1
|
Wang HB, Smale NE, Brown SH, Villanueva SAM, Zhou D, Mulji A, Bhandal DS, Nguyen-Ngo K, Harvey JR, Ghiani CA, Colwell CS. Scheduled feeding improves behavioral outcomes and reduces inflammation in a mouse model of Fragile X syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.16.613343. [PMID: 39345407 PMCID: PMC11429936 DOI: 10.1101/2024.09.16.613343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by the abnormal expansion of CGG repeats in the fragile X mental retardation 1 (FMR1) gene. Many FXS patients experience sleep disruptions, and we sought to explore these symptoms along with the possible benefits of a scheduled feeding intervention using the Fmr1 knockout (KO) mouse model. These mutants displayed clear evidence for sleep and circadian disturbances including delay in the onset of sleep and fragmented activity rhythms with increases in cycle-to-cycle variability. Importantly, the Fmr1 KO mice exhibited deficits in their circadian behavioral response to light with reduced masking, longer time to resetting to shifts in the Light-Dark cycle, altered synchronization to a skeleton photoperiod and lower magnitude light-induced phase shifts of activity rhythms. Investigation of the retinal input to the surprachiasmatic nucleus (SCN) with the neurotracer cholera toxin (β subunit) and quantification of the light-evoked cFos expression in the SCN revealed an abnormal retinal innervation of the SCN in the Fmr1 KO, providing a possible mechanistic explanation for the observed behavioral deficits. Interestingly, disruptions in social and repetitive behaviors correlated with sleep duration and fragmentation. Understanding the nature of the deficits, we decided to apply a scheduled feeding regimen (6-hr/18-hr feed/fast cycle) as a circadian-based strategy to boast circadian rhythms independently of light. This intervention significantly improved the activity rhythms and sleep in the mutants. Strikingly, the scheduled feeding ameliorated social interactions and reduced repetitive behaviors as well as the levels of Interferon-gamma and Interleukin-12 in the Fmr1 KO mutants, suggesting that timed eating may be an effective way to lessen inflammation. Collectively, this work adds support to efforts to develop circadian based interventions to help with symptoms of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Huei Bin Wang
- Molecular, Cellular, Integrative Physiology Graduate Program, University of California Los Angeles
- Department of Psychiatry & Biobehavioral Sciences, University of California Los Angeles
| | - Natalie E. Smale
- Department of Psychiatry & Biobehavioral Sciences, University of California Los Angeles
| | - Sarah H. Brown
- Department of Psychiatry & Biobehavioral Sciences, University of California Los Angeles
| | - Sophia Anne Marie Villanueva
- Integrated Biology and Physiology Program, University of California Los Angeles
- Department of Psychiatry & Biobehavioral Sciences, University of California Los Angeles
| | - David Zhou
- Department of Psychiatry & Biobehavioral Sciences, University of California Los Angeles
| | - Aly Mulji
- Integrated Biology and Physiology Program, University of California Los Angeles
| | - Deap S Bhandal
- Department of Psychiatry & Biobehavioral Sciences, University of California Los Angeles
| | - Kyle Nguyen-Ngo
- Department of Psychiatry & Biobehavioral Sciences, University of California Los Angeles
| | - John R. Harvey
- Integrated Biology and Physiology Program, University of California Los Angeles
- Department of Psychiatry & Biobehavioral Sciences, University of California Los Angeles
| | - Cristina A. Ghiani
- Department of Psychiatry & Biobehavioral Sciences, University of California Los Angeles
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine; University of California Los Angeles
| | | |
Collapse
|
2
|
Ekwudo MN, Gubert C, Hannan AJ. The microbiota-gut-brain axis in Huntington's disease: pathogenic mechanisms and therapeutic targets. FEBS J 2025; 292:1282-1315. [PMID: 38426291 PMCID: PMC11927060 DOI: 10.1111/febs.17102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/08/2024] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
Huntington's disease (HD) is a currently incurable neurogenerative disorder and is typically characterized by progressive movement disorder (including chorea), cognitive deficits (culminating in dementia), psychiatric abnormalities (the most common of which is depression), and peripheral symptoms (including gastrointestinal dysfunction). There are currently no approved disease-modifying therapies available for HD, with death usually occurring approximately 10-25 years after onset, but some therapies hold promising potential. HD subjects are often burdened by chronic diarrhea, constipation, esophageal and gastric inflammation, and a susceptibility to diabetes. Our understanding of the microbiota-gut-brain axis in HD is in its infancy and growing evidence from preclinical and clinical studies suggests a role of gut microbial population imbalance (gut dysbiosis) in HD pathophysiology. The gut and the brain can communicate through the enteric nervous system, immune system, vagus nerve, and microbiota-derived-metabolites including short-chain fatty acids, bile acids, and branched-chain amino acids. This review summarizes supporting evidence demonstrating the alterations in bacterial and fungal composition that may be associated with HD. We focus on mechanisms through which gut dysbiosis may compromise brain and gut health, thus triggering neuroinflammatory responses, and further highlight outcomes of attempts to modulate the gut microbiota as promising therapeutic strategies for HD. Ultimately, we discuss the dearth of data and the need for more longitudinal and translational studies in this nascent field. We suggest future directions to improve our understanding of the association between gut microbes and the pathogenesis of HD, and other 'brain and body disorders'.
Collapse
Affiliation(s)
- Millicent N. Ekwudo
- Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkvilleAustralia
| | - Carolina Gubert
- Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkvilleAustralia
| | - Anthony J. Hannan
- Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkvilleAustralia
- Department of Anatomy and PhysiologyUniversity of MelbourneParkvilleAustralia
| |
Collapse
|
3
|
Gaba A. Nutrition and Huntington's Disease- A Review of Current Practice and Theory. Curr Nutr Rep 2025; 14:18. [PMID: 39821731 PMCID: PMC11739192 DOI: 10.1007/s13668-025-00610-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2025] [Indexed: 01/19/2025]
Abstract
PURPOSE OF REVIEW Nutition has long been of importance in the care of Huntington's disease (HD). The purpose of this review is to summarize recent research relevant to HD nutrition, and to describe some emerging theoretical approaches to research in this area. RECENT FINDINGS Clinical studies have identified swallowing problems and fear of choking as major impediments to maintaining nutritional status with HD. Tube feeding is associated with co-morbidities, and provides limited benefits. Non-human models of HD have been utilized to study diets and supplements. Application of findings from these models to humans has not been shown to be of comparable benefit. While studies of nutritional factors in non-human models of HD have shown some promising results, trials in humans have found little efficacy for diets or supplements. The complexity of human metabolic pathways may require a more sophisticated omics approach to identify and study more beneficial interventions.
Collapse
Affiliation(s)
- Ann Gaba
- City University of New York Graduate School of Public Health and Health Policy, 55 West 125th Street, New York, NY, 10027, USA.
| |
Collapse
|
4
|
Rubio C, López-Landa A, Romo-Parra H, Rubio-Osornio M. Impact of the Ketogenic Diet on Neurological Diseases: A Review. Life (Basel) 2025; 15:71. [PMID: 39860011 PMCID: PMC11767209 DOI: 10.3390/life15010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/28/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND The ketogenic diet (KD), high in fat and low in carbohydrates, was introduced in the 1920s as a non-pharmacological treatment for refractory epilepsy. Although its mechanism of action is not fully understood, beneficial effects have been observed in neurological diseases such as epilepsy, Alzheimer's disease, and Parkinson's disease. OBJECTIVE This review examines the impact of the ketogenic diet and its molecular and neuroglial effects as a complementary therapy for neurological diseases. DISCUSSION KD is associated with neuroprotective and antioxidant effects that improve mitochondrial function, regulate neurotransmitter flow, and reduce neuroinflammation and oxidative stress. Glial cells play an essential role in the utilization of ketone bodies (KBs) within the central nervous system's metabolism, particularly during ketosis induced by the KD. Thus, the KD represents a broad and promising strategy that involves both neurons and glial cells, with a molecular impact on brain metabolism and neuroinflammatory homeostasis. CONCLUSION Multiple molecular mechanisms have been identified to explain the benefits of the KD in neurological diseases; however, further experimental and clinical studies are needed to address various molecular pathways in order to achieve conclusive results.
Collapse
Affiliation(s)
- Carmen Rubio
- Neurophysiology Department, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (C.R.); (A.L.-L.); (H.R.-P.)
| | - Alejandro López-Landa
- Neurophysiology Department, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (C.R.); (A.L.-L.); (H.R.-P.)
- School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla City 72000, Mexico
| | - Hector Romo-Parra
- Neurophysiology Department, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (C.R.); (A.L.-L.); (H.R.-P.)
- Psychology Department, Universidad Iberoamericana, Mexico City 01376, Mexico
| | - Moisés Rubio-Osornio
- Neurochemistry Department, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City 14269, Mexico
| |
Collapse
|
5
|
Cousineau JP, Dawe AM, Alpaugh M. Investigating the Interplay between Cardiovascular and Neurodegenerative Disease. BIOLOGY 2024; 13:764. [PMID: 39452073 PMCID: PMC11505144 DOI: 10.3390/biology13100764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 10/26/2024]
Abstract
Neurological diseases, including neurodegenerative diseases (NDDs), are the primary cause of disability worldwide and the second leading cause of death. The chronic nature of these conditions and the lack of disease-modifying therapies highlight the urgent need for developing effective therapies. To accomplish this, effective models of NDDs are required to increase our understanding of underlying pathophysiology and for evaluating treatment efficacy. Traditionally, models of NDDs have focused on the central nervous system (CNS). However, evidence points to a relationship between systemic factors and the development of NDDs. Cardiovascular disease and related risk factors have been shown to modify the cerebral vasculature and the risk of developing Alzheimer's disease. These findings, combined with reports of changes to vascular density and blood-brain barrier integrity in other NDDs, such as Huntington's disease and Parkinson's disease, suggest that cardiovascular health may be predictive of brain function. To evaluate this, we explore evidence for disruptions to the circulatory system in murine models of NDDs, evidence of disruptions to the CNS in cardiovascular disease models and summarize models combining cardiovascular disruption with models of NDDs. In this study, we aim to increase our understanding of cardiovascular disease and neurodegeneration interactions across multiple disease states and evaluate the utility of combining model systems.
Collapse
Affiliation(s)
| | | | - Melanie Alpaugh
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (J.P.C.); (A.M.D.)
| |
Collapse
|
6
|
Dell’Angelica D, Singh K, Colwell CS, Ghiani CA. Circadian Interventions in Preclinical Models of Huntington's Disease: A Narrative Review. Biomedicines 2024; 12:1777. [PMID: 39200241 PMCID: PMC11351982 DOI: 10.3390/biomedicines12081777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 09/02/2024] Open
Abstract
Huntington's Disease (HD) is a neurodegenerative disorder caused by an autosomal-dominant mutation in the huntingtin gene, which manifests with a triad of motor, cognitive and psychiatric declines. Individuals with HD often present with disturbed sleep/wake cycles, but it is still debated whether altered circadian rhythms are intrinsic to its aetiopathology or a consequence. Conversely, it is well established that sleep/wake disturbances, perhaps acting in concert with other pathophysiological mechanisms, worsen the impact of the disease on cognitive and motor functions and are a burden to the patients and their caretakers. Currently, there is no cure to stop the progression of HD, however, preclinical research is providing cementing evidence that restoring the fluctuation of the circadian rhythms can assist in delaying the onset and slowing progression of HD. Here we highlight the application of circadian-based interventions in preclinical models and provide insights into their potential translation in clinical practice. Interventions aimed at improving sleep/wake cycles' synchronization have shown to improve motor and cognitive deficits in HD models. Therefore, a strong support for their suitability to ameliorate HD symptoms in humans emerges from the literature, albeit with gaps in our knowledge on the underlying mechanisms and possible risks associated with their implementation.
Collapse
Affiliation(s)
- Derek Dell’Angelica
- Department of Psychiatry and Biobehavioural Sciences, Semel Institute for Neuroscience and Human Behaviour, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA; (D.D.); (K.S.); (C.S.C.)
| | - Karan Singh
- Department of Psychiatry and Biobehavioural Sciences, Semel Institute for Neuroscience and Human Behaviour, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA; (D.D.); (K.S.); (C.S.C.)
| | - Christopher S. Colwell
- Department of Psychiatry and Biobehavioural Sciences, Semel Institute for Neuroscience and Human Behaviour, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA; (D.D.); (K.S.); (C.S.C.)
| | - Cristina A. Ghiani
- Department of Psychiatry and Biobehavioural Sciences, Semel Institute for Neuroscience and Human Behaviour, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA; (D.D.); (K.S.); (C.S.C.)
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA
| |
Collapse
|
7
|
Chiem E, Zhao K, Dell’Angelica D, Ghiani CA, Paul KN, Colwell CS. Scheduled feeding improves sleep in a mouse model of Huntington's disease. Front Neurosci 2024; 18:1427125. [PMID: 39161652 PMCID: PMC11330895 DOI: 10.3389/fnins.2024.1427125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/19/2024] [Indexed: 08/21/2024] Open
Abstract
Sleep disturbances are common features of neurodegenerative disorders including Huntington's disease (HD). Sleep and circadian disruptions are recapitulated in animal models, providing the opportunity to evaluate the effectiveness of circadian interventions as countermeasures for neurodegenerative disease. For instance, time restricted feeding (TRF) successfully improved activity rhythms, sleep behavior and motor performance in mouse models of HD. Seeking to determine if these benefits extend to physiological measures of sleep, electroencephalography (EEG) was used to measure sleep/wake states and polysomnographic patterns in male and female wild-type (WT) and bacterial artificial chromosome transgenic (BACHD) adult mice, under TRF and ad lib feeding (ALF). Our findings show that male, but not female, BACHD mice exhibited significant changes in the temporal patterning of wake and non-rapid eye movement (NREM) sleep. The TRF intervention reduced the inappropriate early morning activity by increasing NREM sleep in the male BACHD mice. In addition, the scheduled feeding reduced sleep fragmentation (# bouts) in the male BACHD mice. The phase of the rhythm in rapid-eye movement (REM) sleep was significantly altered by the scheduled feeding in a sex-dependent manner. The treatment did impact the power spectral curves during the day in male but not female mice regardless of the genotype. Sleep homeostasis, as measured by the response to six hours of gentle handling, was not altered by the diet. Thus, TRF improves the temporal patterning and fragmentation of NREM sleep without impacting sleep homeostasis. This work adds critical support to the view that sleep is a modifiable risk factor in neurodegenerative diseases.
Collapse
Affiliation(s)
- Emily Chiem
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, United States
- Molecular, Cellular, Integrative Physiology Program, University of California Los Angeles, Los Angeles, CA, United States
| | - Kevin Zhao
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, United States
| | - Derek Dell’Angelica
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
| | - Cristina A. Ghiani
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Ketema N. Paul
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, United States
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
| | - Christopher S. Colwell
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
8
|
Chiem E, Zhao K, Dell’Angelica D, Ghiani CA, Paul KN, Colwell CS. Scheduled feeding improves sleep in a mouse model of Huntington's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.04.592428. [PMID: 38766112 PMCID: PMC11100594 DOI: 10.1101/2024.05.04.592428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Sleep disturbances are common features of neurodegenerative disorders including Huntington's disease (HD). The sleep and circadian disruptions are recapitulated in animal models, and these models provide the opportunity to evaluate whether circadian interventions can be effective countermeasures for neurodegenerative disease. Time restricted feeding (TRF) interventions successfully improve activity rhythms, sleep behavior and motor performance in mouse models of HD. Seeking to determine if these benefits of scheduled feeding extend to physiological measures of sleep, electroencephalography (EEG) was used to measure sleep/wake states and polysomnographic patterns in adult mice (six mo-old) under TRF and ad lib feeding (ALF). With each diet, both male and female wild-type (WT) and bacterial artificial chromosome transgenic (BACHD) mice were evaluated. Our findings show that male, but not female, BACHD mice exhibited significant changes in the temporal patterning of wake and nonrapid eye movement (NREM) sleep. The TRF intervention reduced the inappropriate early morning activity by increasing NREM sleep in the male BACHD mice. In addition, the scheduled feeding reduced sleep fragmentation (# bouts) in the male BACHD mice. The phase of the rhythm in rapid-eye movement (REM) sleep was significantly altered by the scheduled feeding. The treatment did impact the power spectral curves during the day in male but not female mice. Sleep homeostasis, as measured by the response to six hours of gentle handling, was not altered by the diet. Thus, TRF improves the temporal patterning and fragmentation of NREM sleep without impacting sleep homeostasis. This work adds critical support to the view that sleep is a modifiable risk factor in neurodegenerative diseases.
Collapse
Affiliation(s)
- Emily Chiem
- Department of Integrative Biology and Physiology, University of California Los Angeles
- Molecular, Cellular, Integrative Physiology program, University of California Los Angeles
| | - Kevin Zhao
- Department of Integrative Biology and Physiology, University of California Los Angeles
| | - Derek Dell’Angelica
- Department of Psychiatry & Biobehavioral Sciences, University of California Los Angeles
| | - Cristina A. Ghiani
- Department of Pathology and Laboratory Medicine, University of California Los Angeles
- Department of Psychiatry & Biobehavioral Sciences, University of California Los Angeles
| | - Ketema N. Paul
- Department of Integrative Biology and Physiology, University of California Los Angeles
- Department of Psychiatry & Biobehavioral Sciences, University of California Los Angeles
| | | |
Collapse
|
9
|
Simeone T, Simeone K. The Unconventional Effects of the Ketogenic Diet (KD) in Preclinical Epilepsy. Epilepsy Curr 2024; 24:117-122. [PMID: 39280056 PMCID: PMC11394414 DOI: 10.1177/15357597231216916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
Abstract
The integration of metabolic therapeutics in the available clinical armory is becoming more commonplace in health care as our understanding about the dependence of disease on metabolism continues to deepen and evolve. In the epilepsy field, we often think about the ketogenic diet (KD, high fat: carbohydrate ratio) in terms of its anti-seizure efficacy. The aim of this article is to review what we've learned from preclinical studies about the KD's more unconventional effects, including its neuroprotective effects, anti-epileptogenic and disease-modifying effects, and how the KD influences comorbidities associated with epilepsy. As time moves us into the future and metabolic therapies become more common place, the effects of the KD considered unconventional herein, may end up being referred to as traditional.
Collapse
Affiliation(s)
- Timothy Simeone
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, USA
| | - Kristina Simeone
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, USA
| |
Collapse
|
10
|
Morton AJ. Sleep and Circadian Rhythm Dysfunction in Animal Models of Huntington's Disease. J Huntingtons Dis 2023; 12:133-148. [PMID: 37334613 PMCID: PMC10473141 DOI: 10.3233/jhd-230574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2023] [Indexed: 06/20/2023]
Abstract
Sleep and circadian disruption affects most individuals with Huntington's disease (HD) at some stage in their lives. Sleep and circadian dysregulation are also present in many mouse and the sheep models of HD. Here I review evidence for sleep and/or circadian dysfunction in HD transgenic animal models and discuss two key questions: 1) How relevant are such findings to people with HD, and 2) Whether or not therapeutic interventions that ameliorate deficits in animal models of HD might translate to meaningful therapies for people with HD.
Collapse
Affiliation(s)
- A. Jennifer Morton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|