1
|
Shlyk NP, Yurchenko EA, Leshchenko EV, Chingizova EA, Chingizov AR, Chausova VE, Kirichuk NN, Khudyakova YV, Pivkin MV, Antonov AS, Popov RS, Isaeva MP, Yurchenko AN. The secondary metabolites of the alga-derived fungus Aspergillus niveoglaucus КММ 4176 and their antimicrobial and antibiofilm activities. J Antibiot (Tokyo) 2025; 78:314-329. [PMID: 39984736 DOI: 10.1038/s41429-025-00811-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/27/2025] [Accepted: 02/05/2025] [Indexed: 02/23/2025]
Abstract
Marine alga-derived fungal strain КММ 4176 was identified as Aspergillus niveoglaucus based on ITS region BenA, CaM and RPB2 gene sequence analysis. The anthraquinone derivatives emodin anthrone (1) and 4-hydroxyemodin anthrone (2), chromone derivative aloesone (3), and indole diketopiperazine alkaloid neoechinulin B (4) were isolated from the ethyl acetate extract of this fungus. In addition, UPLC MS data analysis of the KMM 4176 extract showed the presence of 17 echinulin-family alkaloids, as well as their biogenetic precursor cyclo(L-alanyl-L-tryptophyl) and a number of polyketide compounds. Emodin anthrone and 4-hydroxyemodin anthrone were found as inhibitors of biofilm formation by Staphylococcus aureus with half-maximal inhibitory concentrations (IC50) of 5.5 µM and 23.7 µM, respectively. Moreover, emodin anthrone (1) and 4-hydroxyemodin anthrone (2) inhibited staphylococcal sortase A activity with IC50 of 9.2 µM and 37.6 µM, respectively. Aloesone (3) also inhibited S. aureus biofilm formation but was less active. The first data on neoechinulin B (4) antibiofilm activity and sortase A inhibition were obtained. The positive effects of the isolated compounds on the growth of HaCaT keratinocytes infected with S. aureus were also observed.
Collapse
Affiliation(s)
- Nadezhda P Shlyk
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok, 690022, Russian Federation
- Far Eastern Federal University, Vladivostok, 690922, Russian Federation
| | - Ekaterina A Yurchenko
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Elena V Leshchenko
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Ekaterina A Chingizova
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Artur R Chingizov
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Viktoria E Chausova
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Natalya N Kirichuk
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Yuliya V Khudyakova
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Mikhail V Pivkin
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Alexandr S Antonov
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Roman S Popov
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Marina P Isaeva
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Anton N Yurchenko
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok, 690022, Russian Federation.
| |
Collapse
|
2
|
Wei R, Pan X, Cai D, Pan L. Synergistic Inhibition of Breast Carcinoma Cell Proliferation by Quercetin and Sulforaphane via Activation of the ERK/MAPK Pathway. Cell Biochem Biophys 2025:10.1007/s12013-024-01662-6. [PMID: 39760839 DOI: 10.1007/s12013-024-01662-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2024] [Indexed: 01/07/2025]
Abstract
In the contemporary era of drug discovery, herbal treatments have demonstrated an unparalleled ability to produce anticancer drugs. An important part of the therapy of cancer is the use of plants and their by-products via analogues, which alter the tumor microenvironment and several signaling pathways. The objective of the current investigation was to conclude the rate at which the herbal medications quercetin (QT) and sulforaphane (SFN) repressed the growth of breast carcinoma cells in MDA-MB-231 by preventing the ERK/MAPK signaling systems. The cells were assessed for several studies after being subjected to different concentrations (0-70 µM) of QT and SFN (QT + SFN) for duration of 24 h. We investigated the combination that QT + SFN generated cytotoxicity using the MTT assay. The DCFH-DA staining technique was utilized to assess ROS. The protein spectra of survival of cells, cell cycle progression, and apoptosis were evaluated employing flow cytometry and western blotting. The consequences illustrated that the relative cytotoxicity of QT and SFN was roughly 28.74 μM and 39.87 μM for MDA-MB-231 cells, respectively. Following the 24-h incubation period, MDA-MB-231 cells exhibit considerable cytotoxicity when QT and SFN are combined, with IC50 values of 19.48 μM. Moreover, MCF-7 and MDA-MB-231 cells treated with QT and SFN concurrently showed substantial production of ROS and increased apoptotic signals. Consequently, because QT + SFN inhibit the production of ERK/MAPK/JNK/p38-based control of proliferation and cell cycle-regulating proteins, it has been considered a chemotherapeutic medication. To determine the extent to which the co-treatment induces apoptosis, more in vivo study will be required before they can be used commercially.
Collapse
Affiliation(s)
- Ranmei Wei
- Department of Breast Diseases, Hospital of Traditional Chinese Medicine of Qiqihar, Qiqihar, Heilongjiang, China
| | - Xingchen Pan
- Department of the 0perating Room,Huaian Hospital of Huaian City, Huaian Cancer Hospital, Huaian, Jiangsu, China
| | - Danni Cai
- Outpatient Department, General hospital of the western theater command of Chinese people's liberation army, Chengdu, Sichuan, China
| | - Lili Pan
- Pharmacy Administration Office, The Third Hospital of Nanchang City, Jiangxi Province, Nanchang, Jiangxi, China.
| |
Collapse
|
3
|
Khanfar MA, Saleh MI. SARS-CoV-2 Main Protease Inhibitors from Natural Product Repository as Therapeutic Candidates for the Treatment of Coronaviridae Infections. Curr Med Chem 2025; 32:688-719. [PMID: 38013440 DOI: 10.2174/0109298673271674231109052709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/29/2023] [Accepted: 09/15/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND The main protease (Mpro) is a crucial enzyme for the life cycle of SARS-CoV-2 and a validated target for the treatment of COVID-19 infection. Natural products have been a proper alternative for treating viral diseases by modulating different steps of the life cycle of many viruses. OBJECTIVE This review article is designed to summarize the cumulative information of natural-derived Mpro inhibitors that are validated by experimental biological testing. METHODS The natural-derived Mpro inhibitors of SARS-CoV-2 that have been discovered since the emergence of the COVID-19 pandemic are reviewed in this article. Only natural products with experimental validation are reported in this article. Collected compounds are classified according to their chemical identity into flavonoids, phenolic acids, quinones, alkaloids, chromones, stilbenes, tannins, lignans, terpenes, and other polyphenolic and miscellaneous natural-derived Mpro inhibitors. CONCLUSION These compounds could serve as scaffolds for further lead-structure optimization for desirable potency, a larger margin of safety, and better oral activity.
Collapse
Affiliation(s)
- Mohammad Abdalmoety Khanfar
- College of Pharmacy, Alfaisal University, Al Takhassusi Rd, Riyadh, 11533, Saudi Arabia
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, P.O Box 13140, Amman 11942, Jordan
| | - Mohammad Issa Saleh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, P.O Box 13140, Amman 11942, Jordan
| |
Collapse
|
4
|
Sang Z, Zhang Y, Qiu K, Zheng Y, Chen C, Xu L, Lai J, Zou Z, Tan H. Chemical Constituents and Bioactivities of the Plant-Derived Fungus Aspergillus fumigatus. Molecules 2024; 29:649. [PMID: 38338395 PMCID: PMC10856792 DOI: 10.3390/molecules29030649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/11/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
A new bergamotane sesquiterpenoid, named xylariterpenoid H (1), along with fourteen known compounds (2-15), were isolated from the crude extract of Aspergillus fumigatus, an endophytic fungus isolated from Delphinium grandiflorum L. Their structures were elucidated mainly by extensive analyses of NMR and MS spectroscopic data. In addition, the screening results of antibacterial and cytotoxic activities of compounds 1-15 showed that compound 4 displayed antibacterial activities against Staphylococcus aureus and MRSA (methicillin-resistant S. aureus) with an MIC value of 3.12 µg/mL.
Collapse
Affiliation(s)
- Zihuan Sang
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Rsearch for Chronic Diseases, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; (Z.S.); (Y.Z.); (C.C.); (L.X.)
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.Z.); (K.Q.); (J.L.)
| | - Yanjiang Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.Z.); (K.Q.); (J.L.)
| | - Kaidi Qiu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.Z.); (K.Q.); (J.L.)
| | - Yuting Zheng
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Rsearch for Chronic Diseases, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; (Z.S.); (Y.Z.); (C.C.); (L.X.)
| | - Chen Chen
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Rsearch for Chronic Diseases, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; (Z.S.); (Y.Z.); (C.C.); (L.X.)
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.Z.); (K.Q.); (J.L.)
| | - Li Xu
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Rsearch for Chronic Diseases, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; (Z.S.); (Y.Z.); (C.C.); (L.X.)
| | - Jiaying Lai
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.Z.); (K.Q.); (J.L.)
| | - Zhenxing Zou
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Rsearch for Chronic Diseases, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; (Z.S.); (Y.Z.); (C.C.); (L.X.)
| | - Haibo Tan
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Rsearch for Chronic Diseases, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; (Z.S.); (Y.Z.); (C.C.); (L.X.)
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.Z.); (K.Q.); (J.L.)
| |
Collapse
|
5
|
Karami E, Mesbahi Moghaddam M, Kazemi-Lomedasht F. Use of Albumin for Drug Delivery as a Diagnostic and Therapeutic Tool. Curr Pharm Biotechnol 2024; 25:676-693. [PMID: 37550918 DOI: 10.2174/1389201024666230807161200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 08/09/2023]
Abstract
Drug delivery is an important topic that has attracted the attention of researchers in recent years. Albumin nanoparticles play a significant role in drug delivery as a carrier due to their unique characteristics. Albumin is non-toxic, biocompatible, and biodegradable. Its structure is such that it can interact with different drugs, which makes the treatment of the disease faster and also reduces the side effects of the drug. Albumin nanoparticles can be used in the diagnosis and treatment of many diseases, including cancer, diabetes, Alzheimer's, etc. These nanoparticles can connect to some compounds, such as metal nanoparticles, antibodies, folate, etc. and create a powerful nanostructure for drug delivery. In this paper, we aim to investigate albumin nanoparticles in carrier format for drug delivery application. In the beginning, different types of albumin and their preparation methods were discussed, and then albumin nanoparticles were discussed in detail in diagnosing and treating various diseases.
Collapse
Affiliation(s)
- Elmira Karami
- Venom and Biotherapeutics Molecules Laboratory, Department of Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Fatemeh Kazemi-Lomedasht
- Venom and Biotherapeutics Molecules Laboratory, Department of Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
6
|
El-Kashef DH, Obidake DD, Schiedlauske K, Deipenbrock A, Scharf S, Wang H, Naumann D, Friedrich D, Miljanovic S, Haj Hassani Sohi T, Janiak C, Pfeffer K, Teusch N. Indole Diketopiperazine Alkaloids from the Marine Sediment-Derived Fungus Aspergillus chevalieri against Pancreatic Ductal Adenocarcinoma. Mar Drugs 2023; 22:5. [PMID: 38276643 PMCID: PMC10820104 DOI: 10.3390/md22010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/14/2023] [Accepted: 12/17/2023] [Indexed: 01/27/2024] Open
Abstract
A new prenylated indole diketopiperazine alkaloid, rubrumline P (1), was isolated along with six more analogues and characterized from the fermentation culture of a marine sediment-derived fungus, Aspergillus chevalieri, collected at a depth of 15 m near the lighthouse in Dahab, Red Sea, Egypt. In the current study, a bioassay-guided fractionation allowed for the identification of an active fraction displaying significant cytotoxic activity against the human pancreatic adenocarcinoma cell line PANC-1 from the EtOAc extract of the investigated fungus compared to the standard paclitaxel. The structures of the isolated compounds from the active fraction were established using 1D/2D NMR spectroscopy and mass spectrometry, together with comparisons with the literature. The absolute configuration of the obtained indole diketopiperazines was established based on single-crystal X-ray diffraction analyses of rubrumline I (2) and comparisons of optical rotations and NMR data, as well as on biogenetic considerations. Genome sequencing indicated the formation of prenyltransferases, which was subsequently confirmed by the isolation of mono-, di-, tri-, and tetraprenylated compounds. Compounds rubrumline P (1) and neoechinulin D (4) confirmed preferential cytotoxic activity against PANC-1 cancer cells with IC50 values of 25.8 and 23.4 µM, respectively. Although the underlying mechanism-of-action remains elusive in this study, cell cycle analysis indicated a slight increase in the sub-G1 peak after treatment with compounds 1 and 4.
Collapse
Affiliation(s)
- Dina H. El-Kashef
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (D.H.E.-K.)
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Deborah D. Obidake
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (D.H.E.-K.)
| | - Katja Schiedlauske
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (D.H.E.-K.)
| | - Alina Deipenbrock
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (D.H.E.-K.)
| | - Sebastian Scharf
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Hao Wang
- Hainan Key Laboratory for Research and Development of Natural Products from Li Folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Daniela Naumann
- Department of Chemistry and Biochemistry, University of Cologne, 50939 Cologne, Germany
| | - Daniel Friedrich
- Department of Chemistry and Biochemistry, University of Cologne, 50939 Cologne, Germany
| | - Simone Miljanovic
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (D.H.E.-K.)
| | - Takin Haj Hassani Sohi
- Institute of Inorganic Chemistry and Structural Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Christoph Janiak
- Institute of Inorganic Chemistry and Structural Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Nicole Teusch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (D.H.E.-K.)
| |
Collapse
|
7
|
Ijaz S, Iqbal J, Abbasi BA, Ullah Z, Yaseen T, Kanwal S, Mahmood T, Sydykbayeva S, Ydyrys A, Almarhoon ZM, Sharifi-Rad J, Hano C, Calina D, Cho WC. Rosmarinic acid and its derivatives: Current insights on anticancer potential and other biomedical applications. Biomed Pharmacother 2023; 162:114687. [PMID: 37062215 DOI: 10.1016/j.biopha.2023.114687] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/29/2023] [Accepted: 04/09/2023] [Indexed: 04/18/2023] Open
Abstract
Cancer is still the leading cause of death worldwide, burdening the global medical system. Rosmarinic acid (RA) is among the first secondary metabolites discovered and it is a bioactive compound identified in plants such as Boraginaceae and Nepetoideae subfamilies of the Lamiaceae family, including Thymus masticmasti chinaythia koreana, Ocimum sanctum, and Hyptis pectinate. This updated review is to highlight the chemopreventive and chemotherapeutic effects of RA and its derivatives, thus providing valuable clues for the potential development of some complementary drugs in the treatment of cancers. Relevant information about RA's chemopreventive and chemotherapeutic effects and its derivatives were collected from electronic scientific databases, such as PubMed/Medline, Scopus, TRIP database, Web of Science, and Science Direct. The results of the studies showed numerous significant biological effects such as antiviral, antibacterial, anti-inflammatory, anti-tumour, antioxidant and antiangiogenic effects. Most of the studies on the anticancer potential with the corresponding mechanisms are still in the experimental preclinical stage and are missing evidence from clinical trials to support the research. To open new anticancer therapeutic perspectives of RA and its derivatives, future clinical studies must elucidate the molecular mechanisms and targets of action in more detail, the human toxic potential and adverse effects.
Collapse
Affiliation(s)
- Shumaila Ijaz
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Javed Iqbal
- Department of Botany, Bacha Khan University, Charsadda 24420, Khyber Pakhtunkhwa, Pakistan.
| | - Banzeer Ahsan Abbasi
- Department of Botany, Rawalpindi Women University, 6th Road, Satellite Town, Rawalpindi 46300, Pakistan
| | - Zakir Ullah
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Tabassum Yaseen
- Department of Botany, Bacha Khan University, Charsadda 24420, Khyber Pakhtunkhwa, Pakistan
| | - Sobia Kanwal
- Department of Biology and Environmental Sciences, Allama Iqbal Open University, Islamabad, Pakistan
| | - Tariq Mahmood
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Sandugash Sydykbayeva
- Higher School of Natural Sciences, Zhetysu University named after I.Zhansugurov, 040009 Taldykorgan, Kazakhstan
| | - Alibek Ydyrys
- Biomedical Research Centre, Al-Farabi Kazakh National University, Al-Farabi ave. 71, 050040, Kazakhstan
| | - Zainab M Almarhoon
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | | | - Christophe Hano
- Laboratoire de Biologie Des Ligneux Et Des Grandes Cultures (LBLGC), INRA USC1328 Université ď Orléans, 45067 Orléans Cedex2, France.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong.
| |
Collapse
|
8
|
Chaudhary P, Mitra D, Das Mohapatra PK, Oana Docea A, Mon Myo E, Janmeda P, Martorell M, Iriti M, Ibrayeva M, Sharifi-Rad J, Santini A, Romano R, Calina D, Cho WC. Camellia sinensis: Insights on its molecular mechanisms of action towards nutraceutical, anticancer potential and other therapeutic applications. ARAB J CHEM 2023; 16:104680. [DOI: 10.1016/j.arabjc.2023.104680] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
|
9
|
Sharifi-Rad J, Seidel V, Izabela M, Monserrat-Mequida M, Sureda A, Ormazabal V, Zuniga FA, Mangalpady SS, Pezzani R, Ydyrys A, Tussupbekova G, Martorell M, Calina D, Cho WC. Phenolic compounds as Nrf2 inhibitors: potential applications in cancer therapy. Cell Commun Signal 2023; 21:89. [PMID: 37127651 PMCID: PMC10152593 DOI: 10.1186/s12964-023-01109-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/22/2023] [Indexed: 05/03/2023] Open
Abstract
Cancer is a leading cause of death worldwide and involves an oxidative stress mechanism. The transcription factor Nrf2 has a crucial role in cytoprotective response against oxidative stress, including cancer growth and progression and therapy resistance. For this reason, inhibitors of Nrf2 are new targets to be studied. Traditional plant-based remedies rich in phytochemicals have been used against human cancers and phenolic compounds are known for their chemopreventive properties. This comprehensive review offers an updated review of the role of phenolic compounds as anticancer agents due to their action on Nrf2 inhibition. In addition, the role of naturally-occurring bioactive anticancer agents are covered in the clinical applications of polyphenols as Nrf2 inhibitors. Video Abstract.
Collapse
Affiliation(s)
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Michalak Izabela
- Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, Smoluchowskiego 25, 50-372 Wroclaw, Poland
| | - Margalida Monserrat-Mequida
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands—IUNICS, 07122 Palma, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
- CIBER Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands—IUNICS, 07122 Palma, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
- CIBER Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Valeska Ormazabal
- Department of Pharmacology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Felipe A. Zuniga
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| | | | - Raffaele Pezzani
- Phytotherapy Lab, Endocrinology Unit, Department of Medicine (DIMED), University of Padova, Via Ospedale 105, 35128 Padova, Italy
- AIROB, Associazione Italiana Per La Ricerca Oncologica Di Base, Padova, Italy
| | - Alibek Ydyrys
- Biomedical Research Centre, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, 050040 Almaty, Kazakhstan
- The Elliott School of International Affairs, 1957 E St NW, George Washington UniversityWashington DC, 20052 USA
| | - Gulmira Tussupbekova
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, 050040 Almaty, Kazakhstan
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, 4070386 Concepción, Chile
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
10
|
Islam MT, Martorell M, González-Contreras C, Villagran M, Mardones L, Tynybekov B, Docea AO, Abdull Razis AF, Modu B, Calina D, Sharifi-Rad J. An updated overview of anticancer effects of alternariol and its derivatives: underlying molecular mechanisms. Front Pharmacol 2023; 14:1099380. [PMID: 37033617 PMCID: PMC10076758 DOI: 10.3389/fphar.2023.1099380] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/14/2023] [Indexed: 04/11/2023] Open
Abstract
Alternariol is a toxic metabolite of Alternaria fungi and studies have shown multiple potential pharmacological effects. To outline the anticancer effects and mechanisms of alternariol and its derivatives based on database reports, an updated search of PubMed/MedLine, ScienceDirect, Web of Science, and Scopus databases was performed with relevant keywords for published articles. The studies found to suggest that this mycotoxin and/or its derivatives have potential anticancer effects in many pharmacological preclinical test systems. Scientific reports indicate that alternariol and/or its derivatives exhibit anticancer through several pathways, including cytotoxic, reactive oxygen species leading to oxidative stress and mitochondrial dysfunction-linked cytotoxic effect, anti-inflammatory, cell cycle arrest, apoptotic cell death, genotoxic and mutagenic, anti-proliferative, autophagy, and estrogenic and clastogenic mechanisms. In light of these results, alternariol may be one of the hopeful chemotherapeutic agents.
Collapse
Affiliation(s)
- Muhammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Concepción, Chile
- Centre for Healthy Living, University of Concepción, Concepción, Chile
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepción, Chile
| | - Carlos González-Contreras
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| | - Marcelo Villagran
- Biomedical Sciences Research Laboratory, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Lorena Mardones
- Biomedical Sciences Research Laboratory, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Bekzat Tynybekov
- Department of Biodiversity of Bioresources, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Selangor, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Babagana Modu
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Biochemistry, Faculty of Science, University of Maiduguri, Maiduguri, Nigeria
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | | |
Collapse
|
11
|
Sharifi-Rad J, Quispe C, Turgumbayeva A, Mertdinç Z, Tütüncü S, Aydar EF, Özçelik B, Anna SW, Mariola S, Koziróg A, Otlewska A, Antolak H, Sen S, Acharya K, Lapava N, Emamzadeh-Yazdi S, Martorell M, Kumar M, Varoni EM, Iriti M, Calina D. Santalum Genus: phytochemical constituents, biological activities and health promoting-effects. Z NATURFORSCH C 2023; 78:9-25. [PMID: 36069757 DOI: 10.1515/znc-2022-0076] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/15/2022] [Indexed: 01/11/2023]
Abstract
Santalum genus belongs to the family of Santalaceae, widespread in India, Australia, Hawaii, Sri Lanka, and Indonesia, and valued as traditional medicine, rituals and modern bioactivities. Sandalwood is reported to possess a plethora of bioactive compounds such as essential oil and its components (α-santalol and β-santalol), phenolic compounds and fatty acids. These bioactives play important role in contributing towards biological activities and health-promoting effects in humans. Pre-clinical and clinical studies have shown the role of sandalwood extract as antioxidant, anti-inflammatory, antibacterial, antifungal, antiviral, neuroleptic, antihyperglycemic, antihyperlipidemic, and anticancer activities. Safety studies on sandalwood essential oil (EO) and its extracts have proven them as a safe ingredient to be utilized in health promotion. Phytoconstituents, bioactivities and traditional uses established sandalwood as one of the innovative materials for application in the pharma, food, and biomedical industry.
Collapse
Affiliation(s)
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, 1110939, Iquique, Chile
| | - Aknur Turgumbayeva
- Higher School of Medicine, Al-Farabi Kazakh National University, Almaty, Kazakhstan.,School of Pharmacy, JSC "S. D. Asfendiyarov Kazakh National Medical University", Almaty, Kazakhstan
| | - Zehra Mertdinç
- Faculty of Chemical and Metallurgical Engineering, Department of Food Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Sena Tütüncü
- Faculty of Chemical and Metallurgical Engineering, Department of Food Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Elif Feyza Aydar
- Faculty of Chemical and Metallurgical Engineering, Department of Food Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Beraat Özçelik
- Faculty of Chemical and Metallurgical Engineering, Department of Food Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey.,BIOACTIVE Research & Innovation Food Manufacturing Industry Trade LTD Co., Maslak, Istanbul 34469, Turkey
| | - Stępień-Warda Anna
- Department of Forage Crop Production, Institute of Soil Science and Plant Cultivation - State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| | - Staniak Mariola
- Department of Forage Crop Production, Institute of Soil Science and Plant Cultivation - State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| | - Anna Koziróg
- Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Institute of Fermentation Technology and Microbiology, Wolczanska 171/173, 90 - 924 Lodz, Poland
| | - Anna Otlewska
- Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Institute of Fermentation Technology and Microbiology, Wolczanska 171/173, 90 - 924 Lodz, Poland
| | - Hubert Antolak
- Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Institute of Fermentation Technology and Microbiology, Wolczanska 171/173, 90 - 924 Lodz, Poland
| | - Surjit Sen
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, 700019, Kolkata, India.,Department of Botany, Fakir Chand College, Diamond Harbour, West Bengal, 743331, India
| | - Krishnendu Acharya
- Department of Botany, Fakir Chand College, Diamond Harbour, West Bengal, 743331, India
| | - Natallia Lapava
- Medicine Standartization Department of Vitebsk State Medical University, Vitebsk, Republic of Belarus
| | - Simin Emamzadeh-Yazdi
- Department of Plant and Soil Sciences, University of Pretoria, Gauteng 0002, Pretoria, South Africa
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile.,Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, 4070386 Concepción, Chile
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, 400019 Mumbai, India
| | - Elena Maria Varoni
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, 20133 Milano, Italy.,National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Firenze, Italy
| | - Marcello Iriti
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Firenze, Italy.,Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, 20133 Milano, Italy
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
12
|
Pezzani R, Jiménez-Garcia M, Capó X, Sönmez Gürer E, Sharopov F, Rachel TYL, Ntieche Woutouoba D, Rescigno A, Peddio S, Zucca P, Tsouh Fokou PV, Martorell M, Gulsunoglu-Konuskan Z, Ydyrys A, Bekzat T, Gulmira T, Hano C, Sharifi-Rad J, Calina D. Anticancer properties of bromelain: State-of-the-art and recent trends. Front Oncol 2023; 12:1068778. [PMID: 36698404 PMCID: PMC9869248 DOI: 10.3389/fonc.2022.1068778] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/12/2022] [Indexed: 01/12/2023] Open
Abstract
Bromelain is a key enzyme found in pineapple (Ananas comosus (L.) Merr.); a proteolytic substance with multiple beneficial effects for human health such as anti-inflammatory, immunomodulatory, antioxidant and anticarcinogenic, traditionally used in many countries for its potential therapeutic value. The aim of this updated and comprehensive review focuses on the potential anticancer benefits of bromelain, analyzing the cytotoxic, apoptotic, necrotic, autophagic, immunomodulating, and anti-inflammatory effects in cancer cells and animal models. Detailed information about Bromelain and its anticancer effects at the cellular, molecular and signaling levels were collected from online databases such as PubMed/MedLine, TRIP database, GeenMedical, Scopus, Web of Science and Google Scholar. The results of the analyzed studies showed that Bromelain possesses corroborated pharmacological activities, such as anticancer, anti-edema, anti-inflammatory, anti-microbial, anti-coagulant, anti-osteoarthritis, anti-trauma pain, anti-diarrhea, wound repair. Nonetheless, bromelain clinical studies are scarce and still more research is needed to validate the scientific value of this enzyme in human cancer diseases.
Collapse
Affiliation(s)
- Raffaele Pezzani
- Phytotherapy Lab, Endocrinology Unit, Department of Medicine (DIMED), University of Padova, Padova, Italy,Associazione Italiana per la Ricerca Oncologica di Base (AIROB), Padova, Italy
| | - Manuel Jiménez-Garcia
- Laboratory of Neurophysiology, Biology Department, University of Balearic Islands (UIB), Palma de Mallorca, Spain
| | - Xavier Capó
- Research Group in Community Nutrition and Oxidative Stress and Health Research Institute of the Balearic Islands (IdISBa), University of Balearic Islands, Palma de Mallorca, Spain
| | - Eda Sönmez Gürer
- Faculty of Pharmacy, Department of Pharmacognosy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Farukh Sharopov
- Research Institution “Chinese-Tajik Innovation Center for Natural Products” of the National Academy of Sciences of Tajikistan, Dushanbe, Tajikistan
| | | | - David Ntieche Woutouoba
- Antimicrobial and Biocontrol Agents Unit, Department of Biochemistry, Faculty of Science, University of Yaounde, Yaounde, Cameroon
| | - Antonio Rescigno
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Stefania Peddio
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Paolo Zucca
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy,*Correspondence: Javad Sharifi-Rad, ; Christophe Hano, ; Daniela Calina, ; Paolo Zucca,
| | | | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile,Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepción, Chile
| | - Zehra Gulsunoglu-Konuskan
- Faculty of Health Science, Nutrition and Dietetics Department, Istanbul Aydin University, Istanbul, Turkey
| | - Alibek Ydyrys
- Biomedical Research Centre, Al-Farabi Kazakh National University, Almaty, Kazakhstan,The Elliott School of International Affairs, George Washington University, Washington, DC, United States
| | - Tynybekov Bekzat
- Department of Biodiversity and Bioresources, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Tussupbekova Gulmira
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Christophe Hano
- Department of Biological Chemistry, University of Orleans, Chartres, France,*Correspondence: Javad Sharifi-Rad, ; Christophe Hano, ; Daniela Calina, ; Paolo Zucca,
| | - Javad Sharifi-Rad
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador,*Correspondence: Javad Sharifi-Rad, ; Christophe Hano, ; Daniela Calina, ; Paolo Zucca,
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania,*Correspondence: Javad Sharifi-Rad, ; Christophe Hano, ; Daniela Calina, ; Paolo Zucca,
| |
Collapse
|
13
|
Garzoli S, Alarcón-Zapata P, Seitimova G, Alarcón-Zapata B, Martorell M, Sharopov F, Fokou PVT, Dize D, Yamthe LRT, Les F, Cásedas G, López V, Iriti M, Rad JS, Gürer ES, Calina D, Pezzani R, Vitalini S. Natural essential oils as a new therapeutic tool in colorectal cancer. Cancer Cell Int 2022; 22:407. [PMID: 36514100 PMCID: PMC9749237 DOI: 10.1186/s12935-022-02806-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer (CRC) is the third most revalent type of cancer in the world and the second most common cause of cancer death (about 1 million per year). Historically, natural compounds and their structural analogues have contributed to the development of new drugs useful in the treatment of various diseases, including cancer. Essential oils are natural odorous products made up of a complex mixture of low molecular weight compounds with recognized biological and pharmacological properties investigated also for the prevention and treatment of cancer. The aim of this paper is to highlight the possible role of essential oils in CRC, their composition and the preclinical studies involving them. It has been reviewed the preclinical pharmacological studies to determine the experimental models used and the anticancer potential mechanisms of action of natural essential oils in CRC. Searches were performed in the following databases PubMed/Medline, Web of science, TRIP database, Scopus, Google Scholar using appropriate MeSH terms. The results of analyzed studies showed that EOs exhibited a wide range of bioactive effects like cytotoxicity, antiproliferative, and antimetastatic effects on cancer cells through various mechanisms of action. This updated review provides a better quality of scientific evidence for the efficacy of EOs as chemotherapeutic/chemopreventive agents in CRC. Future translational clinical studies are needed to establish the effective dose in humans as well as the most suitable route of administration for maximum bioavailability and efficacy. Given the positive anticancer results obtained from preclinical pharmacological studies, EOs can be considered efficient complementary therapies in chemotherapy in CRC.
Collapse
Affiliation(s)
- Stefania Garzoli
- Department of Drug Chemistry and Technologies, University “Sapienza” of Rome, P.Le Aldo Moro 5, 00185 Rome, Italy
| | - Pedro Alarcón-Zapata
- Clinical Biochemistry and Immunology Department, Faculty of Pharmacy, University of Concepción, Concepción, VIII – Bio Bio Region Chile
- Facultad de Ciencias de La Salud, Universidad San Sebastián, Lientur 1457, 4080871 Concepción, Chile
| | - Gulnaz Seitimova
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Barbara Alarcón-Zapata
- Clinical Biochemistry and Immunology Department, Faculty of Pharmacy, University of Concepción, Concepción, VIII – Bio Bio Region Chile
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile
| | - Farukh Sharopov
- Research Institution “Chinese-Tajik Innovation Center for Natural Products”, National Academy of Sciences of the Republic of Tajikistan, Ayni 299/2, Dushanbe, 734063 Tajikistan
| | | | - Darline Dize
- Antimicrobial and Biocontrol Agents Unit, Department of Biochemistry, Faculty of Science, University of Yaounde 1, Ngoa Ekelle, Yaounde, 812 Cameroon
| | | | - Francisco Les
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830 Villanueva de Gállego (Saragossa), Spain
- Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), 50059 Saragossa, Spain
| | - Guillermo Cásedas
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830 Villanueva de Gállego (Saragossa), Spain
| | - Víctor López
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830 Villanueva de Gállego (Saragossa), Spain
- Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), 50059 Saragossa, Spain
| | - Marcello Iriti
- Department of Biomedical, Surgical and Dental Sciences, Università Degli Studi di Milano, Via G. Pascal 36, 20133 Milan, Italy
| | | | - Eda Sönmez Gürer
- Faculty of Pharmacy, Department of Pharmacognosy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Raffaele Pezzani
- Phytotherapy Lab (PhT-Lab), Endocrinology Unit, Department of Medicine (DIMED), University of Padova, Via Ospedale 105, 35128 Padua, Italy
- AIROB, Associazione Italiana Per la Ricerca Oncologica Di Base, Padua, Italy
| | - Sara Vitalini
- Department of Agricultural and Environmental Sciences, Università Degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
| |
Collapse
|
14
|
Dhyani P, Sati P, Sharma E, Attri DC, Bahukhandi A, Tynybekov B, Szopa A, Sharifi-Rad J, Calina D, Suleria HAR, Cho WC. Sesquiterpenoid lactones as potential anti-cancer agents: an update on molecular mechanisms and recent studies. Cancer Cell Int 2022; 22:305. [PMID: 36207736 PMCID: PMC9540722 DOI: 10.1186/s12935-022-02721-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/22/2022] [Indexed: 11/28/2022] Open
Abstract
Plants-based natural compounds are well-identified and recognized chemoprotective agents that can be used for primary and secondary cancer prevention, as they have proven efficacy and fewer side effects. In today's scenario, when cancer cases rapidly increase in developed and developing countries, the anti-cancerous plant-based compounds become highly imperative. Among others, the Asteraceae (Compositae) family's plants are rich in sesquiterpenoid lactones, a subclass of terpenoids with wide structural diversity, and offer unique anti-cancerous effects. These plants are utilized in folk medicine against numerous diseases worldwide. However, these plants are now a part of the modern medical system, with their sesquiterpenoid lactones researched extensively to find more effective and efficient cancer drug regimens. Given the evolving importance of sesquiterpenoid lactones for cancer research, this review comprehensively covers different domains in a spectrum of sesquiterpenoid lactones viz (i) Guaianolides (ii) Pseudoguaianolide (iii) Eudesmanolide (iv) Melampodinin A and (v) Germacrene, from important plants such as Cynara scolymus (globe artichoke), Arnica montana (wolf weeds), Spilanthes acmella, Taraxacum officinale, Melampodium, Solidago spp. The review, therefore, envisages being a helpful resource for the growth of plant-based anti-cancerous drug development.
Collapse
Affiliation(s)
- Praveen Dhyani
- Department of Biotechnology, Kumaun University, Bhimtal, 263 136 Uttarakhand India
| | - Priyanka Sati
- Graphic Era University, Dehradun, 248 001 Uttarakhand India
| | - Eshita Sharma
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, 143 005 Punjab India
| | - Dharam Chand Attri
- High Altitude Plant Physiology Research Centre (HAPPRC), HNB Garhwal University, Srinagar Garhwal, 246 174 Uttarakhand India
| | - Amit Bahukhandi
- G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, 263 643 Uttarakhand India
| | - Bekzat Tynybekov
- Department of Biodiversity of Bioresources, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Agnieszka Szopa
- Department of Pharmaceutical Botany, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| | | | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Hafiz A. R. Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010 Australia
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong China
| |
Collapse
|
15
|
Chen Y, Pang X, He Y, Lin X, Zhou X, Liu Y, Yang B. Secondary Metabolites from Coral-Associated Fungi: Source, Chemistry and Bioactivities. J Fungi (Basel) 2022; 8:1043. [PMID: 36294608 PMCID: PMC9604832 DOI: 10.3390/jof8101043] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 10/19/2023] Open
Abstract
Our study of the secondary metabolites of coral-associated fungi produced a valuable and extra-large chemical database. Many of them exhibit strong biological activity and can be used for promising drug lead compounds. Serving as an epitome of the most promising compounds, which take the ultra-new skeletons and/or remarkable bioactivities, this review presents an overview of new compounds and bioactive compounds isolated from coral-associated fungi, covering the literature from 2010 to 2021. Its scope included 423 metabolites, focusing on the bioactivity and structure diversity of these compounds. According to structure, these compounds can be roughly classified as terpenes, alkaloids, peptides, aromatics, lactones, steroids, and other compounds. Some of them described in this review possess a wide range of bioactivities, such as anticancer, antimicrobial, antifouling, and other activities. This review aims to provide some significant chemical and/or biological enlightenment for the study of marine natural products and marine drug development in the future.
Collapse
Affiliation(s)
- Ying Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Xiaoyan Pang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yanchun He
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Xiuping Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Bin Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| |
Collapse
|
16
|
Sharma E, Attri DC, Sati P, Dhyani P, Szopa A, Sharifi-Rad J, Hano C, Calina D, Cho WC. Recent updates on anticancer mechanisms of polyphenols. Front Cell Dev Biol 2022; 10:1005910. [PMID: 36247004 PMCID: PMC9557130 DOI: 10.3389/fcell.2022.1005910] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/06/2022] [Indexed: 12/03/2022] Open
Abstract
In today's scenario, when cancer cases are increasing rapidly, anticancer herbal compounds become imperative. Studies on the molecular mechanisms of action of polyphenols published in specialized databases such as Web of Science, Pubmed/Medline, Google Scholar, and Science Direct were used as sources of information for this review. Natural polyphenols provide established efficacy against chemically induced tumor growth with fewer side effects. They can sensitize cells to various therapies and increase the effectiveness of biotherapy. Further pharmacological translational research and clinical trials are needed to evaluate theirs in vivo efficacy, possible side effects and toxicity. Polyphenols can be used to design a potential treatment in conjunction with existing cancer drug regimens such as chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Eshita Sharma
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Dharam Chand Attri
- High Altitude Plant Physiology Research Centre (HAPPRC), HNB Garhwal University, Srinagar, Uttarakhand, India
| | - Priyanka Sati
- Graphic Era University, Dehradun, Uttarakhand, India
| | - Praveen Dhyani
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Medical College, Jagiellonian University, Kraków, Poland
| | | | - Christophe Hano
- Department of Biological Chemistry, University of Orleans, Eure et Loir Campus, Chartres, France
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, China
| |
Collapse
|
17
|
Multi-Target Mechanisms of Phytochemicals in Alzheimer’s Disease: Effects on Oxidative Stress, Neuroinflammation and Protein Aggregation. J Pers Med 2022; 12:jpm12091515. [PMID: 36143299 PMCID: PMC9500804 DOI: 10.3390/jpm12091515] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease characterized by a tangle-shaped accumulation of beta-amyloid peptide fragments and Tau protein in brain neurons. The pathophysiological mechanism involves the presence of Aβ-amyloid peptide, Tau protein, oxidative stress, and an exacerbated neuro-inflammatory response. This review aims to offer an updated compendium of the most recent and promising advances in AD treatment through the administration of phytochemicals. The literature survey was carried out by electronic search in the following specialized databases PubMed/Medline, Embase, TRIP database, Google Scholar, Wiley, and Web of Science regarding published works that included molecular mechanisms and signaling pathways targeted by phytochemicals in various experimental models of Alzheimer’s disease in vitro and in vivo. The results of the studies showed that the use of phytochemicals against AD has gained relevance due to their antioxidant, anti-neuroinflammatory, anti-amyloid, and anti-hyperphosphorylation properties of Tau protein. Some bioactive compounds from plants have been shown to have the ability to prevent and stop the progression of Alzheimer’s.
Collapse
|
18
|
Irfan M, Javed Z, Khan K, Khan N, Docea AO, Calina D, Sharifi-Rad J, Cho WC. Apoptosis evasion via long non-coding RNAs in colorectal cancer. Cancer Cell Int 2022; 22:280. [PMID: 36076273 PMCID: PMC9461221 DOI: 10.1186/s12935-022-02695-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/31/2022] [Indexed: 01/03/2023] Open
Abstract
Long non-coding RNA (LncRNA) is a novel and diverse class of regulatory transcripts that are frequently dysregulated in numerous tumor types. LncRNAs are involved in a complicated molecular network, regulating gene expression, and modulating diverse cellular activities in different cancers including colorectal cancer (CRC). Evidence indicates that lncRNAs can be used as a potential biomarker for the prognosis and diagnosis of CRC as they are aberrantly expressed in CRC cells. The high expression or silencing of lncRNAs is associated with cell proliferation, invasion, metastasis, chemoresistance and apoptosis in CRC. LncRNAs exert both pro-apoptotic and anti-apoptotic functions in CRC. The expression of some oncogene lncRNAs is upregulated which leads to the inhibition of apoptotic pathways, similarly, the tumor suppressor lncRNAs are downregulated in CRC. In this review, we describe the function and mechanisms of lncRNAs to regulate the expression of genes that are involved directly or indirectly in controlling cellular apoptosis in CRC. Furthermore, we also discussed the different apoptotic pathways in normal cells and the mechanisms by which CRC evade apoptosis.
Collapse
Affiliation(s)
- Muhammad Irfan
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Zeeshan Javed
- Office for Research Innovation and Commercialization, Lahore Garrison University, Lahore, Pakistan
| | - Khushbukhat Khan
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Naila Khan
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | | | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
19
|
Sharifi-Rad J, Herrera-Bravo J, Semwal P, Painuli S, Badoni H, Ezzat SM, Farid MM, Merghany RM, Aborehab NM, Salem MA, Sen S, Acharya K, Lapava N, Martorell M, Tynybekov B, Calina D, Cho WC. Artemisia spp.: An Update on Its Chemical Composition, Pharmacological and Toxicological Profiles. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5628601. [PMID: 36105486 PMCID: PMC9467740 DOI: 10.1155/2022/5628601] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/07/2022] [Accepted: 08/12/2022] [Indexed: 12/11/2022]
Abstract
Artemisia plants are traditional and ethnopharmacologically used to treat several diseases and in addition in food, spices, and beverages. The genus is widely distributed in all continents except the Antarctica, and traditional medicine has been used as antimalarial, antioxidant, anticancer, antinociceptive, anti-inflammatory, and antiviral agents. This review is aimed at systematizing scientific data on the geographical distribution, chemical composition, and pharmacological and toxicological profiles of the Artemisia genus. Data from the literature on Artemisia plants were taken using electronic databases such as PubMed/MEDLINE, Scopus, and Web of Science. Selected papers for this updated study included data about phytochemicals, preclinical pharmacological experimental studies with molecular mechanisms included, clinical studies, and toxicological and safety data. In addition, ancient texts and books were consulted. The essential oils and phytochemicals of the Artemisia genus have reported important biological activities, among them the artemisinin, a sesquiterpene lactone, with antimalarial activity. Artemisia absinthium L. is one of the most famous Artemisia spp. due to its use in the production of the absinthe drink which is restricted in most countries because of neurotoxicity. The analyzed studies confirmed that Artemisia plants have many traditional and pharmacological applications. However, scientific data are limited to clinical and toxicological research. Therefore, further research is needed on these aspects to understand the full therapeutic potential and molecular pharmacological mechanisms of this medicinal species.
Collapse
Affiliation(s)
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Prabhakar Semwal
- Department of Life Sciences, Graphic Era Deemed To Be University, Dehradun, 248002, Uttarakhand, India
| | - Sakshi Painuli
- Uttarakhand Council for Biotechnology (UCB), Prem Nagar, Dehradun, 248007 Uttarakhand, India
| | - Himani Badoni
- Department of Biotechnology, School of Applied and Life Sciences, Uttaranchal University, Prem Nagar, Dehradun, 248007, Uttarakhand, India
| | - Shahira M. Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt
| | - Mai M. Farid
- Department of Phytochemistry and Plant Systematics, National Research Centre, 33 El Bohouth St., Dokki, P. O. 12622, Giza, Egypt
| | - Rana M. Merghany
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), 33 El-Bohouth street, Dokki, Giza, Egypt
| | - Nora M. Aborehab
- Department of Biochemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt
| | - Mohamed A. Salem
- Department of Pharmacognosy, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr St., Shibin El Kom, 32511 Menoufia, Egypt
| | - Surjit Sen
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
- Department of Botany, Fakir Chand College, Diamond Harbour, West Bengal 743331, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
| | - Natallia Lapava
- Medicine Standardization Department, Vitebsk State Medical University, Belarus
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, And Centre for Healthy Living, University of Concepción, Concepción, Chile
- Universidad de Concepción, Unidad de Desarrollo Tecnológico (UDT), 4070386 Concepción, Chile
| | - Bekzat Tynybekov
- Department of Biodiversity of Bioresources, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
20
|
Asgharian P, Tazekand AP, Hosseini K, Forouhandeh H, Ghasemnejad T, Ranjbar M, Hasan M, Kumar M, Beirami SM, Tarhriz V, Soofiyani SR, Kozhamzharova L, Sharifi-Rad J, Calina D, Cho WC. Potential mechanisms of quercetin in cancer prevention: focus on cellular and molecular targets. Cancer Cell Int 2022; 22:257. [PMID: 35971151 PMCID: PMC9380290 DOI: 10.1186/s12935-022-02677-w] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/08/2022] [Indexed: 02/07/2023] Open
Abstract
Over the past few years, the cancer-related disease has had a high mortality rate and incidence worldwide, despite clinical advances in cancer treatment. The drugs used for cancer therapy, have high side effects in addition to the high cost. Subsequently, to reduce these side effects, many studies have suggested the use of natural bioactive compounds. Among these, which have recently attracted the attention of many researchers, quercetin has such properties. Quercetin, a plant flavonoid found in fresh fruits, vegetables and citrus fruits, has anti-cancer properties by inhibiting tumor proliferation, invasion, and tumor metastasis. Several studies have demonstrated the anti-cancer mechanism of quercetin, and these mechanisms are controlled through several signalling pathways within the cancer cell. Pathways involved in this process include apoptotic, p53, NF-κB, MAPK, JAK/STAT, PI3K/AKT, and Wnt/β-catenin pathways. In addition to regulating these pathways, quercetin controls the activity of oncogenic and tumor suppressor ncRNAs. Therefore, in this comprehensive review, we summarized the regulation of these signalling pathways by quercetin. The modulatory role of quercetin in the expression of various miRNAs has also been discussed. Understanding the basic anti-cancer mechanisms of these herbal compounds can help prevent and manage many types of cancer.
Collapse
Affiliation(s)
- Parina Asgharian
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Pirpour Tazekand
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kamran Hosseini
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Haleh Forouhandeh
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Ghasemnejad
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Ranjbar
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Muzaffar Hasan
- Agro Produce Processing Division, ICAR—Central Institute of Agricultural Engineering, Bhopal, 462038 India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR—Central Institute for Research on Cotton Technology, Mumbai, 400019 India
| | - Sohrab Minaei Beirami
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saiedeh Razi Soofiyani
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Clinical Research Development Unit of Sina Educational, Research, and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, China
| |
Collapse
|
21
|
Ali ES, Akter S, Ramproshad S, Mondal B, Riaz TA, Islam MT, Khan IN, Docea AO, Calina D, Sharifi-Rad J, Cho WC. Targeting Ras-ERK cascade by bioactive natural products for potential treatment of cancer: an updated overview. Cancer Cell Int 2022; 22:246. [PMID: 35941592 PMCID: PMC9358858 DOI: 10.1186/s12935-022-02666-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/27/2022] [Indexed: 12/11/2022] Open
Abstract
MAPK (mitogen-activated protein kinase) or ERK (extracellular-signal-regulated kinase) pathway is an important link in the transition from extracellular signals to intracellular responses. Because of genetic and epigenetic changes, signaling cascades are altered in a variety of diseases, including cancer. Extant studies on the homeostatic and pathologic behavior of MAPK signaling have been conducted; however, much remains to be explored in preclinical and clinical research in terms of regulation and action models. MAPK has implications for cancer therapy response, more specifically in response to experimental MAPK suppression, compensatory mechanisms are activated. The current study investigates MAPK as a very complex cell signaling pathway that plays roles in cancer treatment response, cellular normal conduit maintenance, and compensatory pathway activation. Most MAPK inhibitors, unfortunately, cause resistance by activating compensatory feedback loops in tumor cells and tumor microenvironment components. As a result, innovative combinatorial treatments for cancer management must be applied to limit the likelihood of alternate pathway initiation as a possibility for generating novel therapeutics based on incorporation in translational research. We summarize current knowledge about the implications of ERK (MAPK) in cancer, as well as bioactive products from plants, microbial organisms or marine organisms, as well as the correlation with their chemical structures, which modulate this pathway for the treatment of different types of cancer.
Collapse
Affiliation(s)
- Eunus S. Ali
- College of Medicine and Public Health, Flinders University, Bedford Park, 5042 Australia
| | - Shamima Akter
- Department of Bioinformatics and Computational Biology, George Mason University, Fairfax, VA 22030 USA
| | - Sarker Ramproshad
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj, 1400 Bangladesh
| | - Banani Mondal
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj, 1400 Bangladesh
| | - Thoufiqul Alam Riaz
- Department of Pharmacology and Institute of New Drug Development, Jeonbuk National University Medical School, Jeonju, 54907 Republic of Korea
| | - Muhammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Ishaq N. Khan
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, 25100 Pakistan
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | | | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
22
|
Dhyani P, Quispe C, Sharma E, Bahukhandi A, Sati P, Attri DC, Szopa A, Sharifi-Rad J, Docea AO, Mardare I, Calina D, Cho WC. Anticancer potential of alkaloids: a key emphasis to colchicine, vinblastine, vincristine, vindesine, vinorelbine and vincamine. Cancer Cell Int 2022; 22:206. [PMID: 35655306 PMCID: PMC9161525 DOI: 10.1186/s12935-022-02624-9] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/25/2022] [Indexed: 01/09/2023] Open
Abstract
Cancer, one of the leading illnesses, accounts for about 10 million deaths worldwide. The treatment of cancer includes surgery, chemotherapy, radiation therapy, and drug therapy, along with others, which not only put a tremendous economic effect on patients but also develop drug resistance in patients with time. A significant number of cancer cases can be prevented/treated by implementing evidence-based preventive strategies. Plant-based drugs have evolved as promising preventive chemo options both in developing and developed nations. The secondary plant metabolites such as alkaloids have proven efficacy and acceptability for cancer treatment. Apropos, this review deals with a spectrum of promising alkaloids such as colchicine, vinblastine, vincristine, vindesine, vinorelbine, and vincamine within different domains of comprehensive information on these molecules such as their medical applications (contemporary/traditional), mechanism of antitumor action, and potential scale-up biotechnological studies on an in-vitro scale. The comprehensive information provided in the review will be a valuable resource to develop an effective, affordable, and cost effective cancer management program using these alkaloids.
Collapse
Affiliation(s)
- Praveen Dhyani
- Department of Biotechnology, Kumaun University, Bhimtal, Uttarakhand 263 136 India
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, 1110939 Iquique, Chile
| | - Eshita Sharma
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab 143 005 India
| | - Amit Bahukhandi
- G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, Uttarakhand 263 643 India
| | - Priyanka Sati
- Graphic Era University, Dehradun, Uttarakhand 248 001 India
| | - Dharam Chand Attri
- G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, Uttarakhand 263 643 India
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| | | | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ileana Mardare
- Department of Public Health and Management, Carol Davila University of Medicine and Pharmacy Bucharest, 050463 Bucharest, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong People’s Republic of China
| |
Collapse
|
23
|
Taheri Y, Quispe C, Herrera-Bravo J, Sharifi-Rad J, Ezzat SM, Merghany RM, Shaheen S, Azmi L, Prakash Mishra A, Sener B, Kılıç M, Sen S, Acharya K, Nasiri A, Cruz-Martins N, Tsouh Fokou PV, Ydyrys A, Bassygarayev Z, Daştan SD, Alshehri MM, Calina D, Cho WC. Urtica dioica-Derived Phytochemicals for Pharmacological and Therapeutic Applications. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:4024331. [PMID: 35251206 PMCID: PMC8894011 DOI: 10.1155/2022/4024331] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/07/2022] [Indexed: 02/07/2023]
Abstract
Urtica dioica belongs to the Urticaceae family and is found in many countries around the world. This plant contains a broad range of phytochemicals, such as phenolic compounds, sterols, fatty acids, alkaloids, terpenoids, flavonoids, and lignans, that have been widely reported for their excellent pharmacological activities, including antiviral, antimicrobial, antihelmintic, anticancer, nephroprotective, hepatoprotective, cardioprotective, antiarthritis, antidiabetic, antiendometriosis, antioxidant, anti-inflammatory, and antiaging effects. In this regard, this review highlights fresh insight into the medicinal use, chemical composition, pharmacological properties, and safety profile of U. dioica to guide future works to thoroughly estimate their clinical value.
Collapse
Affiliation(s)
- Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, 4811230, Chile
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - Shahira M. Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El Ainy Street, Cairo 11562, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October 12451, Egypt
| | - Rana M. Merghany
- Department of Pharmacognosy, National Research Centre, Giza, Egypt
| | | | - Lubna Azmi
- Hygia Institute of Pharmaceutical Education & Research, Lucknow, U. P. 226001, India
| | - Abhay Prakash Mishra
- Department of Pharmacology, University of Free State, Bloemfontein 9300, Free State, South Africa
| | - Bilge Sener
- Gazi University, Faculty of Pharmacy, Department of Pharmacognosy, Ankara 06330, Turkey
| | - Mehtap Kılıç
- Department of Pharmacognosy, Lokman Hekim University Faculty of Pharmacy, Ankara 06510, Turkey
| | - Surjit Sen
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
- Department of Botany, Fakir Chand College, Diamond Harbour, West Bengal 743331, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
| | - Azadeh Nasiri
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, Gandra PRD 4585-116, Portugal
- TOXRUN-oxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra 4585-116, Portugal
| | | | - Alibek Ydyrys
- Biomedical Research Centre, Al-Farabi Kazakh National University, Al-Farabi av. 71, Almaty 050040, Kazakhstan
| | - Zhandos Bassygarayev
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Al-Farabi av. 71, Almaty 050040, Kazakhstan
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, Sivas 58140, Turkey
- Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, Sivas 58140, Turkey
| | - Mohammed M. Alshehri
- Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
24
|
Hossain R, Quispe C, Herrera-Bravo J, Beltrán JF, Islam MT, Shaheen S, Cruz-Martins N, Martorell M, Kumar M, Sharifi-Rad J, Ozdemir FA, Setzer WN, Alshehri MM, Calina D, Cho WC. Neurobiological Promises of the Bitter Diterpene Lactone Andrographolide. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3079577. [PMID: 35154564 PMCID: PMC8825670 DOI: 10.1155/2022/3079577] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/21/2021] [Accepted: 01/18/2022] [Indexed: 12/27/2022]
Abstract
Andrographolide (ANDRO), a bitter diterpene lactone found in Andrographis paniculata (Burm.f.) Nees, possesses several biological effects such as antioxidant, anti-inflammatory, and organo-protective effects. Scientific reports suggest that it also has neuroprotective capacity in various test systems. The purpose of this review was to synthesize the neuropharmacological properties of ANDRO and highlight the molecular mechanisms of action that highlight these activities. A careful search was done in PubMed and Google Scholar databases using specific keywords. Findings suggest that ANDRO possess neuroprotective, analgesic, and antifatigue effects. Prominent effects were stated on neuro-inflammation, cerebral ischemia, Alzheimer's and Parkinson's diseases, multiple sclerosis, and brain cancer in mice and rats. Furthermore, ANDRO and its derivatives can enhance memory and learning capacity in experimental animals (rats) without causing any toxicity in the brain. Thus, ANDRO may be one of the most promising plant-based psychopharmacological lead compounds for new drug development.
Collapse
Affiliation(s)
- Rajib Hossain
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalga nj-8100, Bangladesh
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Jorge F. Beltrán
- Department of Chemical Engineering, Faculty of Engineering and Sciences, Universidad de La Frontera, Temuco, Chile
| | - Muhammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalga nj-8100, Bangladesh
| | | | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, PRD, Portugal
- TOXRUN-Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, And Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepción 4070386, Chile
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, 400019, Mumbai, India
| | | | - Fethi Ahmet Ozdemir
- Department of Molecular Biology and Genetics, Faculty of Science and Art, Bingol University, Bingol 1200, Turkey
| | - William N. Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Mohammed M. Alshehri
- Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
25
|
Painuli S, Quispe C, Herrera-Bravo J, Semwal P, Martorell M, Almarhoon ZM, Seilkhan A, Ydyrys A, Rad JS, Alshehri MM, Daştan SD, Taheri Y, Calina D, Cho WC. Nutraceutical Profiling, Bioactive Composition, and Biological Applications of Lepidium sativum L. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2910411. [PMID: 35096265 PMCID: PMC8791756 DOI: 10.1155/2022/2910411] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/29/2021] [Accepted: 12/24/2021] [Indexed: 12/19/2022]
Abstract
The roots, leaves, and seeds of Lepidium sativum L., popularly known as Garden cress in different regions, have high economic importance; although, the crop is particularly cultivated for the seeds. In traditional medicine, this plant has been reported to possess various biological activities. This review is aimed at providing updated and critical scientific information about the traditional, nutritional, phytochemical, and biological activities of L. sativum. In addition, the geographic distribution is also reviewed. The comprehensive literature search was carried out with the help of different search engines PubMed, Web of Science, and Science Direct. This review highlighted the importance of L. sativum as an edible herb that possesses a wide range of therapeutic properties along with high nutritional values. Preclinical studies (in vitro and in vivo) displayed anticancer, hepatoprotective, antidiabetic, hypoglycemic, antioxidant, antimicrobial, gastrointestinal, and fracture/bone healing activities of L. sativum and support the clinical importance of plant-derived bioactive compounds for the treatment of different diseases. Screening of literature revealed that L. sativum species and their bioactive compounds may be a significant source for new drug compounds and also could be used against malnutrition. Further clinical trials are needed to effectively assess the actual potential of the species and its bioactive compounds.
Collapse
Affiliation(s)
- Sakshi Painuli
- Himalayan Environmental Studies and Conservation Organization, Dehradun, 248006 Uttarakhand, India
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Prabhakar Semwal
- Department of Life Sciences, Graphic Era Deemed to Be University, Dehradun, 248 002 Uttarakhand, India
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy and Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile
| | - Zainab M. Almarhoon
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ainur Seilkhan
- Educational Program, Geography, Environment and Service Sector, Abai Kazakh National Pedagogical University, Almaty, Kazakhstan
| | - Alibek Ydyrys
- Biomedical Research Centre, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Javad Sharifi Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammed M. Alshehri
- Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey
- Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
26
|
Sharifi-Rad J, Quispe C, Herrera-Bravo J, Akram M, Abbaass W, Semwal P, Painuli S, Konovalov DA, Alfred MA, Kumar NVA, Imran M, Nadeem M, Sawicka B, Pszczółkowski P, Bienia B, Barbaś P, Mahmud S, Durazzo A, Lucarini M, Santini A, Martorell M, Calina D. Phytochemical Constituents, Biological Activities, and Health-Promoting Effects of the Melissa officinalis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6584693. [PMID: 39071243 PMCID: PMC11283336 DOI: 10.1155/2021/6584693] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/14/2021] [Accepted: 12/01/2021] [Indexed: 07/30/2024]
Abstract
Medicinal plants are being used worldwide for centuries for their beneficial properties. Some of the most popular medicinal plants belong to the Melissa genus, and different health beneficial effects have already been identified for this genus. Among these species, in particular, the Melissa officinalis L. has been reported as having many biological activities, such as antioxidant, antimicrobial, antitumour, antiviral, antiallergic, anti-inflammatory, and also flatulence inhibiting effects. The beneficial properties of the Melissa officinalis, also known as "lemon balm herb", can be related to the bioactive compounds such as terpenoids, alcohols, rosmarinic acid, and phenolic antioxidants which are present in the plant. In this updated review, the botanical, geographical, nutritional, phytochemical, and traditional medical aspects of M. officinalis have been considered as well as in vitro and in vivo and clinically proven therapeutic properties have been reviewed with a special focus on health-promoting effects and possible perspective nutraceutical applications. To evidence the relevance of this plant in the research and completely assess the context, a literature quantitative research analysis has been performed indicating the great interest towards this plant for its beneficial properties.
Collapse
Affiliation(s)
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Muhammad Akram
- Department of Eastern Medicine, Government College University Faisalabad, Pakistan
| | - Wafa Abbaass
- Department of Eastern Medicine, Government College University Faisalabad, Pakistan
| | - Prabhakar Semwal
- Department of Life Sciences, Graphic Era (Deemed to be University), Dehradun (248002), Uttarakhand, India
- Uttarakhand State Council for Science and Technology, Vigyan Dham, Dehradun, 248007 Uttarakhand, India
| | - Sakshi Painuli
- Department of Life Sciences, Graphic Era (Deemed to be University), Dehradun (248002), Uttarakhand, India
- Himalayan Environmental Studies and Conservation Organization, Prem Nagar, Dehradun, 248001 Uttarakhand, India
| | - Dmitry Alekseevich Konovalov
- Department of Pharmacognozy and Botany, Pyatigorsk Medical and Pharmaceutical Institute, A Branch of Volgograd State Medical University Ministry of Health of the Russian Federation, Kalinina av.11, Pyatigorsk 357532, Russia
| | - Mary Angelia Alfred
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India
| | | | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore-Lahore, Pakistan
| | - Muhammad Nadeem
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Pakistan
| | - Barbara Sawicka
- Department of Plant Production Technology and Commodities Science, University of Life Sciences in Lublin, Poland, Akademicka 13 Str., 20-950 Lublin, Poland
| | - Piotr Pszczółkowski
- The Experimental Station for Variety Assessment of the Central Plant Research Center Uhnin, ZDOO Uhnin, 21-211 Dębowa Kłoda, Poland
| | - Bernadetta Bienia
- Department of Herbal Medicine, Carpathian State University in Krosno, Poland, Dmochowskiego 12 Str., 38-400 Krosno, Poland
| | - Piotr Barbaś
- Department of Potato Agronomy, Plant Breeding and Acclimatization Institute-National Research Institute, Jadwisin Research Center, Poland
| | - Shafi Mahmud
- Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition, Via Ardetina 546, 00178 Rome, Italy
| | - Massimo Lucarini
- CREA-Research Centre for Food and Nutrition, Via Ardetina 546, 00178 Rome, Italy
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy and Centre for Healthy Living, University of Concepción, Concepción, Chile
- Unidad De Desarrollo Tecnológico (UDT), Universidad De Concepción, Concepción, Chile
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
27
|
Hossain R, Quispe C, Herrera-Bravo J, Islam MS, Sarkar C, Islam MT, Martorell M, Cruz-Martins N, Al-Harrasi A, Al-Rawahi A, Sharifi-Rad J, Ibrayeva M, Daştan SD, Alshehri MM, Calina D, Cho WC. Lasia spinosa Chemical Composition and Therapeutic Potential: A Literature-Based Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1602437. [PMID: 34992714 PMCID: PMC8727140 DOI: 10.1155/2021/1602437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/08/2021] [Accepted: 12/03/2021] [Indexed: 12/14/2022]
Abstract
Lasia spinosa (L.) is used ethnobotanically for the treatment of various diseases, including rheumatoid arthritis, inflammation of the lungs, bleeding cough, hemorrhoids, intestinal diseases, stomach pain, and uterine cancer. This review is aimed at summarizing phytochemistry and pharmacological data with their molecular mechanisms of action. A search was performed in databases such as PubMed, Science Direct, and Google Scholar using the keywords: "Lasia spinosa," then combined with "ethnopharmacological use," "phytochemistry," and "pharmacological activity." This updated review included studies with in vitro, ex vivo, and in vivo experiments with compounds of known concentration and highlighted pharmacological mechanisms. The research results showed that L. spinosa contains many important nutritional and phytochemical components such as alkanes, aldehydes, alkaloids, carotenoids, flavonoids, fatty acids, ketones, lignans, phenolics, terpenoids, steroids, and volatile oil with excellent bioactivity. The importance of this review lies in the fact that scientific pharmacological evidence supports the fact that the plant has antioxidant, anti-inflammatory, antimicrobial, cytotoxic, antidiarrheal, antihelminthic, antidiabetic, antihyperlipidemic, and antinociceptive effects, while protecting the gastrointestinal system and reproductive. Regarding future toxicological and safety data, more research is needed, including studies on human subjects. In light of these data, L. spinosa can be considered a medicinal plant with effective bioactives for the adjuvant treatment of various diseases in humans.
Collapse
Affiliation(s)
- Rajib Hossain
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Md. Shahazul Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Chandan Sarkar
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Muhammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, And Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepción 4070386, Chile
| | - Natália Cruz-Martins
- Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
- TOXRUN – Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat Almouz, 616, Oman
| | - Ahmed Al-Rawahi
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat Almouz, 616, Oman
| | | | - Manshuk Ibrayeva
- Faculty of Science and Technology, The Caspian University of Technology and Engineering Named after Sh. Yessenov, Aktau, Kazakhstan
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey
- Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Mohammed M. Alshehri
- Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
28
|
Tobacco Smoking and Liver Cancer Risk: Potential Avenues for Carcinogenesis. JOURNAL OF ONCOLOGY 2021; 2021:5905357. [PMID: 34925509 PMCID: PMC8683172 DOI: 10.1155/2021/5905357] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/27/2021] [Indexed: 12/20/2022]
Abstract
Smoking a cigarette generates over 4000 chemicals that have a deleterious impact on each part of the human body. It produces three main severe effects on the liver organ: oncogenic, immunological, and indirect or direct toxic effects. It results in the production of cytotoxic substances, which raises fibrosis and necro-inflammation. Additionally, it also directs the production of pro-inflammatory cytokines tumour necrosis factor alfa (TNF-α) and interleukins (IL-1β, IL-6) that will be responsible for the chronic liver injury. Furthermore, it gives rise to secondary polycythemia and successively raises the turnover and mass of red cells, which might be a common factor responsible for the development of oxidative stress in the liver due to iron overload. It also produces chemicals that are having oncogenic properties and raises the risk of liver cancer especially in sufferers of chronic hepatitis C. Smoking modulates both humoral and cell-mediated responses by restricting the proliferation of lymphocytes and inducing their apoptosis and ultimately decreasing the surveillance of cancer cells. Moreover, it has been determined that heavy smoking impacts the response of hepatitis C patients to interferon (IFN) therapy through different mechanisms, which can be improved by phlebotomy. Efforts are being made in different nations in decreasing the prevalence of smoking to improve premature death and ill effects of their nation's individuals.
Collapse
|
29
|
Mitra S, Anand U, Sanyal R, Jha NK, Behl T, Mundhra A, Ghosh A, Radha, Kumar M, Proćków J, Dey A. Neoechinulins: Molecular, cellular, and functional attributes as promising therapeutics against cancer and other human diseases. Biomed Pharmacother 2021; 145:112378. [PMID: 34741824 DOI: 10.1016/j.biopha.2021.112378] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 12/21/2022] Open
Abstract
Neoechinulins are fungal and plant-derived chemicals extracted from Microsporum sp., Eurotium rubrum, Aspergillus sp., etc. Two analogues of neoechinulin, i.e., A and B, exerted extensive pharmacological properties described in this review. Neoechinulin is an indole alkaloid and has a double bond between C8/C9, which tends to contribute to its cytoprotective nature. Neoechinulin A exhibits protection to PC12 cells against nitrosative stress via increasing NAD(P)H reserve capacity and decreasing cellular GSH levels. It also confers protection via rescuing PC12 cells from rotenone-induced stress by lowering LDH leakage. This compound has great positive potential against neurodegenerative diseases by inhibiting SIN-1 induced cell death in neuronal cells. Together with these, neoechinulin A tends to inhibit Aβ42-induced microglial activation and confers protection against neuroinflammation. Alongside, it also inhibits cervical cancer cells by caspase-dependent apoptosis and via upregulation of apoptosis inducing genes like Bax, it suppresses LPS-induced inflammation in RAW264.7 macrophages and acts as an antidepressant. Whereas, another analogue, Neoechinulin B tends to interfere with the cellular mechanism thereby, inhibiting the entry of influenza A virus and it targets Liver X receptor (LXR) and decreases the infection rate of Hepatitis C. The present review describes the pharmaceutical properties of neoechinulins with notes on their molecular, cellular, and functional basis and their therapeutic properties.
Collapse
Affiliation(s)
- Sicon Mitra
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Rupa Sanyal
- Department of Botany, Bhairab Ganguly College (affiliated to West Bengal State University), Feeder Road, Belghoria, Kolkata 700056, West Bengal, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Avinash Mundhra
- Department of Botany, Rishi Bankim Chandra College (Affiliated to the West Bengal State University), East Kantalpara, North 24 Parganas, Naihati 743165, West Bengal, India
| | - Arabinda Ghosh
- Department of Botany, Gauhati University, Guwahati, Assam 781014, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh 173229, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai 400019, Maharashtra, India
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska 5b, 51-631 Wrocław, Poland.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India.
| |
Collapse
|
30
|
Sharifi-Rad J, Quispe C, Patra JK, Singh YD, Panda MK, Das G, Adetunji CO, Michael OS, Sytar O, Polito L, Živković J, Cruz-Martins N, Klimek-Szczykutowicz M, Ekiert H, Choudhary MI, Ayatollahi SA, Tynybekov B, Kobarfard F, Muntean AC, Grozea I, Daştan SD, Butnariu M, Szopa A, Calina D. Paclitaxel: Application in Modern Oncology and Nanomedicine-Based Cancer Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3687700. [PMID: 34707776 PMCID: PMC8545549 DOI: 10.1155/2021/3687700] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022]
Abstract
Paclitaxel is a broad-spectrum anticancer compound, which was derived mainly from a medicinal plant, in particular, from the bark of the yew tree Taxus brevifolia Nutt. It is a representative of a class of diterpene taxanes, which are nowadays used as the most common chemotherapeutic agent against many forms of cancer. It possesses scientifically proven anticancer activity against, e.g., ovarian, lung, and breast cancers. The application of this compound is difficult because of limited solubility, recrystalization upon dilution, and cosolvent-induced toxicity. In these cases, nanotechnology and nanoparticles provide certain advantages such as increased drug half-life, lowered toxicity, and specific and selective delivery over free drugs. Nanodrugs possess the capability to buildup in the tissue which might be linked to enhanced permeability and retention as well as enhanced antitumour influence possessing minimal toxicity in normal tissues. This article presents information about paclitaxel, its chemical structure, formulations, mechanism of action, and toxicity. Attention is drawn on nanotechnology, the usefulness of nanoparticles containing paclitaxel, its opportunities, and also future perspective. This review article is aimed at summarizing the current state of continuous pharmaceutical development and employment of nanotechnology in the enhancement of the pharmacokinetic and pharmacodynamic features of paclitaxel as a chemotherapeutic agent.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University, Goyangsi, Republic of Korea
| | - Yengkhom Disco Singh
- Department of Post-Harvest Technology, College of Horticulture and Forestry, Central Agricultural University, Pasighat, 791102 Arunachal Pradesh, India
| | - Manasa Kumar Panda
- Environment and Sustainability Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013 Odisha, India
| | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University, Goyangsi, Republic of Korea
| | - Charles Oluwaseun Adetunji
- Applied Microbiology, Biotechnology and Nanotechnology Laboratory, Department of Microbiology, Edo University Iyamho, PMB 04, Auchi, Edo State, Nigeria
| | - Olugbenga Samuel Michael
- Cardiometabolic Research Unit, Department of Physiology, College of Health Sciences, Bowen University, Iwo, Osun State, Nigeria
| | - Oksana Sytar
- Department of Plant Biology Department, Institute of Biology, Taras Shevchenko National University of Kyiv, Kyiv 01033, Ukraine
- Department of Plant Physiology, Slovak University of Agriculture, Nitra 94976, Slovakia
| | - Letizia Polito
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy
| | - Jelena Živković
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, PRD, Portugal
| | - Marta Klimek-Szczykutowicz
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Halina Ekiert
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Muhammad Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- Department of Pharmacognosy and Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bekzat Tynybekov
- Department of Biodiversity of Bioresources, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Farzad Kobarfard
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ana Covilca Muntean
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Timisoara, Romania
| | - Ioana Grozea
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Timisoara, Romania
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey
- Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Timisoara, Romania
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|