1
|
Guevara-Ramírez P, Tamayo-Trujillo R, Cadena-Ullauri S, Ruiz-Pozo V, Paz-Cruz E, Annunziata G, Verde L, Frias-Toral E, Simancas-Racines D, Zambrano AK. Heavy metals in the diet: unraveling the molecular pathways linked to neurodegenerative disease risk. FOOD AGR IMMUNOL 2024; 35. [DOI: 10.1080/09540105.2024.2434457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/21/2024] [Indexed: 01/03/2025] Open
Affiliation(s)
- Patricia Guevara-Ramírez
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Rafael Tamayo-Trujillo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Santiago Cadena-Ullauri
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Viviana Ruiz-Pozo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Elius Paz-Cruz
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Giuseppe Annunziata
- Facoltà di Scienze Umane, della Formazione e dello Sport, Università Telematica Pegaso, Naples, Italy
| | - Ludovica Verde
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | | | - Daniel Simancas-Racines
- Centro de Investigación de Salud Pública y Epidemiología Clínica (CISPEC), Universidad UTE, Quito, Ecuador
| | - Ana Karina Zambrano
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| |
Collapse
|
2
|
Tamayo-Trujillo R, Paz-Cruz E, Cadena-Ullauri S, Guevara-Ramirez P, Ruiz-Pozo VA, Ibarra-Castillo R, Laso-Bayas JL, Zambrano AK. Exploring Atrial Fibrillation: Understanding the Complex Relation Between Lifestyle and Genetic Factors. J Med Cases 2024; 15:186-194. [PMID: 39091575 PMCID: PMC11287905 DOI: 10.14740/jmc4250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/21/2024] [Indexed: 08/04/2024] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide across diverse ethnic groups. Among these, atrial fibrillation (AF) stands as one of the most prevalent types of arrhythmias and the primary cause of stroke. Risk factors associated with AF include alcohol consumption, aging, high blood pressure, hypertension, inflammation, and genetic factors. A family history of CVD could indicate an increased risk. Consequently, genetic, and genomic testing should be performed to identify the molecular etiology of CVDs and assess at-risk patients. It is important to note that CVDs are the results of the complex interplay of genes and environmental factors, including ethnicity. In this case, the proband's clinic story includes a history of smoking abuse for 10 years (10 cigarettes per day), obesity, hypertension, and an associated familial history. These risk factors, along with genetic variants, could trigger the early onset of AF. In recent years, genetic and genomic studies have significantly advanced our understanding of CVD etiology, given that next-generation sequencing (NGS) allows for the identification of genetic variants that could contribute to these pathologies. Furthermore, NGS facilitates early diagnosis, personalized pharmacological approaches, and identification of novel biomarkers. Thus, NGS is a valuable tool in CVD management. However, such studies are limited in Ecuador, a low- and middle-income country. Several challenges contribute to this gap, encompassing economic, infrastructural, and educational obstacles. Notably, the cost of genetic and genomic studies may also pose a barrier, restricting access to a portion of the population. In this case report, we present a 56-year-old Ecuadorian woman, who has been diagnosed with AF; however, after performing NGS no disease-associated variants were found, despite having strong clinical signs and symptoms. In summary, this case report contributes valuable insights into the complex interplay between genetic and lifestyle factors in the development and management of AF. The case report aims to underscore the potential impact of genetic variants on disease risk, even when classified as variants of uncertain significance, and the importance of an integral approach to patient care that includes genetic screening, lifestyle interventions, and tailored pharmacological treatment.
Collapse
Affiliation(s)
- Rafael Tamayo-Trujillo
- Centro de Investigacion Genetica y Genomica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
- These authors contributed equally to this work and share first authorship
| | - Elius Paz-Cruz
- Centro de Investigacion Genetica y Genomica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
- These authors contributed equally to this work and share first authorship
| | - Santiago Cadena-Ullauri
- Centro de Investigacion Genetica y Genomica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
- These authors contributed equally to this work and share first authorship
| | - Patricia Guevara-Ramirez
- Centro de Investigacion Genetica y Genomica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
- These authors contributed equally to this work and share first authorship
| | - Viviana A. Ruiz-Pozo
- Centro de Investigacion Genetica y Genomica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | | | | | - Ana Karina Zambrano
- Centro de Investigacion Genetica y Genomica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| |
Collapse
|
3
|
Chapela SP, Simancas-Racines A, Ceriani F, Martinuzzi ALN, Russo MP, Zambrano AK, Simancas-Racines D, Verde L, Muscogiuri G, Katsanos CS, Frias-Toral E, Barrea L. Obesity and Obesity-Related Thyroid Dysfunction: Any Potential Role for the Very Low-Calorie Ketogenic Diet (VLCKD)? Curr Nutr Rep 2024; 13:194-213. [PMID: 38526760 PMCID: PMC11133069 DOI: 10.1007/s13668-024-00528-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2024] [Indexed: 03/27/2024]
Abstract
PURPOSE OF REVIEW This review aims to explore in-depth the different aspects of the association between very low-calorie ketogenic diet (VLCKD), obesity and obesity-related thyroid dysfunction. RECENT FINDINGS The VLCKD, proposed as a non-pharmacological strategy for the management of certain chronic diseases, is becoming increasingly popular worldwide. Initially used to treat epilepsy, it has been shown to be effective in controlling body weight gain and addressing various pathophysiological conditions. Research has shown that a low-calorie, high-fat diet can affect thyroid hormone levels. Weight loss can also influence thyroid hormone levels. Studies have suggested that long-term use of VLCKD for refractory epilepsy may be related to the development of hypothyroidism, with an effect seen in various populations. In particular, women with obesity following VLCKD tend to have reduced T3 levels. We propose further research to unravel the underlying mechanisms linking VLCKD to obesity and obesity-related thyroid dysfunction.
Collapse
Affiliation(s)
- Sebastián Pablo Chapela
- Facultad de Medicina, Departamento de Bioquímica Humana, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- Equipo de Soporte Nutricional, Hospital Británico de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Alison Simancas-Racines
- Facultad de, Ciencias Agropecuarias y Recursos Naturales, Carrera de Medicina Veterinaria, Universidad Técnica de Cotopaxi, Latacunga, 050108, Ecuador
- Centro de Investigación de Salud Pública y Epidemiología Clínica (CISPEC), Facultad de Veterinaria y Agronomía, Universidad UTE, Santo Domingo, Ecuador
| | - Florencia Ceriani
- Escuela de Nutrición, Universidad de la República Uruguay, Montevideo, Uruguay
| | | | - María Paula Russo
- Servicio de Clínica Médica, Hospital Italiano de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ana Karina Zambrano
- Centro de Investigación Genética y Genómica, Universidad UTE, Facultad de Ciencias de la Salud Eugenio Espejo, Quito, Ecuador
| | - Daniel Simancas-Racines
- Centro de Investigación de Salud Pública y Epidemiología Clínica (CISPEC), Universidad UTE, Facultad de Ciencias de la Salud Eugenio Espejo, Quito, 170129, Ecuador
| | - Ludovica Verde
- Department of Public Health, University of Naples Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Giovanna Muscogiuri
- Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131, Naples, Italy.
- Cattedra Unesco "Educazione Alla Salute E Allo Sviluppo Sostenibile", University Federico II, 80131, Naples, Italy.
| | | | - Evelyn Frias-Toral
- School of Medicine, Universidad Espíritu Santo - Samborondón, 0901952, Samborondón, Ecuador
| | - Luigi Barrea
- Dipartimento di Benessere, Nutrizione e Sport, Università Telematica Pegaso, Centro Direzionale Isola F2, Via Porzio, 80143, Naples, Italy
| |
Collapse
|
4
|
Yu T, Zhang Y, Yuan J, Zhang Y, Li J, Huang Z. Cholesterol mediates the effects of single and multiple environmental phenols in urine on obesity. Lipids Health Dis 2024; 23:126. [PMID: 38685082 PMCID: PMC11057097 DOI: 10.1186/s12944-024-02113-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Overweight and obesity are among the leading chronic diseases worldwide. Environmental phenols have been renowned as endocrine disruptors that contribute to weight changes; however, the effects of exposure to mixed phenols on obesity are not well established. METHODS Using data from adults in National Health and Nutrition Examination Survey, this study examined the individual and combined effects of four phenols on obesity. A combination of traditional logistic regression and two mixed models (weighted quantile sum (WQS) regression and Bayesian kernel-machine regression (BKMR)) were used together to assess the role of phenols in the development of obesity. The potential mediation of cholesterol on these effects was analyzed through a parallel mediation model. RESULTS The results demonstrated that solitary phenols except triclosan were inversely associated with obesity (P-value < 0.05). The WQS index was also negatively correlated with general obesity (β: 0.770, 95% CI: 0.644-0.919, P-value = 0.004) and abdominal obesity (β: 0.781, 95% CI: 0.658-0.928, P-value = 0.004). Consistently, the BKMR model demonstrated the significant joint negative effects of phenols on obesity. The parallel mediation analysis revealed that high-density lipoprotein mediated the effects of all four single phenols on obesity, whereas low-density lipoprotein only mediated the association between benzophenol-3 and obesity. Moreover, Cholesterol acts as a mediator of the association between mixed phenols and obesity. Exposure to single and mixed phenols significantly and negatively correlated with obesity. Cholesterol mediated the association of single and mixed environmental phenols with obesity. CONCLUSIONS Assessing the potential public health risks of mixed phenols helps to incorporate this information into practical health advice and guidance.
Collapse
Affiliation(s)
- Ting Yu
- School of Public Health, Xuzhou Medical University, Xuzhou, 221004, China
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yuqing Zhang
- Department of Obstetrics and Gynecology, Nanjing Maternity and Child Health Care Hospital, Women' s Hospital of Nanjing Medical University, Nanjing, China
| | - Jiali Yuan
- School of Public Health, Xuzhou Medical University, Xuzhou, 221004, China
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yue Zhang
- School of Public Health, Xuzhou Medical University, Xuzhou, 221004, China
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jing Li
- School of Public Health, Xuzhou Medical University, Xuzhou, 221004, China
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, 221004, China
| | - Zhenyao Huang
- School of Public Health, Xuzhou Medical University, Xuzhou, 221004, China.
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
5
|
Rabadán-Chávez G, Díaz de la Garza RI, Jacobo-Velázquez DA. White adipose tissue: Distribution, molecular insights of impaired expandability, and its implication in fatty liver disease. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166853. [PMID: 37611674 DOI: 10.1016/j.bbadis.2023.166853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/17/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
We are far behind the 2025 World Health Organization (WHO) goal of a zero increase in obesity. Close to 360 million people in Latin America and the Caribbean are overweight, with the highest rates observed in the Bahamas, Mexico, and Chile. To achieve relevant progress against the obesity epidemic, scientific research is essential to establish uniform practices in the study of obesity pathophysiology (using pre-clinical and clinical models) that ensure accuracy, reproducibility, and transcendent outcomes. The present review focuses on relevant aspects of white adipose tissue (WAT) expansion, underlying mechanisms of inefficient expandability, and its repercussion in ectopic lipid accumulation in the liver during nutritional abundance. In addition, we highlight the potential role of disrupted circadian rhythm in WAT metabolism. Since genetic factors also play a key role in determining an individual's predisposition to weight gain, we describe the most relevant genes associated with obesity in the Mexican population, underlining that most of them are related to appetite control.
Collapse
Affiliation(s)
- Griselda Rabadán-Chávez
- Tecnologico de Monterrey, Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, 64849 Monterrey, NL, Mexico
| | - Rocío I Díaz de la Garza
- Tecnologico de Monterrey, Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, 64849 Monterrey, NL, Mexico; Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Monterrey, Av. Eugenio Garza Sada 2501 Sur, 64849 Monterrey, NL, Mexico.
| | - Daniel A Jacobo-Velázquez
- Tecnologico de Monterrey, Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, 64849 Monterrey, NL, Mexico; Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Guadalajara, Av. General Ramon Corona 2514, C.P. 45201 Zapopan, Jalisco, Mexico.
| |
Collapse
|
6
|
Zambrano AK, Cadena-Ullauri S, Guevara-Ramírez P, Ruiz-Pozo VA, Tamayo-Trujillo R, Paz-Cruz E, Ibarra-Rodríguez AA, Doménech N. Genetic diet interactions of ACE: the increased hypertension predisposition in the Latin American population. Front Nutr 2023; 10:1241017. [PMID: 37964928 PMCID: PMC10640988 DOI: 10.3389/fnut.2023.1241017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023] Open
Abstract
Hypertension is one of the primary risk factors associated with cardiovascular diseases (CVDs). It is a condition that affects people worldwide, and its prevalence is increasing due to several factors, such as lack of physical activity, population aging, and unhealthy diets. Notably, this increase has primarily occurred in low and middle-income countries (LMICs). In Latin America, approximately 40% of adults have been diagnosed with hypertension. Moreover, reports have shown that the Latin American genetic composition is highly diverse, and this genetic background can influence various biological processes, including disease predisposition and treatment effectiveness. Research has shown that Western dietary patterns, which include increased consumption of red meat, refined grains, sugar, and ultra-processed food, have spread across the globe, including Latin America, due to globalization processes. Furthermore, a higher than recommended sodium consumption, which has been associated with hypertension, has been identified across different regions, including Asia, Europe, America, Oceania, and Africa. In conclusion, hypertension is a multifactorial disease involving environmental and genetic factors. In Latin America, hypertension prevalence is increasing due to various factors, including age, the adoption of a "Westernized" diet, and potential genetic predisposition factors involving the ACE gene. Furthermore, identifying the genetic and molecular mechanisms of the disease, its association with diet, and how they interact is essential for the development of personalized treatments to increase its efficacy and reduce side effects.
Collapse
Affiliation(s)
- Ana Karina Zambrano
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Santiago Cadena-Ullauri
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Patricia Guevara-Ramírez
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Viviana A. Ruiz-Pozo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Rafael Tamayo-Trujillo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Elius Paz-Cruz
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | | | - Nieves Doménech
- Instituto de Investigación Biomédica de A Coruña (INIBIC)-CIBERCV, Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidad da Coruña (UDC), La Coruña, Spain
| |
Collapse
|
7
|
Guevara-Ramírez P, Paz-Cruz E, Cadena-Ullauri S, Ruiz-Pozo VA, Tamayo-Trujillo R, Felix ML, Simancas-Racines D, Zambrano AK. Molecular pathways and nutrigenomic review of insulin resistance development in gestational diabetes mellitus. Front Nutr 2023; 10:1228703. [PMID: 37799768 PMCID: PMC10548225 DOI: 10.3389/fnut.2023.1228703] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/01/2023] [Indexed: 10/07/2023] Open
Abstract
Gestational diabetes mellitus is a condition marked by raised blood sugar levels and insulin resistance that usually occurs during the second or third trimester of pregnancy. According to the World Health Organization, hyperglycemia affects 16.9% of pregnancies worldwide. Dietary changes are the primarily alternative treatment for gestational diabetes mellitus. This paper aims to perform an exhaustive overview of the interaction between diet, gene expression, and the metabolic pathways related to insulin resistance. The intake of foods rich in carbohydrates can influence the gene expression of glycolysis, as well as foods rich in fat, can disrupt the beta-oxidation and ketogenesis pathways. Furthermore, vitamins and minerals are related to inflammatory processes regulated by the TLR4/NF-κB and one carbon metabolic pathways. We indicate that diet regulated gene expression of PPARα, NOS, CREB3L3, IRS, and CPT I, altering cellular physiological mechanisms and thus increasing or decreasing the risk of gestational diabetes. The alteration of gene expression can cause inflammation, inhibition of fatty acid transport, or on the contrary help in the modulation of ketogenesis, improve insulin sensitivity, attenuate the effects of glucotoxicity, and others. Therefore, it is critical to comprehend the metabolic changes of pregnant women with gestational diabetes mellitus, to determine nutrients that help in the prevention and treatment of insulin resistance and its long-term consequences.
Collapse
Affiliation(s)
- Patricia Guevara-Ramírez
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Genética y Genómica, Universidad UTE, Quito, Ecuador
| | - Elius Paz-Cruz
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Genética y Genómica, Universidad UTE, Quito, Ecuador
| | - Santiago Cadena-Ullauri
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Genética y Genómica, Universidad UTE, Quito, Ecuador
| | - Viviana A. Ruiz-Pozo
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Genética y Genómica, Universidad UTE, Quito, Ecuador
| | - Rafael Tamayo-Trujillo
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Genética y Genómica, Universidad UTE, Quito, Ecuador
| | - Maria L. Felix
- Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Daniel Simancas-Racines
- Centro de Investigación de Salud Pública y Epidemiología Clínica (CISPEC), Universidad UTE, Quito, Ecuador
| | - Ana Karina Zambrano
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Genética y Genómica, Universidad UTE, Quito, Ecuador
| |
Collapse
|
8
|
Zambrano AK, Cadena-Ullauri S, Guevara-Ramírez P, Frias-Toral E, Ruiz-Pozo VA, Paz-Cruz E, Tamayo-Trujillo R, Chapela S, Montalván M, Sarno G, Guerra CV, Simancas-Racines D. The Impact of a Very-Low-Calorie Ketogenic Diet in the Gut Microbiota Composition in Obesity. Nutrients 2023; 15:2728. [PMID: 37375632 DOI: 10.3390/nu15122728] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The very-low-calorie KD (VLCKD) is characterized by a caloric intake of under 800 kcal/day divided into less than 50 g/day of carbohydrate (13%) and 1 to 1.5 g of protein/kg of body weight (44%) and 43% of fat. This low carbohydrate intake changes the energy source from glucose to ketone bodies. Moreover, clinical trials have consistently shown a beneficial effect of VLCKD in several diseases, such as heart failure, schizophrenia, multiple sclerosis, Parkinson's, and obesity, among others. The gut microbiota has been associated with the metabolic conditions of a person and is regulated by diet interactions; furthermore, it has been shown that the microbiota has a role in body weight homeostasis by regulating metabolism, appetite, and energy. Currently, there is increasing evidence of an association between gut microbiota dysbiosis and the pathophysiology of obesity. In addition, the molecular pathways, the role of metabolites, and how microbiota modulation could be beneficial remain unclear, and more research is needed. The objective of the present article is to contribute with an overview of the impact that VLCKD has on the intestinal microbiota composition of individuals with obesity through a literature review describing the latest research regarding the topic and highlighting which bacteria phyla are associated with obesity and VLCKD.
Collapse
Affiliation(s)
- Ana Karina Zambrano
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Santiago Cadena-Ullauri
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Patricia Guevara-Ramírez
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Evelyn Frias-Toral
- School of Medicine, Universidad Católica Santiago de Guayaquil, Guayaquil 090615, Ecuador
| | - Viviana A Ruiz-Pozo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Elius Paz-Cruz
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Rafael Tamayo-Trujillo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Sebastián Chapela
- Departamento de Bioquímica, Facultad de Ciencias Médicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires C1121ABE, Argentina
- Hospital Británico de Buenos Aires, Equipo de Soporte Nutricional, Ciudad Autónoma de Buenos Aires C1280AEB, Argentina
| | - Martha Montalván
- School of Medicine, Universidad Espíritu Santo, Samborondón 091952, Ecuador
| | - Gerardo Sarno
- "San Giovanni di Dio e Ruggi D'Aragona" University Hospital, Scuola Medica Salernitana, 84131 Salerno, Italy
| | - Claudia V Guerra
- Centro de Investigación de Salud Pública y Epidemiología Clínica (CISPEC), Universidad UTE, Quito 170527, Ecuador
| | - Daniel Simancas-Racines
- Centro de Investigación de Salud Pública y Epidemiología Clínica (CISPEC), Universidad UTE, Quito 170527, Ecuador
| |
Collapse
|
9
|
Salas-Perez F, Assmann TS, Ramos-Lopez O, Martínez JA, Riezu-Boj JI, Milagro FI. Crosstalk between Gut Microbiota and Epigenetic Markers in Obesity Development: Relationship between Ruminococcus, BMI, and MACROD2/ SEL1L2 Methylation. Nutrients 2023; 15:1550. [PMID: 37049393 PMCID: PMC10097304 DOI: 10.3390/nu15071550] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/09/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
Changes in gut microbiota composition and in epigenetic mechanisms have been proposed to play important roles in energy homeostasis, and the onset and development of obesity. However, the crosstalk between epigenetic markers and the gut microbiome in obesity remains unclear. The main objective of this study was to establish a link between the gut microbiota and DNA methylation patterns in subjects with obesity by identifying differentially methylated DNA regions (DMRs) that could be potentially regulated by the gut microbiota. DNA methylation and bacterial DNA sequencing analysis were performed on 342 subjects with a BMI between 18 and 40 kg/m2. DNA methylation analyses identified a total of 2648 DMRs associated with BMI, while ten bacterial genera were associated with BMI. Interestingly, only the abundance of Ruminococcus was associated with one BMI-related DMR, which is located between the MACROD2/SEL1L2 genes. The Ruminococcus abundance negatively correlated with BMI, while the hypermethylated DMR was associated with reduced MACROD2 protein levels in serum. Additionally, the mediation test showed that 19% of the effect of Ruminococcus abundance on BMI is mediated by the methylation of the MACROD2/SEL1L2 DMR. These findings support the hypothesis that a crosstalk between gut microbiota and epigenetic markers may be contributing to obesity development.
Collapse
Affiliation(s)
| | - Taís Silveira Assmann
- Graduate Program in Medical Sciences, Endocrinology, Department of Internal Medicine, Faculty of Medicine, Federal University of do Rio Grande do Sul, Porto Alegre 90035-003, Brazil
| | - Omar Ramos-Lopez
- Medicine and Psychology School, Autonomous University of Baja California, Tijuana 22390, Mexico
| | - J. Alfredo Martínez
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
- Department of Nutrition, Food Science and Physiology, University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Carlos III Health Institute, 28029 Madrid, Spain
| | - Jose Ignacio Riezu-Boj
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Fermín I. Milagro
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
- Department of Nutrition, Food Science and Physiology, University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Carlos III Health Institute, 28029 Madrid, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| |
Collapse
|
10
|
Fanalli SL, da Silva BPM, Gomes JD, Durval MC, de Almeida VV, Moreira GCM, Silva-Vignato B, Afonso J, Freitas FAO, Reecy JM, Koltes JE, Koltes D, Garrick D, Correia de Almeida Regitano L, Balieiro JCDC, Mourão GB, Coutinho LL, Fukumasu H, de Alencar SM, Luchiari Filho A, Cesar ASM. RNA-seq transcriptome profiling of pigs' liver in response to diet with different sources of fatty acids. Front Genet 2023; 14:1053021. [PMID: 36816031 PMCID: PMC9936315 DOI: 10.3389/fgene.2023.1053021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Pigs (Sus scrofa) are an animal model for metabolic diseases in humans. Pork is an important source of fatty acids (FAs) in the human diet, as it is one of the most consumed meats worldwide. The effects of dietary inclusion of oils such as canola, fish, and soybean oils on pig gene expression are mostly unknown. Our objective was to evaluate FA composition, identify changes in gene expression in the liver of male pigs fed diets enriched with different FA profiles, and identify impacted metabolic pathways and gene networks to enlighten the biological mechanisms' variation. Large White male pigs were randomly allocated to one of three diets with 18 pigs in each; all diets comprised a base of corn and soybean meal to which either 3% of soybean oil (SOY), 3% canola oil (CO), or 3% fish oil (FO) was added for a 98-day trial during the growing and finishing phases. RNA sequencing was performed on the liver samples of each animal by Illumina technology for differential gene expression analyses, using the R package DESeq2. The diets modified the FA profile, mainly in relation to polyunsaturated and saturated FAs. Comparing SOY vs. FO, 143 differentially expressed genes (DEGs) were identified as being associated with metabolism, metabolic and neurodegenerative disease pathways, inflammatory processes, and immune response networks. Comparing CO vs. SOY, 148 DEGs were identified, with pathways related to FA oxidation, regulation of lipid metabolism, and metabolic and neurodegenerative diseases. Our results help explain the behavior of genes with differential expression in metabolic pathways resulting from feeding different types of oils in pig diets.
Collapse
Affiliation(s)
- Simara Larissa Fanalli
- Faculty of Animal Science and Food Engineering, (FZEA), University of São Paulo, São Paulo, Brazil
| | | | - Julia Dezen Gomes
- Animal Science Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, Brazil
| | - Mariah Castro Durval
- Faculty of Animal Science and Food Engineering, (FZEA), University of São Paulo, São Paulo, Brazil
| | | | | | - Bárbara Silva-Vignato
- Animal Science Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, Brazil
| | | | - Felipe André Oliveira Freitas
- Animal Science Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, Brazil
| | - James Mark Reecy
- Animal Science Department, Iowa State University, Ames, IA, United States
| | | | - Dawn Koltes
- Animal Science Department, Iowa State University, Ames, IA, United States
| | - Dorian Garrick
- AL Rae Centre for Genetics and Breeding, Massey University, Hamilton, New Zealand
| | | | | | - Gerson Barreto Mourão
- Animal Science Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, Brazil
| | - Luiz Lehmann Coutinho
- Animal Science Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, Brazil
| | - Heidge Fukumasu
- Faculty of Animal Science and Food Engineering, (FZEA), University of São Paulo, São Paulo, Brazil
| | - Severino Matias de Alencar
- Animal Science Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, Brazil
| | - Albino Luchiari Filho
- Animal Science Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, Brazil
| | - Aline Silva Mello Cesar
- Faculty of Animal Science and Food Engineering, (FZEA), University of São Paulo, São Paulo, Brazil,Animal Science Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, Brazil,*Correspondence: Aline Silva Mello Cesar,
| |
Collapse
|