1
|
Stone ME, Kelz MB, Proekt A, Wasilczuk AZ. A probabilistic model of behavioural emergence from general anaesthesia in mice. Br J Anaesth 2025:S0007-0912(25)00166-7. [PMID: 40287361 DOI: 10.1016/j.bja.2025.02.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/16/2025] [Accepted: 02/17/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Time to emergence from general anaesthesia is highly variable between individuals. This variability has been attributed to individual differences in anaesthetic sensitivity. However, this hypothesis has not been verified experimentally. We explicitly test this hypothesis by quantifying emergence from anaesthesia repeatedly in the same individuals over time. METHODS Genetically identical adult (12-24 weeks old) male (n=40) and female (n=20) C57BL/6J mice were exposed to 2 h of isoflurane (0.90 vol%) on 10 separate occasions. Time to emergence was measured using the return of the righting reflex. Predictions of the standard effect-site pharmacokinetic-pharmacodynamic (PK-PD) model and neuronal dynamics model of stochastic fluctuations between the awake and anaesthetised states were fit to observed emergence times. Repeated steady-state assessments of the righting reflex obtained during the last 2 h of a 4-h exposure to 0.3, 0.4, 0.6, or 0.7 vol% isoflurane (n=20 per concentration) were used to determine individual probabilities of losing the righting reflex, which was defined as an individual's anaesthetic sensitivity. RESULTS Emergence times varied by at least two orders of magnitude after identical anaesthetic exposure. We did not find consistent inter-individual differences in emergence times. Instead, we found that variability in emergence times across trials in each individual was as large as that between two different individuals. Emergence times were not correlated across time. Consistent with previous work, we identified large individual differences in anaesthetic sensitivity which persisted on a time scale of at least 1 week. A standard PK-PD model failed to reproduce inter-trial variability. In contrast, the neuronal dynamics model reproduced both population- and individual-level variability in emergence times. CONCLUSIONS Stochastic state switching contributes to inherent variability in emergence from general anaesthesia. Delayed emergence occurred in a small proportion of anaesthetic exposures in a genetically homogeneous population. The neuronal dynamics model predicts that anaesthetic emergence times will be probabilistically long, which might explain delayed emergence observed in clinical settings.
Collapse
Affiliation(s)
- Martha E Stone
- Neuroscience of Unconsciousness and Reanimation Research Alliance, Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA; Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Max B Kelz
- Neuroscience of Unconsciousness and Reanimation Research Alliance, Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA; Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Alex Proekt
- Neuroscience of Unconsciousness and Reanimation Research Alliance, Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrzej Z Wasilczuk
- Neuroscience of Unconsciousness and Reanimation Research Alliance, Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Wasilczuk AZ, Rinehart C, Aggarwal A, Stone ME, Mashour GA, Avidan MS, Kelz MB, Proekt A, ReCCognition Study Group. Hormonal basis of sex differences in anesthetic sensitivity. Proc Natl Acad Sci U S A 2024; 121:e2312913120. [PMID: 38190526 PMCID: PMC10801881 DOI: 10.1073/pnas.2312913120] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/20/2023] [Indexed: 01/10/2024] Open
Abstract
General anesthesia-a pharmacologically induced reversible state of unconsciousness-enables millions of life-saving procedures. Anesthetics induce unconsciousness in part by impinging upon sexually dimorphic and hormonally sensitive hypothalamic circuits regulating sleep and wakefulness. Thus, we hypothesized that anesthetic sensitivity should be sex-dependent and modulated by sex hormones. Using distinct behavioral measures, we show that at identical brain anesthetic concentrations, female mice are more resistant to volatile anesthetics than males. Anesthetic sensitivity is bidirectionally modulated by testosterone. Castration increases anesthetic resistance. Conversely, testosterone administration acutely increases anesthetic sensitivity. Conversion of testosterone to estradiol by aromatase is partially responsible for this effect. In contrast, oophorectomy has no effect. To identify the neuronal circuits underlying sex differences, we performed whole brain c-Fos activity mapping under anesthesia in male and female mice. Consistent with a key role of the hypothalamus, we found fewer active neurons in the ventral hypothalamic sleep-promoting regions in females than in males. In humans, we demonstrate that females regain consciousness and recover cognition faster than males after identical anesthetic exposures. Remarkably, while behavioral and neurocognitive measures in mice and humans point to increased anesthetic resistance in females, cortical activity fails to show sex differences under anesthesia in either species. Cumulatively, we demonstrate that sex differences in anesthetic sensitivity are evolutionarily conserved and not reflected in conventional electroencephalographic-based measures of anesthetic depth. This covert resistance to anesthesia may explain the higher incidence of unintended awareness under general anesthesia in females.
Collapse
Affiliation(s)
- Andrzej Z. Wasilczuk
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Neuroscience of Unconsciousness and Reanimation Research Alliance, Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
| | - Cole Rinehart
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Neuroscience of Unconsciousness and Reanimation Research Alliance, Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
| | - Adeeti Aggarwal
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Neuroscience of Unconsciousness and Reanimation Research Alliance, Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA19104
| | - Martha E. Stone
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Neuroscience of Unconsciousness and Reanimation Research Alliance, Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA19104
| | - George A. Mashour
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI48105
| | - Michael S. Avidan
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO63110
| | - Max B. Kelz
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Neuroscience of Unconsciousness and Reanimation Research Alliance, Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA19104
- Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Alex Proekt
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Neuroscience of Unconsciousness and Reanimation Research Alliance, Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA19104
- Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - ReCCognition Study Group
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI48105
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO63110
| |
Collapse
|
3
|
Weinrich JA, Liu CD, Jewell ME, Andolina CR, Bernstein MX, Benitez J, Rodriguez-Rosado S, Braz JM, Maze M, Nemenov MI, Basbaum AI. Paradoxical increases in anterior cingulate cortex activity during nitrous oxide-induced analgesia reveal a signature of pain affect. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.534475. [PMID: 37066151 PMCID: PMC10104003 DOI: 10.1101/2023.04.03.534475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
The general consensus is that increases in neuronal activity in the anterior cingulate cortex (ACC) contribute to pain's negative affect. Here, using in vivo imaging of neuronal calcium dynamics in mice, we report that nitrous oxide, a general anesthetic that reduces pain affect, paradoxically, increases ACC spontaneous activity. As expected, a noxious stimulus also increased ACC activity. However, as nitrous oxide increases baseline activity, the relative change in activity from pre-stimulus baseline was significantly less than the change in the absence of the general anesthetic. We suggest that this relative change in activity represents a neural signature of the affective pain experience. Furthermore, this signature of pain persists under general anesthesia induced by isoflurane, at concentrations in which the mouse is unresponsive. We suggest that this signature underlies the phenomenon of connected consciousness, in which use of the isolated forelimb technique revealed that pain percepts can persist in anesthetized patients.
Collapse
Affiliation(s)
- Jarret Ap Weinrich
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA
| | - Cindy D Liu
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA 94158, USA
| | - Madison E Jewell
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA
| | - Christopher R Andolina
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA
| | - Mollie X Bernstein
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jorge Benitez
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA
| | - Sian Rodriguez-Rosado
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA
| | - Joao M Braz
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA
| | - Mervyn Maze
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA 94158, USA
| | - Mikhail I Nemenov
- Lasmed, Mountain View, CA 94043, USA
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA 94035, USA
| | - Allan I Basbaum
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
4
|
McKinstry-Wu AR, Wasilczuk AZ, Dailey WP, Eckenhoff RG, Kelz MB. In Vivo Photoadduction of Anesthetic Ligands in Mouse Brain Markedly Extends Sedation and Hypnosis. J Neurosci 2023; 43:2338-2348. [PMID: 36849414 PMCID: PMC10072292 DOI: 10.1523/jneurosci.1884-22.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 03/01/2023] Open
Abstract
Photoaffinity ligands are best known as tools used to identify the specific binding sites of drugs to their molecular targets. However, photoaffinity ligands have the potential to further define critical neuroanatomic targets of drug action. In the brains of WT male mice, we demonstrate the feasibility of using photoaffinity ligands in vivo to prolong anesthesia via targeted yet spatially restricted photoadduction of azi-m-propofol (aziPm), a photoreactive analog of the general anesthetic propofol. Systemic administration of aziPm with bilateral near-ultraviolet photoadduction in the rostral pons, at the border of the parabrachial nucleus and locus coeruleus, produced a 20-fold increase in the duration of sedative and hypnotic effects compared with control mice without UV illumination. Photoadduction that missed the parabrachial-coerulean complex also failed to extend the sedative or hypnotic actions of aziPm and was indistinguishable from nonadducted controls. Paralleling the prolonged behavioral and EEG consequences of on target in vivo photoadduction, we conducted electrophysiologic recordings in rostral pontine brain slices. Using neurons within the locus coeruleus to further highlight the cellular consequences of irreversible aziPm binding, we demonstrate transient slowing of spontaneous action potentials with a brief bath application of aziPm that becomes irreversible on photoadduction. Together, these findings suggest that photochemistry-based strategies are a viable new approach for probing CNS physiology and pathophysiology.SIGNIFICANCE STATEMENT Photoaffinity ligands are drugs capable of light-induced irreversible binding, which have unexploited potential to identify the neuroanatomic sites of drug action. We systemically administer a centrally acting anesthetic photoaffinity ligand in mice, conduct localized photoillumination within the brain to covalently adduct the drug at its in vivo sites of action, and successfully enrich irreversible drug binding within a restricted 250 µm radius. When photoadduction encompassed the pontine parabrachial-coerulean complex, anesthetic sedation and hypnosis was prolonged 20-fold, thus illustrating the power of in vivo photochemistry to help unravel neuronal mechanisms of drug action.
Collapse
Affiliation(s)
- Andrew R McKinstry-Wu
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, Philadelphia 19104
- Neuroscience of Unconsciousness and Reanimation Research Alliance, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Philadelphia 19104
| | - Andrzej Z Wasilczuk
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, Philadelphia 19104
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Philadelphia 19104
- Neuroscience of Unconsciousness and Reanimation Research Alliance, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Philadelphia 19104
| | - William P Dailey
- Department of Chemistry, University of Pennsylvania School of Arts and Sciences, Philadelphia, Pennsylvania 19104
| | - Roderic G Eckenhoff
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, Philadelphia 19104
| | - Max B Kelz
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, Philadelphia 19104
- Mahoney Institute for Neurosciences, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Philadelphia 19104
- Neuroscience of Unconsciousness and Reanimation Research Alliance, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Philadelphia 19104
| |
Collapse
|