1
|
Xu J, Zhou A, Yue S, Zhao H, Xiao Y, Guo Y, Mo F, Liu M, Tian C. Extraction technology, component analysis, and the immunomodulatory effects in immunosuppressed broilers of total flavonoids extract from the thorns of Gleditsia sinensis Lam. Fitoterapia 2025; 183:106524. [PMID: 40204053 DOI: 10.1016/j.fitote.2025.106524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/14/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
Spina Gleditsiae is the dry thorns from Gleditsia sinensis Lam. (G. sinensis), exhibits the effect of reducing swelling and toxins, and draining pus. Flavonoids are the primary active constituents of Spina Gleditsiae, but their extraction technology has not been studied systematically. Relevant studies revealed that Spina Gleditsiae shown certain immunomodulatory effects, but its mechanism was still unclear. This research was carried out about the extraction process, chemical composition, and the effects on the immune function of total flavonoids extract (TFE). The extraction conditions of TFE were investigated by response surface methodology, and the major components were preliminarily analyzed and inferred by ultra performance liquid chromatography- quadrupole-time-of-flight-mass spectrum method. The immunomodulatory effect of TFE was evaluated by cyclophosphamide induced immunosuppressed broilers. The yield of TFE was 1.80 % under the following optimized conditions: ethanol concentration 50 %, extraction time 20 min, and the ratio of solvent to material 50:1 ml/g. In addition, the main chemical components in the TFE have been preliminarily identified based on related literature and mass spectrometry information. Meanwhile, the TFE could mitigate the immunosuppressive state caused by cyclophosphamide in broilers by improving the histomorphology of immune organs, increasing the index of immune organ, elevating the serum levels of IL-2, IFN-β, and IFN-γ, and raising the titer of Newcastle disease antibodies in the serum. Furthermore, the immunoregulatory effects of these flavonoids were found to be closely related to the enhancement of the relative expression level of key genes and proteins in the TLR4-MyD88/TICAM-NF-κB signaling pathway. The findings of the study suggest that TFE derived from the thorns of G. sinensis holds promise as an enhanced traditional Chinese medicine with the capability to potentially bolster immune function.
Collapse
Affiliation(s)
- Jingyi Xu
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Aohua Zhou
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Shaoyang Yue
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Hanyu Zhao
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Yilin Xiao
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Yuru Guo
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Fei Mo
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Mingchun Liu
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Chunlian Tian
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China.
| |
Collapse
|
2
|
Meng T, Wen Z, Cheng X, Li C, Zhang P, Xiao D, Xu Y. Unlocking Gut Health: The Potent Role of Stilbenoids in Intestinal Homeostasis. Animals (Basel) 2025; 15:417. [PMID: 39943187 PMCID: PMC11816141 DOI: 10.3390/ani15030417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
Stilbenoids are a class of naturally occurring phenolic compounds found in various plant species, characterized by a stilbene backbone with diverse substituents that confer a range of biological activities. These compounds exhibit antioxidant, anti-inflammatory, and antimicrobial properties, making them promising candidates for improving intestinal health. The intestinal tract plays a critical role in nutrient digestion, absorption, and immune defense, and maintaining its integrity is vital for animal growth. Stilbenoids contribute to gut health by enhancing intestinal morphology, supporting mucosal immune responses, regulating gut microbiota composition, modulating metabolic pathways, and maintaining mitochondrial health. This review provides a comprehensive analysis of key stilbenoids, including resveratrol, pterostilbene, piceatannol, and oxyresveratrol, focusing on their biological effects and regulatory mechanisms. By highlighting their roles in mitigating intestinal inflammation and promoting gut function, this review provides a basis for the practical application of stilbenoids in animal health and husbandry.
Collapse
Affiliation(s)
- Tiantian Meng
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (T.M.); (Z.W.); (X.C.); (C.L.); (P.Z.)
| | - Ziwei Wen
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (T.M.); (Z.W.); (X.C.); (C.L.); (P.Z.)
| | - Xiaofang Cheng
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (T.M.); (Z.W.); (X.C.); (C.L.); (P.Z.)
| | - Cencen Li
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (T.M.); (Z.W.); (X.C.); (C.L.); (P.Z.)
| | - Pengpeng Zhang
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (T.M.); (Z.W.); (X.C.); (C.L.); (P.Z.)
| | - Dingfu Xiao
- Yuelushan Laboratory, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yongjie Xu
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (T.M.); (Z.W.); (X.C.); (C.L.); (P.Z.)
| |
Collapse
|
3
|
Huang Y, Cai H, Han Y, Yang P. Mechanisms of Heat Stress on Neuroendocrine and Organ Damage and Nutritional Measures of Prevention and Treatment in Poultry. BIOLOGY 2024; 13:926. [PMID: 39596881 PMCID: PMC11591812 DOI: 10.3390/biology13110926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
Heat stress (HS) due to high temperatures has adverse effects on poultry, including decreased feed intake, lower feed efficiency, decreased body weight, and higher mortality. There are complex mechanisms behind heat stress in poultry involving the neuroendocrine system, organ damage, and other physiological systems. HS activates endocrine glands, such as the pituitary, adrenal, thyroid, and gonadal, by the action of the hypothalamus and sympathetic nerves, ultimately causing changes in hormone levels: HS leads to increased corticosterone levels, changes in triiodothyronine and thyroxine levels, decreased gonadotropin levels, reduced ovarian function, and the promotion of catecholamine release, which ultimately affects the normal productive performance of poultry. Meanwhile, heat stress also causes damage to the liver, lungs, intestines, and various immune organs, severely impairing organ function in poultry. Nutrient additives to feed are important measures of prevention and treatment, including natural plants and extracts, probiotics, amino acids, and other nutrients, which are effective in alleviating heat stress in poultry. Future studies need to explore the specific mechanisms through which heat stress impacts the neuroendocrine system in poultry and the interrelationships between the axes and organ damage so as to provide an effective theoretical basis for the development of preventive and treatment measures.
Collapse
Affiliation(s)
| | | | | | - Peilong Yang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.H.); (H.C.); (Y.H.)
| |
Collapse
|
4
|
Shi J, Ji Z, Yao X, Yao Y, Li C, Liang Q, Zhang X. HSP90 Enhances Mitophagy to Improve the Resistance of Car-Diomyocytes to Heat Stress in Wenchang Chickens. Int J Mol Sci 2024; 25:11695. [PMID: 39519247 PMCID: PMC11546521 DOI: 10.3390/ijms252111695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Heat shock protein 90 (HSP90) is recognized for its protective effects against heat stress damage; however, the specific functions and underlying molecular mechanisms of HSP90 in heat-stressed cardiomyocytes remain largely unexplored, particularly in tropical species. In our study, Wenchang chickens (WCCs) were classified into two groups: the heat stress survival (HSS) group and the heat stress death (HSD) group, based on their survival following exposure to heat stress. Heat stress resulted in significant cardiomyocyte damage, mitochondrial dysfunction, and apoptosis in the HSD group, while the damage was less pronounced in the HSS group. We further validated these findings in primary cardiomyocytes derived from Wenchang chickens (PCWs). Additionally, heat stress was found to upregulate Pink1/Parkin-mediated mitophagy, which was accompanied by an increase in HSP90 expression in both cardiomyocytes and PCWs. Our results demonstrated that HSP90 overexpression enhances PINK1/Parkin-mediated mitophagy, ultimately inhibiting apoptosis and oxidative stress in heat-stressed PCWs. However, the application of Geldanamycin (GA) reversed these effects. Notably, we discovered that HSP90 interacts with Beclin-1 through mitochondrial translocation and directly regulates mitophagy levels in PCWs. In summary, we have elucidated a novel role for HSP90 and mitophagy in regulating heat stress-induced acute cardiomyocyte injury.
Collapse
Affiliation(s)
- Jiachen Shi
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570100, China; (J.S.); (Z.J.); (X.Y.); (Y.Y.); (C.L.); (Q.L.)
- School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Zeping Ji
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570100, China; (J.S.); (Z.J.); (X.Y.); (Y.Y.); (C.L.); (Q.L.)
| | - Xu Yao
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570100, China; (J.S.); (Z.J.); (X.Y.); (Y.Y.); (C.L.); (Q.L.)
| | - Yujie Yao
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570100, China; (J.S.); (Z.J.); (X.Y.); (Y.Y.); (C.L.); (Q.L.)
| | - Chengyun Li
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570100, China; (J.S.); (Z.J.); (X.Y.); (Y.Y.); (C.L.); (Q.L.)
| | - Qijun Liang
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570100, China; (J.S.); (Z.J.); (X.Y.); (Y.Y.); (C.L.); (Q.L.)
| | - Xiaohui Zhang
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570100, China; (J.S.); (Z.J.); (X.Y.); (Y.Y.); (C.L.); (Q.L.)
| |
Collapse
|
5
|
Liu C, Huang H, Chen Y, Zhou Y, Meng T, Tan B, He W, Fu X, Xiao D. Dietary supplementation with mulberry leaf flavonoids and carnosic acid complex enhances the growth performance and antioxidant capacity via regulating the p38 MAPK/Nrf2 pathway. Front Nutr 2024; 11:1428577. [PMID: 39139650 PMCID: PMC11319276 DOI: 10.3389/fnut.2024.1428577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction This study aimed to investigate the regulatory effects of mulberry leaf flavonoids and carnosic acid complex (MCC) on the growth performance, intestinal morphology, antioxidant, and p38 MAPK/Nrf2 pathway in broilers. Methods A total of 256 healthy 8-day-old female yellow-feathered broilers were randomly divided into 4 equal groups: a control group (CON) fed a basal diet, an antibiotic group (CTC) supplemented with 50 mg/kg chlortetracycline, and two experimental groups (MCC75, MCC150) fed basal diets with 75 mg/kg and 150 mg/kg of MCC, respectively. The experiment lasted for 56 days, with days 1-28 designated as the initial phase and days 29-56 as the growth phase. Results The results on the growth performance showed that diets supplemented with MCC and CTC decreased the feed-to-gain ratio (F/G), diarrhea rate, and death rate, while significantly increasing the average daily weight gain (ADG) (p < 0.05). Specifically, the MCC150 group enhanced intestinal health, indicated by reduced crypt depth and increased villus height-to-crypt depth ratio (V/C) as well as amylase activity in the jejunum. Both the MCC and CTC groups exhibited increased villus height and V/C ratio in the ileal (p < 0.05). Additionally, all treated groups showed elevated serum total antioxidant capacity (T-AOC), and significant increases in catalase (CAT) and glutathione peroxidase (GSH-Px) activities were observed in both the MCC150 and CTC groups. Molecular analysis revealed an upregulation of the jejunal mRNA expression levels of PGC-1α, Nrf2, and Keap1 in the MCC and CTC groups, as well as an upregulation of ileum mRNA expression levels of P38, PGC-1α, Nrf2, and Keap1 in the MCC150 group, suggesting activation of the p38-MAPK/Nrf2 pathway. Discussion These findings indicate that dietary supplementation with MCC, particularly at a dosage of 150 mg/kg, may serve as a viable antibiotic alternative, enhancing growth performance, intestinal health, and antioxidant capacity in broilers by regulating the p38-MAPK/Nrf2 pathway.
Collapse
Affiliation(s)
- Chunming Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Hui Huang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yulian Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yingjun Zhou
- College of Xiangya Pharmaceutical Sciences, Central South University, Changsha, China
- Geneham Pharmaceutical Co., Ltd., Changsha, China
| | - Tiantian Meng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Bihui Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Wenxiang He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xiaoqin Fu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Dingfu Xiao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Yuelushan Laboratory, Changsha, China
| |
Collapse
|
6
|
Li CC, Ji P, He J, Peng YS, Wu FL, Hua YL, Yao WL, Yuan ZW, Wei YM. Screening of polysaccharides from the differently processed products of Angelica sinensis with the best liver protection effect on chicken and the intervention mechanism study based on tandem mass tag proteomics and multiple reaction monitoring approach. Biomed Chromatogr 2024; 38:e5840. [PMID: 38402901 DOI: 10.1002/bmc.5840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 02/27/2024]
Abstract
The incidence of colibacillosis in poultry is on the rise, significantly affecting the chicken industry. Ceftiofur sodium (CS) is frequently employed to treat this disease, resulting in lipopolysaccharide (LPS) buildup. Processing plays a vital role in traditional Chinese veterinary medicine. The potential intervention in liver injury by polysaccharides from the differently processed products of Angelica sinensis (PDPPAS) induced by combined CS and LPS remains unclear. This study aims to investigate the protective effect of PDPPAS on chicken liver injury caused by CS combined with LPS buildup and further identify the polysaccharides with the highest hepatoprotective activity in chickens. Furthermore, the study elucidates polysaccharides' intervention mechanism using tandem mass tag (TMT) proteomics and multiple reaction monitoring (MRM) methods. A total of 190 1-day-old layer chickens were randomly assigned into 12 groups, of which 14 chickens were in the control group and 16 in other groups, for a 10-day trial. The screening results showed that charred A. sinensis polysaccharide (CASP) had the most effective and the best hepatoprotective effect at 48 h. TMT proteomics and MRM validation results demonstrated that the intervention mechanism of the CASP high-dose (CASPH) intervention group was closely related to the protein expressions of FCER2, TBXAS1, CD34, AGXT, GCAT, COX7A2L, and CYP2AC1. Conclusively, the intervention mechanism of CASPH had multitarget, multicenter regulatory features.
Collapse
Affiliation(s)
- Chen-Chen Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Peng Ji
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jian He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - You-Sheng Peng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Fan-Lin Wu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yong-Li Hua
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Wan-Ling Yao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Zi-Wen Yuan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yan-Ming Wei
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
7
|
Mao Y, Kong X, Liang Z, Yang C, Wang S, Fan H, Ning C, Xiao W, Wu Y, Wu J, Yuan L, Yuan Z. Viola yedoensis Makino alleviates heat stress-induced inflammation, oxidative stress, and cell apoptosis in the spleen and thymus of broilers. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117350. [PMID: 37907144 DOI: 10.1016/j.jep.2023.117350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 11/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Viola yedoensis Makino (VYM) is a traditional Chinese herbal medicine widely distributed in China. It has many pharmacological effects such as anti-inflammatory, immune regulation and anti-oxidation. However, the protective effect of VYM on the spleen and thymus of broilers induced by heat stress has rarely been reported. AIM OF THE STUDY We established a heat stress model of broilers to explore the protective effect of VYM on spleen and thymus of broilers. MATERIALS AND METHODS In this experiment, a heat stress model was made by adjusting the feeding temperature of broilers. The protective effect of VYM on the spleen and thymus of heat-stressed broilers were evaluated by detecting immune organ coefficient, histological observation, Enzyme-Linked Immunosorbent Assay, production of antioxidant enzymes and peroxides, TUNEL Staining, Quantitative Real-time PCR. RESULTS In this study, 60 healthy male AA broilers were divided into 6 groups: Control, 4.5% VYM, HS, HS + 0.5% VYM, HS + 1.5% VYM, HS + 4.5% VYM. After 42 days of feeding, serum, spleen and thymus were collected for detection and analysis. The study revealed that heat stress can lead to pathological damage in the spleen and thymus of broilers, reduce the content of immunoglobulin and newcastle disease (ND), infectious bursal disease (IBD) antibody levels, increase the expression of inflammatory factors IL-1β, INF-γ, heat shock 70 kDa protein (HSP70), heat shock 90 kDa protein (HSP90). Heat stress inhibits the activity of antioxidant enzymes CAT and SOD, promotes the production of MDA, and then lead to oxidative damage of the spleen and thymus. In addition, apoptotic cells and the ratio of Bax/Bcl-2 was increased. However, the addition of VYM to the feed can alleviate the adverse effects of heat stress on the spleen and thymus of broilers. CONCLUSIONS This study showed that the addition of VYM to the diet could inhibit oxidative stress and apoptosis, and reduce the inflammatory damage of heat stress on the spleen and thymus of broilers. This study provides a basis for further exploring the regulatory role of VYM in heat stress-induced immune imbalance in broilers. In addition, this study also provides a theoretical basis for the development of VYM as a feed additive with immunomodulatory effects.
Collapse
Affiliation(s)
- Yan Mao
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Xiangyi Kong
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Zengenni Liang
- Department of Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410128, PR China
| | - Chenglin Yang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Siqi Wang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Hui Fan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Can Ning
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Wenguang Xiao
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - You Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Jing Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Liyun Yuan
- Xiangyang Vocational and Technical College, Xiangyang 441050, PR China
| | - Zhihang Yuan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China.
| |
Collapse
|
8
|
Meng T, Liu C, Chen Y, Yu M, He J, Tan B, Fu X, He J, Xiao D. Dietary Chito-oligosaccharide attenuates LPS-challenged intestinal inflammation via regulating mitochondrial apoptotic and MAPK signaling pathway. Int Immunopharmacol 2024; 126:111153. [PMID: 37979451 DOI: 10.1016/j.intimp.2023.111153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/23/2023] [Accepted: 10/29/2023] [Indexed: 11/20/2023]
Abstract
To investigate the regulatory effects of Chito-oligosaccharide (COS) on the anti-oxidative, anti-inflammatory, and MAPK signaling pathways. A total of 40 28-day-old weaned piglets were randomly allotted to 4 equal groups [including the control group, lipopolysaccharide (LPS) group, COS group, and COS*LPS group]. On the morning of d 14 and 21, piglets were injected with saline or LPS. At 2 h post-injection, whole blood samples were collected on d 14 and 21, and small intestine and liver samples were collected and analyzed on d 21. The results showed that COS inhibited the LPS-induced increase of malondialdehyde (MDA) concentration and hepatic TNF-α cytokines. COS significantly increased the serum total antioxidant capability (T-AOC) value on d 14, and total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-PX) activities in both serum and liver on d 21. Furthermore, it increased hepatic catalase (CAT) activity. COS also increased the LPS-induced decrease in serum IgG concentrations. Immunohistochemical analysis results showed that COS significantly increased the jejunal and ileal Caspase 3, and ileal CD4+ values challenged by LPS. Dietary COS decreased the LPS-induced jejunal and ileal BAX and CCL2 mRNA levels, markedly decreased ileal COX2 and SOD1 mRNA levels, while increasing ileal iNOS. Furthermore, COS significantly increased the LPS-induced jejunal and ileal p-P38 and MyD88, as well as jejunal P38, while it effectively suppressed jejunal JNK1, and jejunal and ileal JNK2, p-JNK1, and p-JNK2 protein expressions. These results demonstrated that COS could be beneficial by attenuating LPS-challenged intestinal inflammation via regulating mitochondrial apoptotic and MAPK signaling pathways.
Collapse
Affiliation(s)
- Tiantian Meng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Chunming Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yulian Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Manrong Yu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jianfu He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Bihui Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xiaoqin Fu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jianhua He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Dingfu Xiao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
9
|
Kishawy ATY, Ibrahim D, Roushdy EM, Moustafa A, Eldemery F, Hussein EM, Hassan FAM, Elazab ST, Elabbasy MT, Kanwal R, Kamel WM, Atteya MR, Zaglool AW. Impact of resveratrol-loaded liposomal nanocarriers on heat-stressed broiler chickens: Effects on performance, sirtuin expression, oxidative stress regulators, and muscle building factors. Front Vet Sci 2023; 10:1137896. [PMID: 37056226 PMCID: PMC10086338 DOI: 10.3389/fvets.2023.1137896] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/23/2023] [Indexed: 03/30/2023] Open
Abstract
Climate change is considered to be the primary cause of heat stress (HS) in broiler chickens. Owing to the unique properties of extracted polyphenols, resveratrol-loaded liposomal nanoparticles (Resv-Lipo NPs) were first explored to mitigate the harmful effects of HS. The dietary role of Resv-Lipo NPs in heat-stressed birds was investigated based on their growth performance, antioxidative potential, and the expression of heat shock proteins, sirtuins, antioxidant, immune, and muscle-building related genes. A total of 250 1-day-old Ross 308 broiler chickens were divided into five experimental groups (5 replicates/group, 10 birds/replicate) for 42 days as follows: the control group was fed a basal diet and reared in thermoneutral conditions, and the other four HS groups were fed a basal diet supplemented with Resv-Lipo NPsI, II, and III at the levels of 0, 50, 100, and 150 mg/kg diet, respectively. The results indicated that supplementation with Resv-Lipo NP improved the growth rate of the HS group. The Resv-Lipo NP group showed the most significant improvement in body weight gain (p < 0.05) and FCR. Additionally, post-HS exposure, the groups that received Resv-Lipo NPs showed restored functions of the kidney and the liver as well as improvements in the lipid profile. The restoration occurred especially at higher levels in the Resv-Lipo NP group compared to the HS group. The elevated corticosterone and T3 and T4 hormone levels in the HS group returned to the normal range in the Resv-Lipo NPsIII group. Additionally, the HS groups supplemented with Resv-Lipo NPs showed an improvement in serum and muscle antioxidant biomarkers. The upregulation of the muscle and intestinal antioxidant-related genes (SOD, CAT, GSH-PX, NR-f2, and HO-1) and the muscle-building genes (myostatin, MyoD, and mTOR) was observed with increasing the level of Resv-Lipo NPs. Heat stress upregulated heat shock proteins (HSP) 70 and 90 gene expression, which was restored to normal levels in HS+Resv-Lipo NPsIII. Moreover, the expression of sirtuin 1, 3, and 7 (SIRT1, SIRT3, and SIRT7) genes was increased (p < 0.05) in the liver of the HS groups that received Resv-Lipo NPs in a dose-dependent manner. Notably, the upregulation of proinflammatory cytokines in the HS group was restored in the HS groups that received Resv-Lipo NPs. Supplementation with Resv-Lipo NPs can mitigate the harmful impact of HS and consequently improve the performance of broiler chickens.
Collapse
Affiliation(s)
- Asmaa T. Y. Kishawy
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- *Correspondence: Doaa Ibrahim
| | - Elshimaa M. Roushdy
- Department of Animal Wealth Development, Animal Breeding, and Production, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Amira Moustafa
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Fatma Eldemery
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Elham M. Hussein
- Physics Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Fardos A. M. Hassan
- Department of Animal Wealth Development, Veterinary Economics, and Farm Management, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Sara T. Elazab
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed Tharwat Elabbasy
- Department of Public Health, College of Public Health and Health Informatics, Ha'il University, Ha'il, Saudi Arabia
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Raheela Kanwal
- Department of Physical Therapy, College of Applied Medical Sciences, University of Ha'il, Ha'il, Saudi Arabia
| | - Walid M. Kamel
- Department of Public Health, College of Public Health and Health Informatics, University of Hail, Ha'il, Saudi Arabia
| | - Mohamed R. Atteya
- Department of Physical Therapy, College of Applied Medical Sciences, University of Ha'il, Ha'il, Saudi Arabia
| | - Asmaa W. Zaglool
- Department of Animal Wealth Development, Genetic, and Genetic Engineering, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
10
|
Meng Q, Li J, Wang C, Shan A. Biological function of resveratrol and its application in animal production: a review. J Anim Sci Biotechnol 2023; 14:25. [PMID: 36765425 PMCID: PMC9921422 DOI: 10.1186/s40104-022-00822-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/08/2022] [Indexed: 02/12/2023] Open
Abstract
With the prohibition of antibiotics in feed, plant functional substances have been widely studied as feed additives. Resveratrol, a natural stilbene, and a non-flavonoid polyphenol found in plants, possesses antioxidant, anti-inflammatory, and metabolic regulatory features. Resveratrol generated intense scientific and public interest, primarily due to its widely reported ability to prevent cancer, delay aging and alleviate related metabolic diseases. Recently, resveratrol has been studied and applied as a feed additive in animal production. This review focuses on the outline of the absorption and metabolism and biological functions of resveratrol and summarizes the application of dietary resveratrol in animal production up to the present, including pigs, poultry, and ruminants. In pigs, dietary resveratrol improved intestinal health, mitochondrial function, meat quality, and more. In poultry, studies have shown that dietary resveratrol improves growth performance and meat and egg quality and alleviates heat stress induced adverse effects. There are few studies on dietary resveratrol in ruminants; however previous studies have indicated that dietary resveratrol increases nutrient digestibility and reduces methane emissions in sheep. It is hoped that this review could provide a specific theoretical basis and research ideas for the research and application of resveratrol.
Collapse
Affiliation(s)
- Qingwei Meng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Jiawei Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Chunsheng Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Anshan Shan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
11
|
Zhu C, Nie X, He Z, Xiong T, Li Y, Bai Y, Zhang H. Research Note: Dietary resveratrol supplementation improves the hepatic antioxidant capacity and attenuates lipopolysaccharide-induced inflammation in yellow-feathered broilers. Poult Sci 2022; 102:102370. [PMID: 36774711 PMCID: PMC9947393 DOI: 10.1016/j.psj.2022.102370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
This experiment investigated the protective effect of resveratrol (RES) on the hepatic antioxidant status and systemic inflammation in yellow-feathered broilers challenged with lipopolysaccharide (LPS). A total of 240 healthy 1-day-old yellow-feathered broilers were randomly divided into 4 groups (control, LPS, RES, and RES+LPS), with 5 replicates of 12 chickens per replicate. The experiment lasted 21 d. The broilers were fed with either the basal diet or the basal diet supplemented with 400 mg/kg RES followed by intraperitoneal challenge with LPS (1 mg/kg body weight) or the same amount of saline at d 16, 18, and 20. The results showed that dietary RES supplementation could improve the activities of total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) in the liver of yellow-feathered broilers challenged with LPS (P < 0.05). Furthermore, LPS challenge increased the plasma interleukin-17 (IL-17) concentration, the hepatic interleukin-6 (IL-6) and interleukin-1β (IL-1β) concentrations, as well as the concentrations of tumor necrosis factor (TNF-α), IL-6, and IL-1β in the spleen (P < 0.05), and decreased the transforming growth factor-β (TGF-β) concentrations in the plasma, liver, and spleen (P < 0.05). However, dietary RES supplementation could reduce the increased TNF-α levels in the plasma, liver, and spleen induced by LPS, and increased TGF-β level in the liver and spleen (P < 0.05). Collectively, these results suggest that dietary RES supplementation could effectively improve the hepatic antioxidant capacity and attenuate LPS-induced inflammation in yellow-feathered broilers during the starter stage.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Huihua Zhang
- School of Life Science and Engineering, Foshan University, Foshan 528225, China.
| |
Collapse
|