1
|
Feng Y, Zeng N, Bordbar F, Lu Z, Gao C. Dietary fermented mixed ingredient product enhances growth performance and intestinal stem cell-mediated epithelial regeneration through Wnt/β-catenin pathway in layer chicks. Poult Sci 2025; 104:104821. [PMID: 39854967 PMCID: PMC11803830 DOI: 10.1016/j.psj.2025.104821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
This study aimed to investigate the effects of dietary supplements of fermented mixed ingredient product (FMIP) on the growth performance, intestinal health, and immune performance of layer hens during the brooding period. Four hundred eighty healthy one-day-old layer chicks were randomly divided into four groups (six replicates/group, twenty hens/replicate) and were fed with different experimental diets for eight weeks (from day 1 to day 56): (1) Corn-soybean-base diet (CON); (2) Chlortetracycline group (CTC; CON diet supplemented with 0.5g/kg chlortetracycline); (3) 4 % fermented mixed ingredient product (4 % FMIP); (4) 8 % fermented mixed ingredient product (8 % FMIP). The results showed that, compared with the CON group, feeding with CTC, 4 % or 8 % FMIP increased the average daily feed intake (ADFI), average daily gain (ADG), immune organs index, serum IgA, IgM, and IgG levels, as well as the apparent metabolic rates of dry matter, crude protein, crude fiber, and crude ash (P < 0.05). Meanwhile, FMIP supplementation improved jejunal morphology and barrier function, as reflected by increased villus height and transepithelial electrical resistance, decreased DAO activity in serum, and up-regulated Occludin protein expression (P < 0.05). Additionally, FMIP supplementation significantly increased protein expression of the stem cell markers (SOX9 and Lgr5), proliferative cell marker (PCNA), and differentiated absorptive cell marker (Villin) (P < 0.05). The immunofluorescence results were consistent with the above results, and FMIP groups have the same effects as the CTC group. Furthermore, the CTC or 4 % FMIP treatment group resulted in a remarkable increase in Wnt/β-catenin signaling proteins (including β-catenin, TCF4, c-Myc, and Cyclin-D1) compared with the CON group (P < 0.05). In conclusion, dietary supplementation of 4 % FMIP improves growth and immune performance, and promotes the intestinal stem cell expansion of layer chicks through Wnt/β-catenin pathway activation.
Collapse
Affiliation(s)
- Yuqing Feng
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
| | - Nan Zeng
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
| | - Farhad Bordbar
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
| | - Zhujin Lu
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
| | - Chunqi Gao
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Liu W, Wang W, Li J, Li H, Gao T, Zhu B. Anaerobic fermentation of soybean meal by Bacillus subtilis ED-3-7 and its effect on the intestinal microbial community of chicken. Poult Sci 2025; 104:104564. [PMID: 39608285 PMCID: PMC11635776 DOI: 10.1016/j.psj.2024.104564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/12/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024] Open
Abstract
A strain named ED-3-7 with a high protease-producing ability was screened in a previous study. This strain can be used for the anaerobic fermentation of soybean meal (SBM) to degrade macromolecular antigen proteins and antinutritional factors. We here evaluated the nutritional quality of the anaerobic fermented SBM and its effects on the chicken intestinal microbial community. Crude protein and acid-soluble protein contents increased by 11.68% and 342.61%, glycinin and β-conglycinin decreased by 82.04% and 88.42%, urease content decreased by 90.10%, and the trypsin inhibitor content was lower than the range specified in the detection kit. After being fed with the fermented SBM, the average daily gain, nutrient digestibility of the chickens increased, and their intestinal bacterial community exhibited significant changes. The richness and diversity of bacterial species decreased, and Lactobacillus became the dominant genus, which was conducive to the health of chicken intestines. The experimental results revealed that ED-3-7 anaerobic fermentation improved the nutritional quality of SBM and had beneficial effects on chicken intestines. Thus, the strain could be used for large-scale industrial production.
Collapse
Affiliation(s)
- Wei Liu
- College of Life Sciences, Hebei Agricultural University, Baoding, China; Feed Microbial Technology Innovation Center of Hebei Province, Baoding, China
| | - Wei Wang
- College of Life Sciences, Hebei Agricultural University, Baoding, China; Feed Microbial Technology Innovation Center of Hebei Province, Baoding, China
| | - Jia Li
- College of Life Sciences, Hebei Agricultural University, Baoding, China; Feed Microbial Technology Innovation Center of Hebei Province, Baoding, China
| | - Hongya Li
- College of Life Sciences, Hebei Agricultural University, Baoding, China; Feed Microbial Technology Innovation Center of Hebei Province, Baoding, China
| | - Tongguo Gao
- College of Life Sciences, Hebei Agricultural University, Baoding, China; Feed Microbial Technology Innovation Center of Hebei Province, Baoding, China.
| | - Baocheng Zhu
- College of Life Sciences, Hebei Agricultural University, Baoding, China; Feed Microbial Technology Innovation Center of Hebei Province, Baoding, China
| |
Collapse
|
3
|
Guo X, Shang Z, Li Q, Wang L, Zhang Y, Liu S, Cao Y, Dong B. Whole-genome sequencing and assessment of a novel protein- and gossypol-degrading Bacillus subtilis strain isolated from intestinal digesta of Tibetan Pigs. BMC Microbiol 2024; 24:424. [PMID: 39438803 PMCID: PMC11495092 DOI: 10.1186/s12866-024-03588-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND With the rapid development of animal husbandry, the demand for protein feed resources is increasing. Cottonseed meal (CSM) and soybean meal (SBM) are rich sources of protein. However, their application is limited due to the existence of anti-nutrients, which can be harmful to the digestion and absorption. A strain of Bacillus subtilis (Mafic-Y7) was isolated from digesta of intestines of Tibetan pigs. The strain showed high protease activity, which helps in degrading proteinic anti-nutritional factors in grain meal and in vitro degradation of free gossypol. In order to better understand this isolated strain, whole genome of Mafic-Y7 strain was sequenced and analyzed. Different effects on various grain meals were identified. RESULT The GC-depth Poisson distributions showed no bias suggesting high-quality genome assembly of Mafic-Y7. The whole genome sequencing showed that one chromosome with 4,248,845 base pairs(bp)and the genes total length with 3,736,524 bp was predicted in Mafic-Y7. Additionally, Mafic-Y7 possessed 4,254 protein-coding genes, and several protease genes were annotated by aligning them with databases. There are 55 protease genes, one phytase gene and one laccase gene were annotated in the gene sequence of Mafic-Y7. The average nucleotide identity between Mafic-Y7 and the GCA-000009045.1 homologous genome was 0.9938, suggesting a close genetic relationship between them at the species level. Compared with the closest four whole genomes, Mafic-Y7 was annotated the most abundant of protease genes (55 genes). The fermentation supernatant of Mafic-Y7 could increase the content of small peptides, water-soluble proteins, and acid-soluble proteins in vitro by 411%, 281% and 317% in SBM and 420%, 257% and 338% in CSM. After fermentation in grain meal by Mafic-Y7, the degradation rate of anti-nutritional factors in SBM, such as trypsin inhibitor, glycinin, and β-conglycinin was greater than 70%, and lectin was greater than 30%. The degradation rates of anti-nutritional factors in CSM, such as gossypol and phytic acid, were 82% and 26%, respectively.
Collapse
Affiliation(s)
- Xiangyue Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Zhenda Shang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi, 960000, People's Republic of China
| | - Qianxi Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Lixue Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Ying Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Suozhu Liu
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi, 960000, People's Republic of China
| | - Yunhe Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
- Sanya Institute of China Agricultural University, Sanya, 572025, People's Republic of China
| | - Bing Dong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
4
|
Lyu H, Hernalsteens S, Cong H, Quek SY, Chen XD. Solid state fermentation of mung beans by Bacillus subtilis subsp. natto on static, shaking flask and soft elastic tubular reactors. FOOD SCI TECHNOL INT 2024; 30:623-635. [PMID: 36911978 DOI: 10.1177/10820132231162167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Given that mung beans constitute a significant nutrient source in many cultures, it is worthwhile to investigate ways to improve their nutritional and functional properties. The effect of fermentation of mung beans by Bacillus subtilis subsp. natto was investigated in various reactor designs, including static, shaking flasks, and soft elastic tubular reactors (SETR). The results showed that all three processes might affect the substrate, resulting in changes in the protein and carbohydrate fractions. We noticed an increase in soluble protein and serine levels, which we attribute to the proteases produced during fermentation. Through XRD, FTIR, and DSC analyses, it was also discovered that whereas static and shaking flask fermentation might raise relative crystallinity and peak temperature, fermentation performed on the SETR decreased these values. It was also possible to notice that SETR might induce a change in the particle size distribution of the substrate through a complex impact of mechanical forces, mixing, and microbial activity, which could be helpful to some aspects of the process. To summarize, fermentation of mung beans by Bacillus. subtilis subsp. natto could be an attractive approach for producing a food ingredient with various functional and nutritional properties. Furthermore, the SETR has been shown to be a viable technique for dealing with high solid load substrates, whether as the reactor for the entire process or as a first stage/pre-treatment step, and its applicability in bioprocesses should be explored further.
Collapse
Affiliation(s)
- He Lyu
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Saartje Hernalsteens
- School of Chemical and Environmental Engineering, Soochow University, Suzhou, Jiangsu, China
| | - Haihua Cong
- Xiao Dong Pro-health (Suzhou) Instrumentation Co Ltd, Suzhou, Jiangsu Province, China
| | - S-Y Quek
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Xiao Dong Chen
- School of Chemical and Environmental Engineering, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
5
|
Liu S, Du M, Sun J, Tu Y, Gu X, Cai P, Lu Z, Wang Y, Shan T. Bacillus subtilis and Enterococcus faecium co-fermented feed alters antioxidant capacity, muscle fibre characteristics and lipid profiles of finishing pigs. Br J Nutr 2024; 131:1298-1307. [PMID: 38098370 DOI: 10.1017/s000711452300291x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
This study aimed to assess how Bacillus subtilis and Enterococcus faecium co-fermented feed (FF) affects the antioxidant capacity, muscle fibre types and muscle lipid profiles of finishing pigs. In this study, a total of 144 Duroc × Berkshire × Jiaxing Black finishing pigs were randomly assigned into three groups with four replicates (twelve pigs per replication). The three treatments were a basal diet (0 % FF), basal diet + 5 % FF and basal diet + 10 % FF, respectively. The experiment lasted 38 d after 4 d of acclimation. The study revealed that 10 % FF significantly increased the activity of superoxide dismutase (SOD) and catalase (CAT) compared with 0 % FF group, with mRNA levels of up-regulated antioxidant-related genes (GPX1, SOD1, SOD2 and CAT) in 10 % FF group. 10 % FF also significantly up-regulated the percentage of slow-twitch fibre and the mRNA expression of MyHC I, MyHC IIa and MyHC IIx, and slow MyHC protein expression while reducing MyHC IIb mRNA expression. Lipidomics analysis showed that 5 % FF and 10 % FF altered lipid profiles in longissimus thoracis. 10 % FF particularly led to an increase in the percentage of TAG. The Pearson correlation analysis indicated that certain molecular markers such as phosphatidic acid (PA) (49:4), Hex2Cer (d50:6), cardiolipin (CL) (72:8) and phosphatidylcholine (PC) (33:0e) could be used to indicate the characteristics of muscle fibres and were closely related to meat quality. Together, our findings suggest that 10 % FF improved antioxidant capacity, enhanced slow-twitch fibre percentage and altered muscle lipid profiles in finishing pigs.
Collapse
Affiliation(s)
- Shiqi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, People's Republic of China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, People's Republic of China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, People's Republic of China
| | - Man Du
- College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, People's Republic of China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, People's Republic of China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, People's Republic of China
| | - Jiabao Sun
- College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Yuang Tu
- College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, People's Republic of China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, People's Republic of China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, People's Republic of China
| | - Xin Gu
- College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, People's Republic of China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, People's Republic of China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, People's Republic of China
| | - Peiran Cai
- College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, People's Republic of China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, People's Republic of China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, People's Republic of China
| | - Zeqing Lu
- College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, People's Republic of China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, People's Republic of China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, People's Republic of China
| | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, People's Republic of China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, People's Republic of China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, People's Republic of China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, People's Republic of China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, People's Republic of China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, People's Republic of China
| |
Collapse
|
6
|
Qi N, Zhan X, Milmine J, Chang KH, Li J. A novel thermophilic strain of Bacillus subtilis with antimicrobial activity and its potential application in solid-state fermentation of soybean meal. Microbiol Spectr 2024; 12:e0278423. [PMID: 38376165 PMCID: PMC10986468 DOI: 10.1128/spectrum.02784-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/09/2023] [Indexed: 02/21/2024] Open
Abstract
Soybean meal (SBM) is the most important source of plant protein in animal feeds, containing around 41%-48% crude protein. Nevertheless, 70%-80% of these proteins is allergenic antigens that can have adverse implications for the gastrointestinal well-being of animals, especially to young animals. Microbial fermentation is one of the most cost-effective strategies used to reduce allergenic antigens from plant sources. In this study, we report the isolation and characterization of a novel probiotic Bacillus subtilis "L5" strain from lake mud. L5 demonstrated remarkable temperature tolerance across a broad temperature spectrum, thriving at 25°C, 37°C, and 50°C. In addition, antimicrobial assay revealed that L5 exhibits strong antimicrobial activity against Escherichia coli, effectively reducing or eliminating the growth of Gram-negative bacteria in SBM when fermented with L5. When applied to SBM fermentation, L5 efficiently reduced SBM antinutritional factors such as glycinin, β-conglycinin, trypsin inhibitor, phytic acid, neutral detergent fiber, and acid detergent fiber, which in turn results in an increase in crude protein content and the free amino acid concentration. Our findings on the probiotic and fermentation capabilities of L5 suggest that this novel bacterium has dual functions that make it a strong candidate for improving the nutrient values of feed via its role in fermentation.IMPORTANCESoybean meal (SBM), containing 41%-48% crude protein, is the most important source of plant protein in animal feeds. Unfortunately, 70%-80% of the proteins in SBM is allergenic antigens including trypsin inhibition, β-conglycinin, and conglycinin, which negatively affect intestine health and function. Microbial solid-state fermentation methods have been applied to animal feeds for decades, to eliminate antinutritional factors. Here, a novel potential probiotic Bacillus subtilis "L5" strain with high enzymatic activity and antimicrobial activity will be a great help to improve the quality and reproducibility of SBM fermentation.
Collapse
Affiliation(s)
- Nanshan Qi
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
- Department of Animal Biosciences, University of Guelph, Guelph, Canada
| | - Xiaoshu Zhan
- Department of Animal Biosciences, University of Guelph, Guelph, Canada
- Department of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Joshua Milmine
- Department of Animal Biosciences, University of Guelph, Guelph, Canada
| | - Kai-Hsiang Chang
- Department of Animal Biosciences, University of Guelph, Guelph, Canada
| | - Julang Li
- Department of Animal Biosciences, University of Guelph, Guelph, Canada
| |
Collapse
|
7
|
Zhu J, Lu F, Liu D, Zhao X, Chao J, Wang Y, Luan Y, Ma H. The process of solid-state fermentation of soybean meal: antimicrobial activity, fermentation heat generation and nitrogen solubility index. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3228-3234. [PMID: 38072810 DOI: 10.1002/jsfa.13209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND Bacillus amyloliquefaciens has excellent protease production ability and holds great prospects for application in the solid-state fermentation of soybean meal (SBM). RESULTS Among eight strains of bacteria, Bacillus amyloliquefaciens subsp. plantarum CICC 10265, which exhibited higher protease production, was selected as the fermentation strain. The protease activity secreted by this strain reached 106.41 U mL-1 . The microbial community structure differed significantly between natural fermentation and inoculation-enhanced fermented soybean meal (FSBM), with the latter showing greater stability and inhibition of miscellaneous bacterial growth. During fermentation, the temperature inside the soybean meal increased, and the optimal environmental temperature for FSBM was found to be between 35 and 40 °C. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and nitrogen solubility index (NSI) results demonstrated that solid-state fermentation had a degrading effect on highly denatured proteins in SBM, resulting in an NSI of 67.1%. CONCLUSION Bacillus amyloliquefaciens subsp. plantarum CICC 10265 can enhance the NSI of SBM in solid-state fermentation and inhibit the growth of miscellaneous bacteria. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Junsong Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Feng Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Dandan Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Xiaoxue Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Jiapin Chao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yucheng Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Yu Luan
- Zhenjiang Food and Drug Supervision and Inspection Center, Zhenjiang, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| |
Collapse
|
8
|
Lin H, Han T, Wang J, Ma Z, Yu X. Screening and Identification of a Strain with Protease and Phytase Activities and Its Application in Soybean Meal Fermentation. Appl Biochem Biotechnol 2024; 196:790-803. [PMID: 37204550 DOI: 10.1007/s12010-023-04568-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 05/20/2023]
Abstract
The aims of the study were to degrade the anti-nutritional factors (ANFs) such as phytic acid, glycinin, and β-conglycinin and improve the values of soybean meal (SBM). Firstly, in this study, a strain PY-4B which exhibited the best enzymatic activities of protease (403.3 ± 17.8 U/mL) and phytase (62.9 ± 2.9 U/mL) was isolated and screened among the isolates. Based on the analysis of physiological and biochemical characteristics and 16S rDNA sequence, the strain PY-4B was identified and named as Pseudomonas PY-4B. Next, Pseudomonas PY-4B was applied to fermentation of SBM. The results showed that the contents of glycinin and β-conglycinin were decreased by 57-63%, and the phytic acid was remarkably degraded by 62.5% due to the fermentation of SBM by Pseudomonas PY-4B. The degradation of glycinin and β-conglycinin resulted in increase of contents of water-soluble proteins and amino acids in fermented SBM. Moreover, Pseudomonas PY-4B exhibited no hemolytic activity and slight inhibitory effect on the growth of pathogen Staphylococcus aureus and the wide range of pH tolerance (3 to 9). In summary, our study indicates that isolated strain Pseudomonas PY-4B is a safe and applicable strain and has the ability to effectively degrade the ANFs (phytic acid, glycinin, and β-conglycinin) in SBM by fermentation.
Collapse
Affiliation(s)
- Hengyi Lin
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou, Zhejiang Province, 310018, People's Republic of China
| | - Tao Han
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan, 316000, Zhejiang Province, China
| | - Jiteng Wang
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan, 316000, Zhejiang Province, China
| | - Zheng Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou, Zhejiang Province, 310018, People's Republic of China.
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou, Zhejiang Province, 310018, People's Republic of China
| |
Collapse
|
9
|
Chin XH, Elhalis H, Chow Y, Liu SQ. Enhancing food safety in soybean fermentation through strategic implementation of starter cultures. Heliyon 2024; 10:e25007. [PMID: 38312583 PMCID: PMC10835011 DOI: 10.1016/j.heliyon.2024.e25007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 02/06/2024] Open
Abstract
Fermented soybean products have played a significant role in Asian diets for a long time. Due to their diverse flavours, nutritional benefits, and potential health-promoting properties, they have gained a huge popularity globally in recent years. Traditionally, soybean fermentation is conducted spontaneously, using microorganisms naturally present in the environment, or inoculating with traditional starter cultures. However, many potential health risks are associated with consumption of these traditionally fermented soybean products due to the presence of food pathogens, high levels of biogenic amines and mycotoxins. The use of starter culture technology in fermentation has been well-studied in recent years and confers significant advantages over traditional fermentation methods due to strict control of the microorganisms inoculated. This review provides a comprehensive review of microbial safety and health risks associated with consumption of traditional fermented soybean products, and how adopting starter culture technology can help mitigate these risks to ensure the safety of these products.
Collapse
Affiliation(s)
- Xin Hui Chin
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore, 138669, Singapore
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, 2 Science Drive 2, 117543, Singapore
| | - Hosam Elhalis
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore, 138669, Singapore
- Research School of Biology, The Australian National University, Canberra, ACT, 2600, Australia
| | - Yvonne Chow
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore, 138669, Singapore
| | - Shao Quan Liu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, 2 Science Drive 2, 117543, Singapore
| |
Collapse
|
10
|
Qu C, Peng L, Fei Y, Liang J, Bai W, Liu G. Screening ester-producing yeasts to fortify the brewing of rice-flavor Baijiu for enhanced aromas. Bioengineered 2023; 14:2255423. [PMID: 37715575 PMCID: PMC10506437 DOI: 10.1080/21655979.2023.2255423] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 09/17/2023] Open
Abstract
To enhance the aromas in Guangdong rice-flavor Baijiu, ester-producing yeast was selected to fortify Baijiu brewing. Among eight kinds of ester-producing yeasts selected, Saccharomyces cerevisiae CM15 (CM15) that showed both the stronger ability to utilize substrates to produce esters and the excellent tolerance to industrially relevant stress factors was chosen. When CM15 was synergistically fermented with six kinds of Kojis from distilleries of rice-flavor liquor in Guangdong, the enhanced total esters had happened to the liquors brewing with the fortified four kinds of Kojis, especially with Koji F. When Koji F was fortified with CM15, the resultant Baijiu showed a higher esters proportion and a lower higher alcohol ratio than that of Baijiu brewed only with Koji F, with the content of ethyl acetate and ethyl lactate increasing by 25% and 214%, respectively. This study suggested that CM15 can be used as a functional microorganism to fortify Baijiu brewing, which might also be suitable for other traditional fermented foods.
Collapse
Affiliation(s)
- Chunyun Qu
- College of Light Industry and Food Sciences, Guangdong Key Laboratory of Science and Technology of Lingnan Special Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, China
| | - Liying Peng
- College of Light Industry and Food Sciences, Guangdong Key Laboratory of Science and Technology of Lingnan Special Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yongtao Fei
- College of Light Industry and Food Sciences, Guangdong Key Laboratory of Science and Technology of Lingnan Special Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, China
| | - Jinglong Liang
- College of Light Industry and Food Sciences, Guangdong Key Laboratory of Science and Technology of Lingnan Special Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, China
| | - Weidong Bai
- College of Light Industry and Food Sciences, Guangdong Key Laboratory of Science and Technology of Lingnan Special Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, China
| | - Gongliang Liu
- College of Light Industry and Food Sciences, Guangdong Key Laboratory of Science and Technology of Lingnan Special Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, China
| |
Collapse
|
11
|
Huang X, Li H, Han T, Wang J, Ma Z, Yu X. Isolation and identification of protease-producing Bacillus amyloliquefaciens LX-6 and its application in the solid fermentation of soybean meal. Front Bioeng Biotechnol 2023; 11:1226988. [PMID: 37520297 PMCID: PMC10372485 DOI: 10.3389/fbioe.2023.1226988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023] Open
Abstract
Soybean meal (SM) is considered an ideal substitute for fish meal; however, its application is mainly limited because of its antigen proteins, glycinin and β-conglycinin. To improve the value of SM in the aquaculture industry, we employed an aerobic bacterial strain (LX-6) with protease activity of 1,390.6 ± 12.5 U/mL. This strain was isolated from soil samples and identified as Bacillus amyloliquefaciens based on morphological and physiological biochemical characteristics and 16S rDNA gene sequence analyses. Subsequently, we quantified the extent of glycinin and β-conglycinin degradation and the total protein and water-soluble protein content after SM fermentation with B. amyloliquefaciens LX-6. At 24 h of fermentation, the macromolecular antigen proteins of SM were almost completely degraded; the maximum degradation rates of glycinin and β-conglycinin reached 77.9% and 57.1%, respectively. Accordingly, not only did the concentration of water-soluble proteins increase from 5.74% to 44.45% after 48 h of fermentation but so did the concentrations of total protein and amino acids compared to those of unfermented SM. Field emission scanning electron microscopy revealed that the LX-6 strain gradually disrupted the surface structure of SM during the fermentation process. In addition, B. amyloliquefaciens LX-6 exhibited broad-spectrum antagonistic activity and a wide pH tolerance, suggesting its application in SM fermentation for fish meal replacement.
Collapse
Affiliation(s)
- Xinyi Huang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Huijie Li
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Tao Han
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Jiteng Wang
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Zheng Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Growth Performance, Antioxidant and Immunity Capacity Were Significantly Affected by Feeding Fermented Soybean Meal in Juvenile Coho Salmon ( Oncorhynchus kisutch). Animals (Basel) 2023; 13:ani13050945. [PMID: 36899803 PMCID: PMC10000117 DOI: 10.3390/ani13050945] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
This study aims to investigate the effects of partial dietary replacement of fish meal with unfermented and/or fermented soybean meal (fermented by Bacillus cereus) supplemented on the growth performance, whole-body composition, antioxidant and immunity capacity, and their related gene expression of juvenile coho salmon (Oncorhynchus kisutch). Four groups of juveniles (initial weight 159.63 ± 9.54 g) at 6 months of age in triplicate were fed for 12 weeks on four different iso-nitrogen (about 41% dietary protein) and iso-lipid (about 15% dietary lipid) experimental diets. The main results were: Compared with the control diet, the diet with replaced 10% fish meal protein with fermented soybean meal protein supplementation can significantly (p < 0.05) influence the expression of superoxide dismutase, catalase, glutathione peroxidase, glutathione S-transferase, nuclear factor erythroid 2-related factor 2, tumor necrosis factor α and interleukin-6 genes, the growth performance, the serum biochemical indices, and the activity of antioxidant and immunity enzymes. However, there was no significant effect (p > 0.05) on the survival rate (SR) and whole-body composition in the juveniles among the experimental groups. In conclusion, the diet with replaced 10% fish meal protein with fermented soybean meal protein supplementation could significantly increase the growth performance, antioxidant and immunity capacity, and their related gene expression of juveniles.
Collapse
|
13
|
Hu H, Wu C, Ge F, Ren Y, Li W, Li J. Poly-γ-glutamic acid-producing Bacillus velezensis fermentation can improve the feed properties of soybean meal. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
14
|
Qi N, Zhan X, Milmine J, Sahar M, Chang KH, Li J. Isolation and characterization of a novel hydrolase-producing probiotic Bacillus licheniformis and its application in the fermentation of soybean meal. Front Nutr 2023; 10:1123422. [PMID: 36969826 PMCID: PMC10030947 DOI: 10.3389/fnut.2023.1123422] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/15/2023] [Indexed: 03/29/2023] Open
Abstract
Soybean meal (SBM) is one of the most important sources of plant-based protein in the livestock and poultry industry. However, SBM contains anti-nutritional factors (ANFs) such as glycinin, β-conglycinin, trypsin inhibitor and phytic acid that can damage the intestinal health of animals, inevitably reducing growth performance. Fermentation using microorganisms with probiotic potential is a viable strategy to reduce ANFs and enhance the nutritional value of SBM. In this study, a novel potential probiotic Bacillus licheniformis (B4) with phytase, protease, cellulase and xylanase activity was isolated from camel feces. The ability of B4 to tolerate different pH, bile salts concentrations and temperatures were tested using metabolic activity assay. It was found that B4 can survive at pH 3.0, or 1.0% bile salts for 5 h, and displayed high proliferative activity when cultured at 50°C. Furthermore, B4 was capable of degrading glycinin, β-conglycinin and trypsin inhibitor which in turn resulted in significant increases of the degree of protein hydrolysis from 15.9% to 25.5% (p < 0.01) and crude protein from 44.8% to 54.3% (p < 0.001). After fermentation with B4 for 24 h, phytic acid in SBM was reduced by 73.3% (p < 0.001), the neutral detergent fiber (NDF) and the acid detergent fiber of the fermented SBM were significantly decreased by 38.40% (p < 0.001) and 30.20% (p < 0.05), compared to the unfermented SBM sample. Our results suggested that the effect of solid-state fermented SBM using this novel B. licheniformis (B4) strain, could significantly reduce phytic acid concentrations whilst improving the nutritional value of SBM, presenting itself as a promising alternative to phytase additives.
Collapse
Affiliation(s)
- Nanshan Qi
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Xiaoshu Zhan
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
- Department of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Joshua Milmine
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Maureen Sahar
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Kai-Hsiang Chang
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Julang Li
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
- *Correspondence: Julang Li,
| |
Collapse
|
15
|
Effect of Fermented Meat and Bone Meal–Soybean Meal Product on Growth Performance in Broilers. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation9010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this study, we screen the proteolytic activity of Bacillus species in meat and bone meal (MBM) and investigate the effects of fermented MBM–soybean meal products (FMSMPs) on the growth performance of broilers. In Trial 1, FMSMPs were fermented using four strains—Bacillus siamensis M3 (M3), B. velezensis M5 (M5), B. subtilis M6 (M6), and B. subtilis M20 (M20)—all of which presented more total peptides and higher degrees of hydrolysis (DH) than Bacillus subtilis var. natto N21 (N21). In Trial 2, 280 0-day-old Arbor Acres broilers, with equal numbers of both sexes, were randomly assigned into 5% fish meal (FM), MBM–soybean meal (MSM, as control), and N21, M3, M5, M6, and M20 FMSMP groups. The results demonstrated that the crude protein, total amino acids, alkaline protease, trichloroacetic acid–soluble nitrogen (TCA-SN), TCA-SN/total nitrogen, total peptides, DH, and free-hydroxyproline levels in the M6 group were greater than those in any other group (p < 0.05). Furthermore, the weight gain in the M6 group was superior to that of the FM and MSM groups in 0–21 and 0–35-day-old broilers (p < 0.05). In conclusion, B. subtilis M6 likely efficiently decomposes MSM to improve the protein properties and nutritional value of the product after fermentation. Supplementation with 5% FMSMP may promote weight gain in broilers.
Collapse
|
16
|
Nualkul M, Yuangsoi B, Hongoh Y, Yamada A, Deevong P. Improving the nutritional value and bioactivity of soybean meal in solid-state fermentation using Bacillus strains newly isolated from the gut of the termite Termes propinquus. FEMS Microbiol Lett 2022; 369:fnac044. [PMID: 35536569 DOI: 10.1093/femsle/fnac044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/19/2022] [Accepted: 05/06/2022] [Indexed: 12/17/2023] Open
Abstract
The present study aimed to isolate and characterize proteolytic Bacillus spp. from termite guts to test the possibility of application for improving the nutritional value and bioactivity of fermented soybean meal (FSBM). Aerobic endospore-forming bacteria were isolated from the gut of the termite Termes propinquus. Ten isolates with high levels of soy milk degradation were selected and tested for extracellular enzyme production. Among them, two isolates, Tp-5 and Tp-7, exhibited all tested hydrolytic enzyme activities (cellulase, xylanase, pectinase, amylase, protease, lipase and phytase), weak alpha hemolytic and also antagonistic activities against fish pathogenic species of Aeromonas and Streptococcus. Both phylogenetic and biochemical analyses indicated that they were closely related to Bacillus amyloliquefaciens. During solid-state fermentation of SBM, Tp-5 and Tp-7 exhibited the highest protease activity (1127.2 and 1552.4 U g-1, respectively) at 36 h, and the resulting FSBMs showed a significant increase in crude protein content and free radical-scavenging ability (P < 0.05), as well as an improvement in the composition of amino acids, metabolites and other nutrients, while indigestible materials such as fiber, lignin and hemicellulose were decreased. The potential strains, especially Tp-7, improved the nutritional value of FSBM by their strong hydrolytic and antioxidant activities, together with reducing antinutritional components.
Collapse
Affiliation(s)
- Maneeploy Nualkul
- Department of Microbiology, Faculty of Science, Kasetsart University, 10900, Bangkok, Thailand
| | - Bundit Yuangsoi
- Department of Fisheries, Faculty of Agriculture, Khon Kaen University, 40002, Khon Kaen, Thailand
| | - Yuichi Hongoh
- Department of Life Science and Technology, Tokyo Institute of Technology, 152-8550, Tokyo, Japan
| | - Akinori Yamada
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 852-8521, Nagasaki, Japan
| | - Pinsurang Deevong
- Department of Microbiology, Faculty of Science, Kasetsart University, 10900, Bangkok, Thailand
| |
Collapse
|
17
|
Kong X, Li Y, Liu X. A review of thermosensitive antinutritional factors in plant-based foods. J Food Biochem 2022; 46:e14199. [PMID: 35502149 DOI: 10.1111/jfbc.14199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 12/01/2022]
Abstract
Legumes and cereals account for the vast proportion of people's daily intake of plant-based foods. Meanwhile, a large number of antinutritional factors in legumes and cereals hinder the body absorption of nutrients and reduce the nutritional value of food. In this paper, the antinutritional effects, determination, and passivation methods of thermosensitive antinutritional factors such as trypsin inhibitors, urease, lipoxygenase, and lectin were reviewed to provide theoretical help to reduce antinutritional factors in food and improve the utilization rate of plant-based food nutrition. Since trypsin inhibitors and lectin have been more extensively studied and reviewed previously, the review mainly focused on urease and lipoxygenase. This review summarized the information of thermosensitive antinutritional factors, trypsin inhibitors, urease, lipoxygenase, and lectin, in cereals and legumes. The antinutritional effects, and physical and chemical properties of trypsin inhibitors, urease, lipoxygenase, and lectin were introduced. At the same time, the research methods for the detection and inactivation of these four antinutritional factors were also summarized in the order of research conducted time. The rapid determination and inactivation of antinutrients will be the focus of attention for the food industry in the future to improve the nutritional value of food. Exploring what structural changes could passivation technologies bring to antinutritional factors will provide a theoretical basis for further understanding the mechanisms of antinutritional factor inactivation. PRACTICAL APPLICATIONS: Antinutritional factors in plant-based foods hinder the absorption of nutrients and reduce the nutritional value of the food. Among them, thermosensitive antinutritional factors, such as trypsin inhibitors, urease, lipoxygenase, and lectins, have a high proportion among the antinutritional factors. In this paper, we investigate thermosensitive antinutritional factors from three perspectives: the antinutritional effect of thermosensitive antinutritional factors, determination, and passivation methods. The current passivation methods for thermosensitive antinutritional factors revolve around biological, physical, and chemical aspects, and their elimination mechanisms still need further research, especially at the protein structure level. Reducing the level of antinutritional factors in the future food industry while controlling the loss of other nutrients in food is a goal that needs to be balanced. This paper reviews the antinutritional effects of thermosensitive antinutritional factors and passivation methods, expecting to provide new research ideas to improve the nutrient utilization of food.
Collapse
Affiliation(s)
- Xin Kong
- College of Food and Health, National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - You Li
- College of Food and Health, National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Xinqi Liu
- College of Food and Health, National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| |
Collapse
|