1
|
Graybeal AJ, Aultman RS, Brandner CF, Vallecillo-Bustos A, Compton AT, Swafford SH, Newsome TA, Stavres J. Effects of Ketone Ester Supplementation on Cognition and Appetite in Individuals with and Without Metabolic syndrome: A Randomized Trial. J Diet Suppl 2025; 22:382-400. [PMID: 40040390 PMCID: PMC12018118 DOI: 10.1080/19390211.2025.2473371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
There are currently no non-pharmacological solutions to combat the appetite and cognitive dysfunctions associated with metabolic syndrome (MetS). Ketosis may be a potential solution, though the restrictive nature of dietary ketosis limits its long-term utility. Oral administration of exogenous ketone esters (KE) independently induces ketosis, eliciting hyperketonemia without the need for prolonged dietary restrictions. However, the acute effects of oral KEs on appetite and cognition have not been evaluated in individuals with MetS. For this randomized, single-blind, placebo-controlled, matched-pairs crossover study, 10 individuals with MetS and 10 without (non-MetS) matched for age, sex, and race/ethnicity completed a cardiometabolic screening/familiarization visit and two experimental trials. During the experimental trials, cognitive function, subjective appetite, and respiratory gases were measured at baseline and for 2h following the ingestion of a randomly assigned KE or placebo drink. Post-trial food intake was also collected. Independent of MetS group, indices of working memory significantly improved (p ≤ .035), and blood glucose significantly decreased (p < .001), following KE ingestion. However, after the KE condition, markers of subjective appetite (p ≤ .048) only decreased in the non-MetS group. Post-trial relative fat intake was higher in the MetS group than the non-MetS group following the KE (p = .002), and lower after the KE than the placebo for the non-MetS group (p = .028). Our findings indicate that while cognitive function may increase following KE ingestion independent of MetS, appetite may only decrease in those without MetS; providing further insight to our understanding of the behavioral and metabolic responses to exogenous ketosis.
Collapse
Affiliation(s)
- Austin J. Graybeal
- School of Kinesiology and Nutrition, The University of Southern Mississippi, Hattiesburg, MS
| | | | - Caleb F. Brandner
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA
| | | | - Abby T. Compton
- School of Kinesiology and Nutrition, The University of Southern Mississippi, Hattiesburg, MS
| | - Sydney H. Swafford
- School of Kinesiology and Nutrition, The University of Southern Mississippi, Hattiesburg, MS
| | - Ta’Quoris A. Newsome
- School of Medicine, University of Mississippi Department of Medicine, Jackson, MS
| | - Jon Stavres
- School of Kinesiology and Nutrition, The University of Southern Mississippi, Hattiesburg, MS
| |
Collapse
|
2
|
Ogbonna HN, Roberts Z, Godwin N, Muri P, Turbitt WJ, Swalley ZN, Dempsey FR, Stephens HR, Zhang J, Plaisance EP, Norian LA. An Exogenous Ketone Ester Slows Tumor Progression in Murine Breast and Renal Cancer Models. Cancers (Basel) 2024; 16:3390. [PMID: 39410010 PMCID: PMC11476193 DOI: 10.3390/cancers16193390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND/OBJECTIVES Ketone esters (KEs) exhibit promise as anti-cancer agents but their impact on spontaneous metastases remains poorly understood. Although consumption of a ketogenic diet (KD) that is low in carbohydrates and high in fats can lead to KE production in vivo, the restrictive composition of KDs may diminish adherence in cancer patients. METHODS We investigated the effects of an exogenous ketone ester-supplemented (eKET), carbohydrate-replete diet on tumor growth, metastasis, and underlying mechanisms in orthotopic models of metastatic breast (4T1-Luc) and renal (Renca-Luc) carcinomas. Mice were randomized to diet after tumor challenge. RESULTS Administration of KEs did not alter tumor cell growth in vitro. However, in mice, our eKET diet increased circulating β-hydroxybutyrate and inhibited primary tumor growth and lung metastasis in both models. Body composition analysis illustrated the overall safety of eKET diet use, although it was associated with a loss of fat mass in mice with renal tumors. Immunogenetic profiling revealed divergent intratumoral eKET-related changes by tumor type. In mammary tumors, Wnt and TGFβ pathways were downregulated, whereas in renal tumors, genes related to hypoxia and DNA damage repair were downregulated. CONCLUSIONS Thus, our eKET diet exerts potent antitumor and antimetastatic effects in both breast and renal cancer models, albeit with different modes of action and physiologic effects. Its potential as an adjuvant dietary approach for patients with diverse cancer types should be explored further.
Collapse
Affiliation(s)
- Henry Nnaemeka Ogbonna
- Graduate Biomedical Sciences, Pathobiology, Pharmacology, and Physiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Zachary Roberts
- Undergraduate Science and Technology Honors Program, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | | | - Pia Muri
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (P.M.); (W.J.T.)
| | - William J. Turbitt
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (P.M.); (W.J.T.)
| | - Zoey N. Swalley
- Undergraduate Honors College, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Francesca R. Dempsey
- Graduate Biomedical Sciences, Cancer Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Holly R. Stephens
- Graduate Biomedical Sciences, Immunology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Jianqing Zhang
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Eric P. Plaisance
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (P.M.); (W.J.T.)
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Lyse A. Norian
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (P.M.); (W.J.T.)
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
3
|
Deemer SE, Roberts BM, Smith DL, Plaisance EP, Philp A. Exogenous ketone esters as a potential therapeutic for treatment of sarcopenic obesity. Am J Physiol Cell Physiol 2024; 327:C140-C150. [PMID: 38766768 DOI: 10.1152/ajpcell.00471.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Abstract
Identifying effective treatment(s) for sarcopenia and sarcopenic obesity is of paramount importance as the global population advances in age and obesity continues to be a worldwide concern. Evidence has shown that a ketogenic diet can be beneficial for the preservation of muscle quality and function in older adults, but long-term adherence is low due in part to the high-fat (≥80%), very low carbohydrate (<5%) composition of the diet. When provided in adequate amounts, exogenous ketone esters (KEs) can increase circulating ketones to concentrations that exceed those observed during prolonged fasting or starvation without significant alterations in the diet. Ketone esters first emerged in the mid-1990s and their use in preclinical and clinical research has escalated within the past 10-15 years. We present findings from a narrative review of the existing literature for a proposed hypothesis on the effects of exogenous ketones as a therapeutic for preservation of skeletal muscle and function within the context of sarcopenic obesity and future directions for exploration. Much of the reviewed literature herein examines the mechanisms of the ketone diester (R,S-1,3-butanediol diacetoacetate) on skeletal muscle mass, muscle protein synthesis, and epigenetic regulation in murine models. Additional studies are needed to further examine the key regulatory factors producing these effects in skeletal muscle, examine convergent and divergent effects among different ketone ester formulations, and establish optimal frequency and dosing regimens to translate these findings into humans.
Collapse
Affiliation(s)
- Sarah E Deemer
- Department of Kinesiology, Health Promotion & Recreation, University of North Texas, Denton, Texas, United States
| | - Brandon M Roberts
- US Army Research Institute of Environmental Medicine (USARIEM), Natick, Massachusetts, United States
| | - Daniel L Smith
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Eric P Plaisance
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Andrew Philp
- Centre for Healthy Ageing, Centenary Institute, Sydney, New South Wales, Australia
- School of Sport, Exercise and Rehabilitation Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Bolyard ML, Graziano CM, Fontaine KR, Sayer RD, Fisher G, Plaisance EP. Tolerability and Acceptability of an Exogenous Ketone Monoester and Ketone Monoester/Salt Formulation in Humans. Nutrients 2023; 15:4876. [PMID: 38068734 PMCID: PMC10708260 DOI: 10.3390/nu15234876] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Exogenous ketone ester and ketone ester mixed with ketone free acid formulations are rapidly entering the commercial marketspace. Short-term animal and human studies using these products suggest significant potential for primary or secondary prevention of a number of chronic disease conditions. However, a number of questions need to be addressed by the field for optimal use in humans, including variable responses among available exogenous ketones at different dosages; frequency of dosing; and their tolerability, acceptability, and efficacy in long-term clinical trials. The purpose of the current investigation was to examine the tolerability, acceptability, and circulating R-beta-hydroxybutyrate (R-βHB) and glucose responses to a ketone monoester (KME) and ketone monoester/salt (KMES) combination at 5 g and 10 g total R-βHB compared with placebo control (PC). Fourteen healthy young adults (age: 21 ± 2 years, weight: 69.7 ± 14.2 kg, percent fat: 28.1 ± 9.3%) completed each of the five study conditions: placebo control (PC), 5 g KME (KME5), 10 g KME (KME10), 5 g (KMES5), and 10 g KMES (KMES10) in a randomized crossover fashion. Circulating concentrations of R-βHB were measured at baseline (time 0) following an 8-12 h overnight fast and again at 15, 30, 60, and 120 min following drink ingestion. Participants also reported acceptability and tolerability during each condition. Concentrations of R-βHB rose to 2.4 ± 0.1 mM for KME10 after 15 min, whereas KMES10 similarly peaked (2.1 ± 0.1 mM) but at 30 min. KME5 and KMES5 achieved similar peak R-βHB concentrations (1.2 ± 0.7 vs. 1.1 ± 0.5 mM) at 15 min. Circulating R-βHB concentrations were similar to baseline for each condition by 120 min. Negative correlations were observed between R-βHB and glucose at the 30 min time point for each condition except KME10 and PC. Tolerability was similar among KME and KMES, although decreases in appetite were more frequently reported for KMES. Acceptability was slightly higher for KMES due to the more frequently reported aftertaste for KME. The results of this pilot investigation illustrate that the KME and KMES products used increase circulating R-βHB concentrations to a similar extent and time course in a dose-dependent fashion with slight differences in tolerability and acceptability. Future studies are needed to examine variable doses, frequency, and timing of exogenous ketone administration for individuals seeking to consume ketone products for health- or sport performance-related purposes.
Collapse
Affiliation(s)
- Mickey L. Bolyard
- Department of Human Studies, School of Education, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.L.B.); (C.M.G.); (G.F.)
| | - Christina M. Graziano
- Department of Human Studies, School of Education, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.L.B.); (C.M.G.); (G.F.)
| | - Kevin R. Fontaine
- Department of Health Behavior, School of Public Health, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - R. Drew Sayer
- Department of Family and Community Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35924, USA;
| | - Gordon Fisher
- Department of Human Studies, School of Education, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.L.B.); (C.M.G.); (G.F.)
| | - Eric P. Plaisance
- Department of Nutrition Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL 35924, USA
| |
Collapse
|
5
|
Rushing KA, Bolyard ML, Kelty T, Wieschhaus N, Pavela G, Rector RS, Plaisance EP. Dietary ketone ester attenuates the accretion of adiposity and liver steatosis in mice fed a high-fat, high-sugar diet. Front Physiol 2023; 14:1165224. [PMID: 37113697 PMCID: PMC10128912 DOI: 10.3389/fphys.2023.1165224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
Objective: The ketone diester, R,S-1,3-butanediol diacetoacetate (BD-AcAc2), attenuates the accretion of adiposity and reduces hepatic steatosis in high-fat diet-induced obese mice when carbohydrate energy is removed from the diet to accommodate energy from the ester. Reducing carbohydrate energy is a potential confounder due to the well-known effects of carbohydrate restriction on components of energy balance and metabolism. Therefore, the current investigation was designed to determine whether the addition of BD-AcAc2 to a high-fat, high-sugar diet (with no reduction in carbohydrate energy) would attenuate the accretion of adiposity and markers of hepatic steatosis and inflammation. Methods: Sixteen 11-week-old male C57BL/6J mice were randomized to one of two groups for 9 weeks (n = 8 per group): 1) Control (CON, HFHS diet) or 2) Ketone ester (KE, HFHS diet + BD-AcAc2, 25% by kcals). Results: Body weight increased by 56% in CON (27.8 ± 2.5 to 43.4 ± 3.7 g, p < 0.001) and by 13% in KE (28.0 ± 0.8 to 31.7 ± 3.1 g, p = 0.001). Non-alcoholic fatty liver disease activity scores (NAS) for hepatic steatosis, inflammation, and ballooning were lower in the KE group compared to CON (p < 0.001 for all). Markers of hepatic inflammation [Tnfα (p = 0.036); Mcp1 (p < 0.001)], macrophage content [(Cd68 (p = 0.012)], and collagen deposition and hepatic stellate cell activation [(αSma (p = 0.004); Col1A1 (p < 0.001)] were significantly lower in the KE group compared to CON. Conclusion: These findings extend those of our previous work and show that BD-AcAc2 attenuates the accretion of adiposity and reduces markers of liver steatosis, inflammation, ballooning, and fibrosis in lean mice placed on a HFHS diet where carbohydrate energy was not removed to accommodate energy from addition of the diester.
Collapse
Affiliation(s)
- Kelsey A. Rushing
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mickey L. Bolyard
- Department of Human Studies, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Taylor Kelty
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Department of Nutrition and Exercise Physiology, Medicine—Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO, United States
| | - Nicole Wieschhaus
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Department of Nutrition and Exercise Physiology, Medicine—Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO, United States
| | - Gregory Pavela
- Department of Health Behavior, University of Alabama at Birmingham, Birmingham, AL, United States
| | - R. Scott Rector
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Department of Nutrition and Exercise Physiology, Medicine—Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO, United States
| | - Eric P. Plaisance
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
6
|
Abstract
The ketone bodies beta-hydroxybutyrate and acetoacetate are hepatically produced metabolites catabolized in extrahepatic organs. Ketone bodies are a critical cardiac fuel and have diverse roles in the regulation of cellular processes such as metabolism, inflammation, and cellular crosstalk in multiple organs that mediate disease. This review focuses on the role of cardiac ketone metabolism in health and disease with an emphasis on the therapeutic potential of ketosis as a treatment for heart failure (HF). Cardiac metabolic reprogramming, characterized by diminished mitochondrial oxidative metabolism, contributes to cardiac dysfunction and pathologic remodeling during the development of HF. Growing evidence supports an adaptive role for ketone metabolism in HF to promote normal cardiac function and attenuate disease progression. Enhanced cardiac ketone utilization during HF is mediated by increased availability due to systemic ketosis and a cardiac autonomous upregulation of ketolytic enzymes. Therapeutic strategies designed to restore high-capacity fuel metabolism in the heart show promise to address fuel metabolic deficits that underpin the progression of HF. However, the mechanisms involved in the beneficial effects of ketone bodies in HF have yet to be defined and represent important future lines of inquiry. In addition to use as an energy substrate for cardiac mitochondrial oxidation, ketone bodies modulate myocardial utilization of glucose and fatty acids, two vital energy substrates that regulate cardiac function and hypertrophy. The salutary effects of ketone bodies during HF may also include extra-cardiac roles in modulating immune responses, reducing fibrosis, and promoting angiogenesis and vasodilation. Additional pleotropic signaling properties of beta-hydroxybutyrate and AcAc are discussed including epigenetic regulation and protection against oxidative stress. Evidence for the benefit and feasibility of therapeutic ketosis is examined in preclinical and clinical studies. Finally, ongoing clinical trials are reviewed for perspective on translation of ketone therapeutics for the treatment of HF.
Collapse
Affiliation(s)
- Timothy R. Matsuura
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Patrycja Puchalska
- Department of Medicine, Division of Molecular Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Peter A. Crawford
- Department of Medicine, Division of Molecular Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Daniel P. Kelly
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
7
|
Roberts BM, Deemer SE, Smith DL, Mobley JA, Musi N, Plaisance EP. Effects of an exogenous ketone ester using multi-omics in skeletal muscle of aging C57BL/6J male mice. Front Nutr 2022; 9:1041026. [PMID: 36458175 PMCID: PMC9707703 DOI: 10.3389/fnut.2022.1041026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
Exogenous ketone ester supplementation provides a means to increase circulating ketone concentrations without the dietary challenges imposed by ketogenic diets. Our group has shown that oral R,S-1,3, butanediol diacetoacetate (BD-AcAc2) consumption results in body weight loss or maintenance with moderate increases in circulating ketones. We have previously shown a diet consisting of 25% BD-AcAc2 can maintain lean body mass (LBM) and induce fat mass (FM) loss in young, healthy male mice, but the underlying mechanisms are still unknown. Therefore, the purpose of this study was to determine if a diet consisting of 25% BD-AcAc2 (ketone ester, KE) would alter body composition, transcriptional regulation, the proteome, and the lipidome of skeletal muscle in aged mice. We hypothesized that the KE group would remain weight stable with improvements in body composition compared to controls, resulting in a healthy aging phenotype. Male C57BL/6J mice (n = 16) were purchased from Jackson Laboratories at 72 weeks of age. After 1 week of acclimation, mice were weighed and randomly assigned to one of two groups (n = 8 per group): control (CON) or KE. A significant group by time interaction was observed for body weight (P < 0.001), with KE fed mice weighing significantly less than CON. FM increased over time in the control group but was unchanged in the KE group. Furthermore, LBM was not different between CON and KE mice despite KE mice weighing less than CON mice. Transcriptional analysis of skeletal muscle identified 6 genes that were significantly higher and 21 genes that were significantly lower in the KE group compared to CON. Lipidomic analysis of skeletal muscle identified no differences between groups for any lipid species, except for fatty acyl chains in triacylglycerol which was 46% lower in the KE group. Proteomics analysis identified 44 proteins that were different between groups, of which 11 were lower and 33 were higher in the KE group compared to CON. In conclusion, 72-week-old male mice consuming the exogenous KE, BD-AcAc2, had lower age-related gains in body weight and FM compared to CON mice. Furthermore, transcriptional and proteomics data suggest a signature in skeletal muscle of KE-treated mice consistent with markers of improved skeletal muscle regeneration, improved electron transport chain utilization, and increased insulin sensitivity.
Collapse
Affiliation(s)
- Brandon M. Roberts
- Department of Human Studies, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sarah E. Deemer
- Department of Kinesiology, Health Promotion, and Recreation, University of North Texas, Denton, TX, United States
| | - Daniel L. Smith
- Department of Nutrition Sciences, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - James A. Mobley
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Nicolas Musi
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center San Antonio, San Antonio, TX, United States
- San Antonio Geriatric Research, Education, and Clinical Center, San Antonio, TX, United States
| | - Eric P. Plaisance
- Department of Human Studies, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL, United States
- *Correspondence: Eric P. Plaisance,
| |
Collapse
|
8
|
Araujo-Silva VC, Santos-Silva A, Lourenço AS, Barros-Barbosa CM, Moraes-Souza RQ, Soares TS, Karki B, Paula VG, Sinzato YK, Damasceno DC, Volpato GT. Congenital Anomalies Programmed by Maternal Diabetes and Obesity on Offspring of Rats. Front Physiol 2021; 12:701767. [PMID: 34447317 PMCID: PMC8383734 DOI: 10.3389/fphys.2021.701767] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/01/2021] [Indexed: 01/07/2023] Open
Abstract
Embryo-fetal exposure to maternal disorders during intrauterine life programs long-term consequences for the health and illness of offspring. In this study, we evaluated whether mild diabetic rats that were given high-fat/high-sugar (HF/HS) diet presented maternal and fetal changes at term pregnancy. Female rats received citrate buffer (non-diabetic-ND) or streptozotocin (diabetic-D) after birth. According to the oral glucose tolerance test (OGTT), the experimental groups (n = 11 animals/group) were composed of non-diabetic and diabetic receiving standard diet (S) or HF/HS diet. High-fat/high-sugar diet (30% kcal of lard) in chow and water containing 5% sucrose and given 1 month before mating and during pregnancy. During and at the end of pregnancy, obesity and diabetes features were determined. After laparotomy, blood samples, periovarian fat, and uterine content were collected. The diabetic rats presented a higher glycemia and percentage of embryonic losses when compared with the NDS group. Rats DHF/HS presented increased obesogenic index, caloric intake, and periovarian fat weight and reduced gravid uterus weight in relation to the other groups. Besides, this association might lead to the inflammatory process, confirmed by leukocytosis. Obese rats (NDHF/HS and DHF/HS) showed higher triglyceride levels and their offspring with lower fetal weight and ossification sites, indicating intrauterine growth restriction. This finding may contribute to vascular alterations related to long-term hypertensive disorders in adult offspring. The fetuses from diabetic dams showed higher percentages of skeletal abnormalities, and DHF/HS dams still had a higher rate of anomalous fetuses. Thus, maternal diabetes and/or obesity induces maternal metabolic disorders that contribute to affect fetal development and growth.
Collapse
Affiliation(s)
- Vanessa Caruline Araujo-Silva
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - Alice Santos-Silva
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - Andressa Silva Lourenço
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - Cristielly Maria Barros-Barbosa
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - Rafaianne Queiroz Moraes-Souza
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil.,Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Program on Tocogynecology, São Paulo State University, Botucatu, Brazil
| | - Thaigra Sousa Soares
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil.,Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Program on Tocogynecology, São Paulo State University, Botucatu, Brazil
| | - Barshana Karki
- Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Program on Tocogynecology, São Paulo State University, Botucatu, Brazil
| | - Verônyca Gonçalves Paula
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil.,Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Program on Tocogynecology, São Paulo State University, Botucatu, Brazil
| | - Yuri Karen Sinzato
- Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Program on Tocogynecology, São Paulo State University, Botucatu, Brazil
| | - Débora Cristina Damasceno
- Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Program on Tocogynecology, São Paulo State University, Botucatu, Brazil
| | - Gustavo Tadeu Volpato
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil
| |
Collapse
|
9
|
Martins C, Roekenes J, Hunter GR, Gower BA. Association between ketosis and metabolic adaptation at the level of resting metabolic rate. Clin Nutr 2021; 40:4824-4829. [PMID: 34358822 DOI: 10.1016/j.clnu.2021.06.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 05/18/2021] [Accepted: 06/28/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND The ketone body β-hydroxybutyrate (βHB) has been shown to act as a signaling molecule that regulates metabolism and energy homeostasis during starvation in animal models. A potential association between βHB and metabolic adaptation (a reduction in energy expenditure below predicted levels) in humans has never been explored. OBJECTIVE To determine if metabolic adaptation at the level of resting metabolic rate (RMR) was associated with the magnitude of ketosis induced by a very-low energy diet (VLED). A secondary aim was to investigate if the association was modulated by sex. METHODS Sixty-four individuals with obesity (BMI: 34.5 ± 3.4 kg/m2; age: 45.7 ± 8.0 years; 31 males) enrolled in a 1000 kcal/day diet for 8 weeks. Body weight/composition, RMR and βHB (as a measure of ketosis) were determined at baseline and week 9 (W9). Metabolic adaptation was defined as a significantly lower measured versus predicted RMR (from own regression model). RESULTS Participants lost on average 14.0 ± 3.9 kg and were ketotic (βHB: 0.76 ± 0.51 mM) at W9. A significant metabolic adaptation was seen (-84 ± 106 kcal/day, P < 0.001), with no significant differences between sexes. [βHB] was positively correlated with the magnitude of metabolic adaptation in females (r = 0.432, P = 0.012, n = 33), but not in males (r = 0.089, P = 0.634, n = 31). CONCLUSION In females with obesity, but not males, the larger the [βHB] under VLED, the greater the metabolic adaptation at the level of RMR. More studies are needed to confirm these findings and to explore the mechanisms behind the sex difference in the association between ketosis and metabolic adaptation. TRIAL REGISTRATION NAME Clinicaltrials.gov. STUDY REGISTRATION ID NCT02944253. URL: https://clinicaltrials.gov/ct2/show/NCT02944253.
Collapse
Affiliation(s)
- Catia Martins
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Centre for Obesity and Innovation (ObeCe), Clinic of Surgery, St. Olav University Hospital, Trondheim, Norway; Department of Nutrition Sciences, University of Alabama at Birmingham, USA.
| | - Jessica Roekenes
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Gary R Hunter
- Department of Nutrition Sciences, University of Alabama at Birmingham, USA
| | - Barbara A Gower
- Department of Nutrition Sciences, University of Alabama at Birmingham, USA
| |
Collapse
|
10
|
Huang TY, Linden MA, Fuller SE, Goldsmith FR, Simon J, Batdorf HM, Scott MC, Essajee NM, Brown JM, Noland RC. Combined effects of a ketogenic diet and exercise training alter mitochondrial and peroxisomal substrate oxidative capacity in skeletal muscle. Am J Physiol Endocrinol Metab 2021; 320:E1053-E1067. [PMID: 33843280 PMCID: PMC8285595 DOI: 10.1152/ajpendo.00410.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Ketogenic diets (KDs) are reported to improve body weight, fat mass, and exercise performance in humans. Unfortunately, most rodent studies have used a low-protein KD, which does not recapitulate diets used by humans. Since skeletal muscle plays a critical role in responding to macronutrient perturbations induced by diet and exercise, the purpose of this study was to test if a normal-protein KD (NPKD) impacts shifts in skeletal muscle substrate oxidative capacity in response to exercise training (ExTr). A high fat, carbohydrate-deficient NPKD (16.1% protein, 83.9% fat, 0% carbohydrate) was given to C57BL/6J male mice for 6 wk, whereas controls (Con) received a low-fat diet with similar protein (15.9% protein, 11.9% fat, 72.2% carbohydrate). After 3 wk on the diet, mice began treadmill training 5 days/wk, 60 min/day for 3 wks. The NPKD increased body weight and fat mass, whereas ExTr negated a continued rise in adiposity. ExTr increased intramuscular glycogen, whereas the NPKD increased intramuscular triglycerides. Neither the NPKD nor ExTr alone altered mitochondrial content; however, in combination, the NPKD-ExTr group showed increases in PGC-1α and markers of mitochondrial fission/fusion. Pyruvate oxidative capacity was unchanged by either intervention, whereas ExTr increased leucine oxidation in NPKD-fed mice. Lipid metabolism pathways had the most notable changes as the NPKD and ExTr interventions both enhanced mitochondrial and peroxisomal lipid oxidation and many adaptations were additive or synergistic. Overall, these results suggest that a combination of a NPKD and ExTr induces additive and/or synergistic adaptations in skeletal muscle oxidative capacity.NEW & NOTEWORTHY A ketogenic diet with normal protein content (NPKD) increases body weight and fat mass, increases intramuscular triglyceride storage, and upregulates pathways related to protein metabolism. In combination with exercise training, a NPKD induces additive and/or synergistic activation of AMPK, PGC-1α, mitochondrial fission/fusion genes, mitochondrial fatty acid oxidation, and peroxisomal adaptations in skeletal muscle. Collectively, results from this study provide mechanistic insight into adaptations in skeletal muscle relevant to keto-adaptation.
Collapse
Affiliation(s)
- Tai-Yu Huang
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Melissa A Linden
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Scott E Fuller
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Felicia R Goldsmith
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Jacob Simon
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Heidi M Batdorf
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Matthew C Scott
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Nabil M Essajee
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - John M Brown
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Robert C Noland
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| |
Collapse
|
11
|
Moore MP, Cunningham RP, Davis RAH, Deemer SE, Roberts BM, Plaisance EP, Rector RS. A dietary ketone ester mitigates histological outcomes of NAFLD and markers of fibrosis in high-fat diet fed mice. Am J Physiol Gastrointest Liver Physiol 2021; 320:G564-G572. [PMID: 33501889 PMCID: PMC8238172 DOI: 10.1152/ajpgi.00259.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 01/31/2023]
Abstract
Nutritional ketosis as a therapeutic tool has been extended to the treatment of metabolic diseases, including obesity, type 2 diabetes, and nonalcoholic fatty liver disease (NAFLD). The purpose of this study was to determine whether dietary administration of the ketone ester (KE) R,S-1,3-butanediol diacetoacetate (BD-AcAc2) attenuates markers of hepatic stellate cell (HSC) activation and hepatic fibrosis in the context of high-fat diet (HFD)-induced obesity. Six-week-old male C57BL/6J mice were placed on a 10-wk ad libitum HFD (45% fat, 32% carbohydrates, 23% proteins). Mice were then randomized to one of three groups (n = 10 per group) for an additional 12 wk: 1) control (CON), continuous HFD; 2) pair-fed (PF) to KE, and 3) KE (HFD + 30% energy from BD-AcAc2, KE). KE feeding significantly reduced histological steatosis, inflammation, and total NAFLD activity score versus CON, beyond improvements observed for calorie restriction alone (PF). Dietary KE supplementation also reduced the protein content and gene expression of profibrotic markers (α-SMA, COL1A1, PDGF-β, MMP9) versus CON (P < 0.05), beyond reductions observed for PF versus CON. Furthermore, KE feeding increased hepatic markers of anti-inflammatory M2 macrophages (CD163) and also reduced proinflammatory markers [tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and cellular communication network factor 1 (CCN1)] versus CON and PF (P ≤ 0.05), in the absence of changes in markers of total hepatic macrophage content (F4/80 and CD68; P > 0.05). These data highlight that the dietary ketone ester BD-AcAc2 ameliorates histological NAFLD and inflammation and reduces profibrotic and proinflammatory markers. Future studies to further explore potential mechanisms are warranted.NEW & NOTEWORTHY To our knowledge, this is the first study focusing on hepatic outcomes in response to dietary ketone ester feeding in male mice with HFD-induced NAFLD. Novel findings include that dietary ketone ester feeding ameliorates NAFLD outcomes via reductions in histological steatosis and inflammation. These improvements were beyond those observed for caloric restriction alone. Furthermore, dietary ketone ester feeding was associated with greater reductions in markers of hepatic fibrogenesis and inflammation compared with control and calorie-restricted mice.
Collapse
Affiliation(s)
- Mary P Moore
- Research Service, Harry S. Truman Memorial Veterans Medical Center, Columbia, Missouri
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Rory P Cunningham
- Research Service, Harry S. Truman Memorial Veterans Medical Center, Columbia, Missouri
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Rachel A H Davis
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sarah E Deemer
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Brandon M Roberts
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | - Eric P Plaisance
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Human Studies, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Health Behavior, University of Alabama at Birmingham, Birmingham, Alabama
| | - R Scott Rector
- Research Service, Harry S. Truman Memorial Veterans Medical Center, Columbia, Missouri
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, Missouri
| |
Collapse
|
12
|
Stubbs BJ, Nikiforov AI, Rihner MO, Weston SL, Higley N, Stump DG, Krane GA, Gadupudi G, Verdin E, Newman JC. Toxicological evaluation of the ketogenic ester bis hexanoyl (R)-1,3-butanediol: Subchronic toxicity in Sprague Dawley rats. Food Chem Toxicol 2021; 150:112084. [PMID: 33621607 DOI: 10.1016/j.fct.2021.112084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/11/2021] [Accepted: 02/16/2021] [Indexed: 11/26/2022]
Abstract
Bis-hexanoyl (R)-1,3-butanediol (BH-BD) is novel ketone ester undergoing development as a food ingredient to achieve nutritional ketosis in humans. Male and female Crl:CD(SD) rats were administered BH-BD twice daily at 9000, 12,000 or 15,000 mg/kg/day, by oral gavage in a 90-day toxicity study with 28-day recovery period; and an interim 28-day phase. Test substance-related early deaths occurred in four females at 15,000 mg/kg/day. A dose-dependent increase in acute transient postdose (1-3 h) observations of incoordination at ≥12,000 mg/kg/day and decreased activity at all dose levels were noted in both sexes. Postdose observations were likely associated with peak ketonemia and were considered adverse at 15,000 mg/kg/day. These daily observations decreased over the study without any persistent effects, as determined during weekly pre-dose observations. Adverse histopathological changes included ulceration/erosion in non-glandular stomach at ≥ 12,000 mg/k/day and in glandular stomach at 15,000 mg/kg/day. These histopathological findings were not noted after 28-days of recovery. Due to unlikely human relevance of the rat non-glandular stomach effects for BH-BD and test substance-related mortality at 15,000 mg/kg/day, the no-observed-adverse-effect level (NOAEL) for subchronic toxicity of BH-BD was determined to be 12,000 mg/kg/day.
Collapse
Affiliation(s)
| | | | | | - Sari L Weston
- SafeBridge Regulatory & Life Sciences Group, VA, USA
| | | | | | | | | | - Eric Verdin
- Buck Institute for Research on Aging, CA, USA
| | - John C Newman
- Buck Institute for Research on Aging, CA, USA; Division of Geriatrics, UCSF, CA, USA
| |
Collapse
|
13
|
Yurista SR, Chong CR, Badimon JJ, Kelly DP, de Boer RA, Westenbrink BD. Therapeutic Potential of Ketone Bodies for Patients With Cardiovascular Disease: JACC State-of-the-Art Review. J Am Coll Cardiol 2021; 77:1660-1669. [PMID: 33637354 DOI: 10.1016/j.jacc.2020.12.065] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022]
Abstract
Metabolic perturbations underlie a variety of cardiovascular disease states; yet, metabolic interventions to prevent or treat these disorders are sparse. Ketones carry a negative clinical stigma as they are involved in diabetic ketoacidosis. However, evidence from both experimental and clinical research has uncovered a protective role for ketones in cardiovascular disease. Although ketones may provide supplemental fuel for the energy-starved heart, their cardiovascular effects appear to extend far beyond cardiac energetics. Indeed, ketone bodies have been shown to influence a variety of cellular processes including gene transcription, inflammation and oxidative stress, endothelial function, cardiac remodeling, and cardiovascular risk factors. This paper reviews the bioenergetic and pleiotropic effects of ketone bodies that could potentially contribute to its cardiovascular benefits based on evidence from animal and human studies.
Collapse
Affiliation(s)
- Salva R Yurista
- University Medical Center Groningen, University of Groningen, Department of Cardiology, Groningen, the Netherlands. https://twitter.com/salvareverentia
| | - Cher-Rin Chong
- Basil Hetzel Institute for Translational Research, The Queen Elizabeth Hospital, Australia; Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Juan J Badimon
- AtheroThrombosis Research Unit, Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Daniel P Kelly
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rudolf A de Boer
- University Medical Center Groningen, University of Groningen, Department of Cardiology, Groningen, the Netherlands. https://twitter.com/Rudolf_deboer
| | - B Daan Westenbrink
- University Medical Center Groningen, University of Groningen, Department of Cardiology, Groningen, the Netherlands.
| |
Collapse
|
14
|
Okada TE, Quan T, Bomhof MR. Exogenous Ketones Lower Post-exercise Acyl-Ghrelin and GLP-1 but Do Not Impact Ad libitum Energy Intake. Front Nutr 2021; 7:626480. [PMID: 33553236 PMCID: PMC7854551 DOI: 10.3389/fnut.2020.626480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/22/2020] [Indexed: 01/14/2023] Open
Abstract
Ketosis and exercise are both associated with alterations in perceived appetite and modification of appetite-regulating hormones. This study utilized a ketone ester (R)-3-hydroxybutyl (R)-3-hydroxybutyrate (KE) to examine the impact of elevated ketone body D-β-hydroxybutyrate (βHB) during and after a bout of exercise on appetite-related hormones, appetite perception, and ad libitum energy intake over a 2 h post-exercise period. In a randomized crossover trial, 13 healthy males and females (age: 23.6 ± 2.4 years; body mass index: 25.7 ± 3.2 kg·m−2) completed an exercise session @ 70% VO2peak for 60 min on a cycling ergometer and consumed either: (1) Ketone monoester (KET) (0.5 g·kg−1 pre-exercise + 0.25 g·kg−1 post-exercise); or (2) isocaloric dextrose control (DEX). Transient ketonaemia was achieved with βHB concentrations reaching 5.0 mM (range 4.1–6.1 mM) during the post-exercise period. Relative to the dextrose condition, acyl-ghrelin (P = 0.002) and glucagon-like peptide-1 (P = 0.038) were both reduced by acute ketosis immediately following exercise. AUC for acyl-ghrelin was lower in KET compared to DEX (P = 0.001), however there were no differences in AUC for GLP-1 (P = 0.221) or PYY (P = 0.654). Perceived appetite (hunger, P = 0.388; satisfaction, P = 0.082; prospective food consumption, P = 0.254; fullness, P = 0.282) and 2 h post-exercise ad libitum energy intake (P = 0.488) were not altered by exogenous ketosis. Although KE modifies homeostatic regulators of appetite, it does not appear that KE acutely alters energy intake during the post-exercise period in healthy adults.
Collapse
Affiliation(s)
- Tetsuro E Okada
- Department of Kinesiology and Physical Education, University of Lethbridge, Lethbridge, AB, Canada
| | - Tony Quan
- Department of Kinesiology and Physical Education, University of Lethbridge, Lethbridge, AB, Canada
| | - Marc R Bomhof
- Department of Kinesiology and Physical Education, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
15
|
Walsh JJ, Myette-Côté É, Neudorf H, Little JP. Potential Therapeutic Effects of Exogenous Ketone Supplementation for Type 2 Diabetes: A Review. Curr Pharm Des 2020; 26:958-969. [PMID: 32013822 DOI: 10.2174/1381612826666200203120540] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/25/2019] [Indexed: 12/17/2022]
Abstract
Type 2 diabetes (T2D) is among the most prevalent non-communicable lifestyle diseases. We propose that overnutrition and low levels of physical activity can contribute to a vicious cycle of hyperglycemia, inflammation and oxidative stress, insulin resistance, and pancreatic β-cell dysfunction. The pathophysiological manifestations of T2D have a particular impact on the vasculature and individuals with T2D are at high risk of cardiovascular disease. Targeting aspects of the vicious cycle represent therapeutic approaches for improving T2D and protecting against cardiovascular complications. The recent advent of exogenous oral ketone supplements represents a novel, non-pharmacological approach to improving T2D pathophysiology and potentially protecting against cardiovascular disease risk. Herein, we review the emerging literature regarding the effects of exogenous ketone supplementation on metabolic control, inflammation, oxidative stress, and cardiovascular function in humans and highlight the potential application for breaking the vicious cycle of T2D pathophysiology.
Collapse
Affiliation(s)
- Jeremy J Walsh
- Exercise, Metabolism and Inflammation Laboratory, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Étienne Myette-Côté
- Exercise, Metabolism and Inflammation Laboratory, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Helena Neudorf
- Exercise, Metabolism and Inflammation Laboratory, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Jonathan P Little
- Exercise, Metabolism and Inflammation Laboratory, University of British Columbia Okanagan, Kelowna, BC, Canada
| |
Collapse
|
16
|
Deemer SE, Davis RAH, Roberts BM, Smith DL, Koutnik AP, Poff AM, D’Agostino DP, Plaisance EP. Exogenous Dietary Ketone Ester Decreases Body Weight and Adiposity in Mice Housed at Thermoneutrality. Obesity (Silver Spring) 2020; 28:1447-1455. [PMID: 32618116 PMCID: PMC7501155 DOI: 10.1002/oby.22855] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 04/06/2020] [Accepted: 04/14/2020] [Indexed: 12/28/2022]
Abstract
OBJECTIVE The aim of this study was to examine the effects of a ketone ester (KE)-supplemented diet on energy expenditure (EE) and adiposity in mice housed at 23 °C versus thermoneutrality (30 °C), in which sympathetic nervous system activity is diminished. METHODS Thirty-two 10-week-old male C57BL/6J mice were assigned to 1 of 4 groups (n = 8 per group): 30% KE diet + 23 °C (KE23), control (CON) diet + 23 °C (CON23), 30% KE diet + 30 °C (KE30), or CON diet + 30 °C (CON30). CON mice were pair-fed to the average intake of mice consuming the KE diet (ad libitum) for 8 weeks. Body composition and components of energy balance were measured at completion of the study. RESULTS CON23 (mean ± SD, 26.0 ± 1.6 g) and CON30 (29.7 ± 1.4 g) mice weighed more than KE groups (P < 0.03 for both) and were also different from each other (CON23 vs. CON30, P < 0.01). However, KE23 (23.4 ± 2.7 g) and KE30 (23.1 ± 1.9 g) mice were not different in body weight. As expected, food intake at 30 °C (2.0 ± 0.3 g/d) was lower than at 23 °C (2.6 ± 0.3 g/d, P < 0.01). Diet did not influence resting and total EE, but mice housed at 30 °C had lower EE compared with mice at 23 °C (P < 0.01). CONCLUSIONS Dietary KEs attenuate body weight gain at standard (23 °C) and thermoneutral (30 °C) housing temperatures, and this effect is not mediated by increased EE under these conditions.
Collapse
Affiliation(s)
- Sarah E. Deemer
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rachel A. H. Davis
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brandon M. Roberts
- Department of Human Studies, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Daniel L. Smith
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrew P. Koutnik
- Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA
| | - Angela M. Poff
- Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA
| | | | - Eric P. Plaisance
- Department of Human Studies, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
17
|
Koutnik AP, Poff AM, Ward NP, DeBlasi JM, Soliven MA, Romero MA, Roberson PA, Fox CD, Roberts MD, D'Agostino DP. Ketone Bodies Attenuate Wasting in Models of Atrophy. J Cachexia Sarcopenia Muscle 2020; 11:973-996. [PMID: 32239651 PMCID: PMC7432582 DOI: 10.1002/jcsm.12554] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/18/2020] [Accepted: 01/30/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Cancer Anorexia Cachexia Syndrome (CACS) is a distinct atrophy disease negatively influencing multiple aspects of clinical care and patient quality of life. Although it directly causes 20% of all cancer-related deaths, there are currently no model systems that encompass the entire multifaceted syndrome, nor are there any effective therapeutic treatments. METHODS A novel model of systemic metastasis was evaluated for the comprehensive CACS (metastasis, skeletal muscle and adipose tissue wasting, inflammation, anorexia, anemia, elevated protein breakdown, hypoalbuminemia, and metabolic derangement) in both males and females. Ex vivo skeletal muscle analysis was utilized to determine ubiquitin proteasome degradation pathway activation. A novel ketone diester (R/S 1,3-Butanediol Acetoacetate Diester) was assessed in multifaceted catabolic environments to determine anti-atrophy efficacy. RESULTS Here, we show that the VM-M3 mouse model of systemic metastasis demonstrates a novel, immunocompetent, logistically feasible, repeatable phenotype with progressive tumor growth, spontaneous metastatic spread, and the full multifaceted CACS with sex dimorphisms across tissue wasting. We also demonstrate that the ubiquitin proteasome degradation pathway was significantly upregulated in association with reduced insulin-like growth factor-1/insulin and increased FOXO3a activation, but not tumor necrosis factor-α-induced nuclear factor-kappa B activation, driving skeletal muscle atrophy. Additionally, we show that R/S 1,3-Butanediol Acetoacetate Diester administration shifted systemic metabolism, attenuated tumor burden indices, reduced atrophy/catabolism and mitigated comorbid symptoms in both CACS and cancer-independent atrophy environments. CONCLUSIONS Our findings suggest the ketone diester attenuates multifactorial CACS skeletal muscle atrophy and inflammation-induced catabolism, demonstrating anti-catabolic effects of ketone bodies in multifactorial atrophy.
Collapse
Affiliation(s)
- Andrew P. Koutnik
- Department of Molecular Pharmacology and PhysiologyMorsani College of Medicine, University of South FloridaTampaFLUSA
| | - Angela M. Poff
- Department of Molecular Pharmacology and PhysiologyMorsani College of Medicine, University of South FloridaTampaFLUSA
| | - Nathan P. Ward
- Department of Cancer PhysiologyMoffitt Cancer Center, H. Lee Moffitt Cancer Center and Research InstituteTampaFLUSA
| | - Janine M. DeBlasi
- Department of Molecular Pharmacology and PhysiologyMorsani College of Medicine, University of South FloridaTampaFLUSA
| | - Maricel A. Soliven
- Department of Molecular Pharmacology and PhysiologyMorsani College of Medicine, University of South FloridaTampaFLUSA
| | | | | | - Carl D. Fox
- School of KinesiologyAuburn UniversityAuburnALUSA
| | | | - Dominic P. D'Agostino
- Department of Molecular Pharmacology and PhysiologyMorsani College of Medicine, University of South FloridaTampaFLUSA
- Institute for Human and Machine CognitionOcalaFLUSA
| |
Collapse
|
18
|
Poff AM, Koutnik AP, Egan B. Nutritional Ketosis with Ketogenic Diets or Exogenous Ketones: Features, Convergence, and Divergence. Curr Sports Med Rep 2020; 19:251-259. [DOI: 10.1249/jsr.0000000000000732] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Deemer SE, Plaisance EP, Martins C. Impact of ketosis on appetite regulation-a review. Nutr Res 2020; 77:1-11. [PMID: 32193016 DOI: 10.1016/j.nutres.2020.02.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/30/2020] [Accepted: 02/18/2020] [Indexed: 02/01/2023]
Abstract
To reduce the health burden of obesity, it is important to identify safe and practical treatments that are effective for weight loss while concurrently preventing weight regain. Diet-induced weight loss is usually followed by a concomitant increase in ghrelin secretion and feelings of hunger, which may compromise weight loss goals and increase the risk of weight regain. The aim of this review is to describe the status of knowledge regarding the impact of ketosis, induced by diet or exogenous ketones (ketone esters), on appetite and the potential mechanisms involved. Ketogenic diets (KDs) have been shown to prevent an increase in ghrelin secretion, otherwise seen with weight loss, as well as to reduce hunger and/or prevent hunger. However, the exact threshold of ketosis needed to induce appetite suppression, as well as the exact mechanisms that mediate such an effect, has yet to be elucidated. Use of exogenous ketones may provide an alternative to KDs, which have poor long-term adherence due to their restrictive nature. Ketone esters have been shown to have concentration-dependent effects on food intake and body weight in rodent models, with effects becoming apparent when 30% of total dietary energy comes from ketone esters (threshold effect). In humans, acute consumption of a ketone ester drink reduced feelings of hunger and increased satiety compared to a dextrose drink. With the emerging widespread acceptance of KDs and exogenous ketones in mainstream media and the diet culture, it is important to fully understand their role on appetite control and weight management and the potential mechanisms mediating this role.
Collapse
Affiliation(s)
- Sarah E Deemer
- Department of Nutrition Sciences and Nutrition Obesity Research Center, The University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Eric P Plaisance
- Department of Human Studies, Exercise Physiology, Nutrition Obesity Research Center, The University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Catia Martins
- Department of Nutrition Sciences and Nutrition Obesity Research Center, The University of Alabama at Birmingham (UAB), Birmingham, AL, USA; Obesity Research Group, Department of Clinical Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Centre for Obesity and Innovation (ObeCe), Clinic of Surgery, St Olav University Hospital, Trondheim, Norway.
| |
Collapse
|