding performance that could account for the improvement in behavioral performance over the same age range in an overlapping group of animals (Rodriguez Deliz et al., 2024). Finally, consistent with our prior behavioral results, neural populations in V4 show highest sensitivity for the higher radial frequency values which contain the highest concentration of curvature and orientation cues.
Collapse
Affiliation(s)
| | - Gerick M. Lee
- Center for Neural Science, New York University, New York, NY, 10003, USA
- Department of Speech, Language, and Hearing Sciences, Moody College of Communication, The University of Texas at Austin, Austin, TX 78712, USA
| | | | - Najib J. Majaj
- Center for Neural Science, New York University, New York, NY, 10003, USA
| | - J. Anthony Movshon
- Center for Neural Science, New York University, New York, NY, 10003, USA
| | - Lynne Kiorpes
- Center for Neural Science, New York University, New York, NY, 10003, USA
| |
Collapse
|
2
|
Huang AS, Kang K, Vandekar S, Rogers BP, Heckers S, Woodward ND. Lifespan development of thalamic nuclei and characterizing thalamic nuclei abnormalities in schizophrenia using normative modeling. Neuropsychopharmacology 2024; 49:1518-1527. [PMID: 38480909 PMCID: PMC11319674 DOI: 10.1038/s41386-024-01837-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 03/18/2024]
Abstract
Thalamic abnormalities have been repeatedly implicated in the pathophysiology of schizophrenia and other neurodevelopmental disorders. Uncovering the etiology of thalamic abnormalities and how they may contribute to illness phenotypes faces at least two obstacles. First, the typical developmental trajectories of thalamic nuclei and their association with cognition across the lifespan are largely unknown. Second, modest effect sizes indicate marked individual differences and pose a significant challenge to personalized medicine. To address these knowledge gaps, we characterized the development of thalamic nuclei volumes using normative models generated from the Human Connectome Project Lifespan datasets (5-100+ years), then applied them to an independent clinical cohort to determine the frequency of thalamic volume deviations in people with schizophrenia (17-61 years). Normative models revealed diverse non-linear age effects across the lifespan. Association nuclei exhibited negative age effects during youth but stabilized in adulthood until turning negative again with older age. Sensorimotor nuclei volumes remained relatively stable through youth and adulthood until also turning negative with older age. Up to 18% of individuals with schizophrenia exhibited abnormally small (i.e., below the 5th centile) mediodorsal and pulvinar volumes, and the degree of deviation, but not raw volumes, correlated with the severity of cognitive impairment. While case-control differences are robust, only a minority of patients demonstrate unusually small thalamic nuclei volumes. Normative modeling enables the identification of these individuals, which is a necessary step toward precision medicine.
Collapse
Affiliation(s)
- Anna S Huang
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Kaidi Kang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Simon Vandekar
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Baxter P Rogers
- Vanderbilt University Institute of Imaging Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephan Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Neil D Woodward
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
3
|
Rodríguez Deliz CL, Lee GM, Bushnell BN, Majaj NJ, Movshon JA, Kiorpes L. Development of radial frequency pattern perception in macaque monkeys. J Vis 2024; 24:6. [PMID: 38843389 PMCID: PMC11160949 DOI: 10.1167/jov.24.6.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/30/2024] [Indexed: 06/09/2024] Open
Abstract
Infant primates see poorly, and most perceptual functions mature steadily beyond early infancy. Behavioral studies on human and macaque infants show that global form perception, as measured by the ability to integrate contour information into a coherent percept, improves dramatically throughout the first several years after birth. However, it is unknown when sensitivity to curvature and shape emerges in early life or how it develops. We studied the development of shape sensitivity in 18 macaques, aged 2 months to 10 years. Using radial frequency stimuli, circular targets whose radii are modulated sinusoidally, we tested monkeys' ability to radial frequency stimuli from circles as a function of the depth and frequency of sinusoidal modulation. We implemented a new four-choice oddity task and compared the resulting data with that from a traditional two-alternative forced choice task. We found that radial frequency pattern perception was measurable at the youngest age tested (2 months). Behavioral performance at all radial frequencies improved with age. Performance was better for higher radial frequencies, suggesting the developing visual system prioritizes processing of fine visual details that are ecologically relevant. By using two complementary methods, we were able to capture a comprehensive developmental trajectory for shape perception.
Collapse
Affiliation(s)
| | - Gerick M Lee
- Center for Neural Science, New York University, NY, NY, USA
| | | | - Najib J Majaj
- Center for Neural Science, New York University, NY, NY, USA
| | | | - Lynne Kiorpes
- Center for Neural Science, New York University, NY, NY, USA
| |
Collapse
|
4
|
Burbridge TJ, Ratliff JM, Dwivedi D, Vrudhula U, Alvarado-Huerta F, Sjulson L, Ibrahim LA, Cheadle L, Fishell G, Batista-Brito R. Disruption of Cholinergic Retinal Waves Alters Visual Cortex Development and Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.05.588143. [PMID: 38644996 PMCID: PMC11030223 DOI: 10.1101/2024.04.05.588143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Retinal waves represent an early form of patterned spontaneous neural activity in the visual system. These waves originate in the retina before eye-opening and propagate throughout the visual system, influencing the assembly and maturation of subcortical visual brain regions. However, because it is technically challenging to ablate retina-derived cortical waves without inducing compensatory activity, the role these waves play in the development of the visual cortex remains unclear. To address this question, we used targeted conditional genetics to disrupt cholinergic retinal waves and their propagation to select regions of primary visual cortex, which largely prevented compensatory patterned activity. We find that loss of cholinergic retinal waves without compensation impaired the molecular and synaptic maturation of excitatory neurons located in the input layers of visual cortex, as well as layer 1 interneurons. These perinatal molecular and synaptic deficits also relate to functional changes observed at later ages. We find that the loss of perinatal cholinergic retinal waves causes abnormal visual cortex retinotopy, mirroring changes in the retinotopic organization of gene expression, and additionally impairs the processing of visual information. We further show that retinal waves are necessary for higher order processing of sensory information by impacting the state-dependent activity of layer 1 interneurons, a neuronal type that shapes neocortical state-modulation, as well as for state-dependent gain modulation of visual responses of excitatory neurons. Together, these results demonstrate that a brief targeted perinatal disruption of patterned spontaneous activity alters early cortical gene expression as well as synaptic and physiological development, and compromises both fundamental and, notably, higher-order functions of visual cortex after eye-opening.
Collapse
Affiliation(s)
- Timothy J Burbridge
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115
| | - Jacob M Ratliff
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
| | - Deepanjali Dwivedi
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115
| | - Uma Vrudhula
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | | | - Lucas Sjulson
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
- Department of Psychiatry and Behavioral Sciences, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
| | - Leena Ali Ibrahim
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955–6900, KSA
| | - Lucas Cheadle
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
- Howard Hughes Medical Institute, Cold Spring Harbor, NY 11724
| | - Gordon Fishell
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115
| | - Renata Batista-Brito
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
- Department of Psychiatry and Behavioral Sciences, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
- Department of Genetics, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
| |
Collapse
|
5
|
Ding SL. Lamination, Borders, and Thalamic Projections of the Primary Visual Cortex in Human, Non-Human Primate, and Rodent Brains. Brain Sci 2024; 14:372. [PMID: 38672021 PMCID: PMC11048015 DOI: 10.3390/brainsci14040372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The primary visual cortex (V1) is one of the most studied regions of the brain and is characterized by its specialized and laminated layer 4 in human and non-human primates. However, studies aiming to harmonize the definition of the cortical layers and borders of V1 across rodents and primates are very limited. This article attempts to identify and harmonize the molecular markers and connectional patterns that can consistently link corresponding cortical layers of V1 and borders across mammalian species and ages. V1 in primates has at least two additional and unique layers (L3b2 and L3c) and two sublayers of layer 4 (L4a and L4b) compared to rodent V1. In all species examined, layers 4 and 3b of V1 receive strong inputs from the (dorsal) lateral geniculate nucleus, and V1 is mostly surrounded by the secondary visual cortex except for one location where V1 directly abuts area prostriata. The borders of primate V1 can also be clearly identified at mid-gestational ages using gene markers. In rodents, a novel posteromedial extension of V1 is identified, which expresses V1 marker genes and receives strong inputs from the lateral geniculate nucleus. This V1 extension was labeled as the posterior retrosplenial cortex and medial secondary visual cortex in the literature and brain atlases. Layer 6 of the rodent and primate V1 originates corticothalamic projections to the lateral geniculate, lateral dorsal, and reticular thalamic nuclei and the lateroposterior-pulvinar complex with topographic organization. Finally, the direct geniculo-extrastriate (particularly the strong geniculo-prostriata) projections are probably major contributors to blindsight after V1 lesions. Taken together, compared to rodents, primates, and humans, V1 has at least two unique middle layers, while other layers are comparable across species and display conserved molecular markers and similar connections with the visual thalamus with only subtle differences.
Collapse
Affiliation(s)
- Song-Lin Ding
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| |
Collapse
|
6
|
Jiang W, Zhou Z, Li G, Yin W, Wu Z, Wang L, Ghanbari M, Li G, Yap PT, Howell BR, Styner MA, Yacoub E, Hazlett H, Gilmore JH, Keith Smith J, Ugurbil K, Elison JT, Zhang H, Shen D, Lin W. Mapping the evolution of regional brain network efficiency and its association with cognitive abilities during the first twenty-eight months of life. Dev Cogn Neurosci 2023; 63:101284. [PMID: 37517139 PMCID: PMC10400876 DOI: 10.1016/j.dcn.2023.101284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/20/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023] Open
Abstract
Human brain undergoes rapid growth during the first few years of life. While previous research has employed graph theory to study early brain development, it has mostly focused on the topological attributes of the whole brain. However, examining regional graph-theory features may provide unique insights into the development of cognitive abilities. Utilizing a large and longitudinal rsfMRI dataset from the UNC/UMN Baby Connectome Project, we investigated the developmental trajectories of regional efficiency and evaluated the relationships between these changes and cognitive abilities using Mullen Scales of Early Learning during the first twenty-eight months of life. Our results revealed a complex and spatiotemporally heterogeneous development pattern of regional global and local efficiency during this age period. Furthermore, we found that the trajectories of the regional global efficiency at the left temporal occipital fusiform and bilateral occipital fusiform gyri were positively associated with cognitive abilities, including visual reception, expressive language, receptive language, and early learning composite scores (P < 0.05, FDR corrected). However, these associations were weakened with age. These findings offered new insights into the regional developmental features of brain topologies and their associations with cognition and provided evidence of ongoing optimization of brain networks at both whole-brain and regional levels.
Collapse
Affiliation(s)
- Weixiong Jiang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zhen Zhou
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Guoshi Li
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Weiyan Yin
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zhengwang Wu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Li Wang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Maryam Ghanbari
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Gang Li
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Pew-Thian Yap
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Martin A Styner
- Department of Psychiatry, University of North Carolina at Chapel Hill, USA
| | - Essa Yacoub
- Center for Magnetic Resonance Research, University of Minnesota, USA
| | - Heather Hazlett
- Department of Psychiatry, University of North Carolina at Chapel Hill, USA; Department of Radiology, University of North Carolina at Chapel Hill, USA
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina at Chapel Hill, USA
| | - J Keith Smith
- Department of Radiology, University of North Carolina at Chapel Hill, USA
| | - Kamil Ugurbil
- Center for Magnetic Resonance Research, University of Minnesota, USA
| | - Jed T Elison
- Institute of Child Development, University of Minnesota, USA; Department of Pediatrics, University of Minnesota, USA
| | - Han Zhang
- Biomedical Engineering, Shanghai Tech University, Shanghai, China
| | - Dinggang Shen
- Biomedical Engineering, Shanghai Tech University, Shanghai, China; Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| | - Weili Lin
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
7
|
Fakheir Y, Khalil R. The effects of abnormal visual experience on neurodevelopmental disorders. Dev Psychobiol 2023; 65:e22408. [PMID: 37607893 DOI: 10.1002/dev.22408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/14/2023] [Accepted: 06/13/2023] [Indexed: 08/24/2023]
Abstract
Normal visual development is supported by intrinsic neurobiological mechanisms and by appropriate stimulation from the environment, both of which facilitate the maturation of visual functions. However, an offset of this balance can give rise to visual disorders. Therefore, understanding the factors that support normal vision during development and in the mature brain is important, as vision guides movement, enables social interaction, and allows children to recognize and understand their environment. In this paper, we review fundamental mechanisms that support the maturation of visual functions and discuss and draw links between the perceptual and neurobiological impairments in autism spectrum disorder (ASD) and schizophrenia. We aim to explore how this is evident in the case of ASD, and how perceptual and neurobiological deficits further degrade social ability. Furthermore, we describe the altered perceptual experience of those with schizophrenia and evaluate theories of the underlying neural deficits that alter perception.
Collapse
Affiliation(s)
- Yara Fakheir
- Department of Biology, Chemistry, and Environmental Sciences, American University of Sharjah, Sharjah, UAE
| | - Reem Khalil
- Department of Biology, Chemistry, and Environmental Sciences, American University of Sharjah, Sharjah, UAE
| |
Collapse
|
8
|
Wright JJ, Bourke PD. The mesoanatomy of the cortex, minimization of free energy, and generative cognition. Front Comput Neurosci 2023; 17:1169772. [PMID: 37251599 PMCID: PMC10213520 DOI: 10.3389/fncom.2023.1169772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/10/2023] [Indexed: 05/31/2023] Open
Abstract
Capacity for generativity and unlimited association is the defining characteristic of sentience, and this capacity somehow arises from neuronal self-organization in the cortex. We have previously argued that, consistent with the free energy principle, cortical development is driven by synaptic and cellular selection maximizing synchrony, with effects manifesting in a wide range of features of mesoscopic cortical anatomy. Here, we further argue that in the postnatal stage, as more structured inputs reach the cortex, the same principles of self-organization continue to operate at multitudes of local cortical sites. The unitary ultra-small world structures that emerged antenatally can represent sequences of spatiotemporal images. Local shifts of presynapses from excitatory to inhibitory cells result in the local coupling of spatial eigenmodes and the development of Markov blankets, minimizing prediction errors in each unit's interactions with surrounding neurons. In response to the superposition of inputs exchanged between cortical areas, more complicated, potentially cognitive structures are competitively selected by the merging of units and the elimination of redundant connections that result from the minimization of variational free energy and the elimination of redundant degrees of freedom. The trajectory along which free energy is minimized is shaped by interaction with sensorimotor, limbic, and brainstem mechanisms, providing a basis for creative and unlimited associative learning.
Collapse
Affiliation(s)
- James Joseph Wright
- Centre for Brain Research, and Department of Psychological Medicine, School of Medicine, University of Auckland, Auckland, New Zealand
| | - Paul David Bourke
- School of Social Sciences, Faculty of Arts, Business, Law and Education, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
9
|
Tohmi M, Cang J. Rapid development of motion-streak coding in the mouse visual cortex. iScience 2022; 26:105778. [PMID: 36594036 PMCID: PMC9804142 DOI: 10.1016/j.isci.2022.105778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/02/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Despite its importance, the development of higher visual areas (HVAs) at the cellular resolution remains largely unknown. Here, we conducted 2-photon calcium imaging of mouse HVAs lateromedial (LM) and anterolateral (AL) and V1 to observe developmental changes in visual response properties. HVA neurons showed selectivity for orientations and directions similar to V1 neurons at eye opening, which became sharper in the following weeks. Neurons in all areas over all developmental stages tended to respond selectively to dots moving along an axis perpendicular to their preferred orientation at slow speeds, suggesting a certain level of conventional motion coding already at eye opening. In contrast, at high speeds, many neurons responded to dots moving along the axis parallel to the preferred orientation in older animals but rarely after eye opening, indicating a lack of motion-streak coding in the earlier stage. Together, our results uncover the development of visual properties in HVAs.
Collapse
Affiliation(s)
- Manavu Tohmi
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA,Corresponding author
| | - Jianhua Cang
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA,Department of Psychology, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
10
|
Caravaca-Rodriguez D, Gaytan SP, Suaning GJ, Barriga-Rivera A. Implications of Neural Plasticity in Retinal Prosthesis. Invest Ophthalmol Vis Sci 2022; 63:11. [PMID: 36251317 DOI: 10.1167/iovs.63.11.11] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Retinal degenerative diseases such as retinitis pigmentosa cause a progressive loss of photoreceptors that eventually prevents the affected person from perceiving visual sensations. The absence of a visual input produces a neural rewiring cascade that propagates along the visual system. This remodeling occurs first within the retina. Then, subsequent neuroplastic changes take place at higher visual centers in the brain, produced by either the abnormal neural encoding of the visual inputs delivered by the diseased retina or as the result of an adaptation to visual deprivation. While retinal implants can activate the surviving retinal neurons by delivering electric current, the unselective activation patterns of the different neural populations that exist in the retinal layers differ substantially from those in physiologic vision. Therefore, artificially induced neural patterns are being delivered to a brain that has already undergone important neural reconnections. Whether or not the modulation of this neural rewiring can improve the performance for retinal prostheses remains a critical question whose answer may be the enabler of improved functional artificial vision and more personalized neurorehabilitation strategies.
Collapse
Affiliation(s)
- Daniel Caravaca-Rodriguez
- Department of Applied Physics III, Technical School of Engineering, Universidad de Sevilla, Sevilla, Spain
| | - Susana P Gaytan
- Department of Physiology, Universidad de Sevilla, Sevilla, Spain
| | - Gregg J Suaning
- School of Biomedical Engineering, University of Sydney, Sydney, Australia
| | - Alejandro Barriga-Rivera
- Department of Applied Physics III, Technical School of Engineering, Universidad de Sevilla, Sevilla, Spain.,School of Biomedical Engineering, University of Sydney, Sydney, Australia
| |
Collapse
|
11
|
Schumacher JW, McCann MK, Maximov KJ, Fitzpatrick D. Selective enhancement of neural coding in V1 underlies fine-discrimination learning in tree shrew. Curr Biol 2022; 32:3245-3260.e5. [PMID: 35767997 PMCID: PMC9378627 DOI: 10.1016/j.cub.2022.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/29/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022]
Abstract
Visual discrimination improves with training, a phenomenon that is thought to reflect plastic changes in the responses of neurons in primary visual cortex (V1). However, the identity of the neurons that undergo change, the nature of the changes, and the consequences of these changes for other visual behaviors remain unclear. We used chronic in vivo 2-photon calcium imaging to monitor the responses of neurons in the V1 of tree shrews learning a Go/No-Go fine orientation discrimination task. We observed increases in neural population measures of discriminability for task-relevant stimuli that correlate with performance and depend on a select subset of neurons with preferred orientations that include the rewarded stimulus and nearby orientations biased away from the non-rewarded stimulus. Learning is accompanied by selective enhancement in the response of these neurons to the rewarded stimulus that further increases their ability to discriminate the task stimuli. These changes persist outside of the trained task and predict observed enhancement and impairment in performance of other discriminations, providing evidence for selective and persistent learning-induced plasticity in the V1, with significant consequences for perception.
Collapse
Affiliation(s)
- Joseph W Schumacher
- Functional Architecture and Development of Cerebral Cortex, Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL 33458, USA
| | - Matthew K McCann
- Functional Architecture and Development of Cerebral Cortex, Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL 33458, USA
| | - Katherine J Maximov
- Functional Architecture and Development of Cerebral Cortex, Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL 33458, USA
| | - David Fitzpatrick
- Functional Architecture and Development of Cerebral Cortex, Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL 33458, USA.
| |
Collapse
|
12
|
Rockland KS. Clustered Intrinsic Connections: Not a Single System. Front Syst Neurosci 2022; 16:910845. [PMID: 35720440 PMCID: PMC9203679 DOI: 10.3389/fnsys.2022.910845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/16/2022] [Indexed: 12/18/2022] Open
|
13
|
Aghanoori MR, Burns KM, Subha M, Williams L, Hua M, Nobakht F, Krawec T, Yang G. Immunohistochemical analysis of the developing mouse cortex. Methods Cell Biol 2022; 170:31-46. [DOI: 10.1016/bs.mcb.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Khalil R, Farhat A, Dłotko P. Developmental Changes in Pyramidal Cell Morphology in Multiple Visual Cortical Areas Using Cluster Analysis. Front Comput Neurosci 2021; 15:667696. [PMID: 34135746 PMCID: PMC8200563 DOI: 10.3389/fncom.2021.667696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/05/2021] [Indexed: 11/18/2022] Open
Abstract
Neuronal morphology is characterized by salient features such as complex axonal and dendritic arbors. In the mammalian brain, variations in dendritic morphology among cell classes, brain regions, and animal species are thought to underlie known differences in neuronal function. In this work, we obtained a large dataset from http://neuromorpho.org/ comprising layer III pyramidal cells in different cortical areas of the ventral visual pathway (V1, V2, V4, TEO, and TE) of the macaque monkey at different developmental stages. We performed an in depth quantitative analysis of pyramidal cell morphology throughout development in an effort to determine which aspects mature early in development and which features require a protracted period of maturation. We were also interested in establishing if developmental changes in morphological features occur simultaneously or hierarchically in multiple visual cortical areas. We addressed these questions by performing principal component analysis (PCA) and hierarchical clustering analysis on relevant morphological features. Our analysis indicates that the maturation of pyramidal cell morphology is largely based on early development of topological features in most visual cortical areas. Moreover, the maturation of pyramidal cell morphology in V1, V2, V4, TEO, and TE is characterized by unique developmental trajectories.
Collapse
Affiliation(s)
- Reem Khalil
- Biology, Chemistry, and Environmental Sciences Department, American University of Sharjah, Sharjah, United Arab Emirates
| | - Ahmad Farhat
- Dioscuri Centre in Topological Data Analysis, Mathematical Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Paweł Dłotko
- Dioscuri Centre in Topological Data Analysis, Mathematical Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
15
|
Gilardi C, Kalebic N. The Ferret as a Model System for Neocortex Development and Evolution. Front Cell Dev Biol 2021; 9:661759. [PMID: 33996819 PMCID: PMC8118648 DOI: 10.3389/fcell.2021.661759] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/01/2021] [Indexed: 12/19/2022] Open
Abstract
The neocortex is the largest part of the cerebral cortex and a key structure involved in human behavior and cognition. Comparison of neocortex development across mammals reveals that the proliferative capacity of neural stem and progenitor cells and the length of the neurogenic period are essential for regulating neocortex size and complexity, which in turn are thought to be instrumental for the increased cognitive abilities in humans. The domesticated ferret, Mustela putorius furo, is an important animal model in neurodevelopment for its complex postnatal cortical folding, its long period of forebrain development and its accessibility to genetic manipulation in vivo. Here, we discuss the molecular, cellular, and histological features that make this small gyrencephalic carnivore a suitable animal model to study the physiological and pathological mechanisms for the development of an expanded neocortex. We particularly focus on the mechanisms of neural stem cell proliferation, neuronal differentiation, cortical folding, visual system development, and neurodevelopmental pathologies. We further discuss the technological advances that have enabled the genetic manipulation of the ferret in vivo. Finally, we compare the features of neocortex development in the ferret with those of other model organisms.
Collapse
|
16
|
Development of Auditory Cortex Circuits. J Assoc Res Otolaryngol 2021; 22:237-259. [PMID: 33909161 DOI: 10.1007/s10162-021-00794-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/03/2021] [Indexed: 02/03/2023] Open
Abstract
The ability to process and perceive sensory stimuli is an essential function for animals. Among the sensory modalities, audition is crucial for communication, pleasure, care for the young, and perceiving threats. The auditory cortex (ACtx) is a key sound processing region that combines ascending signals from the auditory periphery and inputs from other sensory and non-sensory regions. The development of ACtx is a protracted process starting prenatally and requires the complex interplay of molecular programs, spontaneous activity, and sensory experience. Here, we review the development of thalamic and cortical auditory circuits during pre- and early post-natal periods.
Collapse
|
17
|
Xiang Y, Chen J, Xu F, Lin Z, Xiao J, Lin Z, Lin H. Longtime Vision Function Prediction in Childhood Cataract Patients Based on Optical Coherence Tomography Images. Front Bioeng Biotechnol 2021; 9:646479. [PMID: 33748090 PMCID: PMC7973224 DOI: 10.3389/fbioe.2021.646479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/08/2021] [Indexed: 11/21/2022] Open
Abstract
The results of visual prediction reflect the tendency and speed of visual development during a future period, based on which ophthalmologists and guardians can know the potential visual prognosis in advance, decide on an intervention plan, and contribute to visual development. In our study, we developed an intelligent system based on the features of optical coherence tomography images for long-term prediction of best corrected visual acuity (BCVA) 3 and 5 years in advance. Two hundred eyes of 132 patients were included. Six machine learning algorithms were applied. In the BCVA predictions, small errors within two lines of the visual chart were achieved. The mean absolute errors (MAEs) between the prediction results and ground truth were 0.1482–0.2117 logMAR for 3-year predictions and 0.1198–0.1845 logMAR for 5-year predictions; the root mean square errors (RMSEs) were 0.1916–0.2942 logMAR for 3-year predictions and 0.1692–0.2537 logMAR for 5-year predictions. This is the first study to predict post-therapeutic BCVAs in young children. This work establishes a reliable method to predict prognosis 5 years in advance. The application of our research contributes to the design of visual intervention plans and visual prognosis.
Collapse
Affiliation(s)
- Yifan Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jingjing Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Fabao Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhuoling Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jun Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhenzhe Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Haotian Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,Center of Precision Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
18
|
Differential Circuit Mechanisms of Young and Aged Visual Cortex in the Mammalian Brain. NEUROSCI 2021. [DOI: 10.3390/neurosci2010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The main goal of this review is to summarize and discuss (1) age-dependent structural reorganization of mammalian visual cortical circuits underlying complex visual behavior functions in primary visual cortex (V1) and multiple extrastriate visual areas, and (2) current evidence supporting the notion of compensatory mechanisms in aged visual circuits as well as the use of rehabilitative therapy for the recovery of neural plasticity in normal and diseased aging visual circuit mechanisms in different species. It is well known that aging significantly modulates both the structural and physiological properties of visual cortical neurons in V1 and other visual cortical areas in various species. Compensatory aged neural mechanisms correlate with the complexity of visual functions; however, they do not always result in major circuit alterations resulting in age-dependent decline in performance of a visual task or neurodegenerative disorders. Computational load and neural processing gradually increase with age, and the complexity of compensatory mechanisms correlates with the intricacy of higher form visual perceptions that are more evident in higher-order visual areas. It is particularly interesting to note that the visual perceptual processing of certain visual behavior functions does not change with age. This review aims to comprehensively discuss the effect of normal aging on neuroanatomical alterations that underlie critical visual functions and more importantly to highlight differences between compensatory mechanisms in aged neural circuits and neural processes related to visual disorders. This type of approach will further enhance our understanding of inter-areal and cortico-cortical connectivity of visual circuits in normal aging and identify major circuit alterations that occur in different visual deficits, thus facilitating the design and evaluation of potential rehabilitation therapies as well as the assessment of the extent of their rejuvenation.
Collapse
|