1
|
Faro DC, Di Pino FL, Monte IP. Inflammation, Oxidative Stress, and Endothelial Dysfunction in the Pathogenesis of Vascular Damage: Unraveling Novel Cardiovascular Risk Factors in Fabry Disease. Int J Mol Sci 2024; 25:8273. [PMID: 39125842 PMCID: PMC11312754 DOI: 10.3390/ijms25158273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Anderson-Fabry disease (AFD), a genetic disorder caused by mutations in the α-galactosidase-A (GLA) gene, disrupts lysosomal function, leading to vascular complications. The accumulation of globotriaosylceramide (Gb3) in arterial walls triggers upregulation of adhesion molecules, decreases endothelial nitric oxide synthesis, and induces reactive oxygen species production. This cascade results in fibrotic thickening, endothelial dysfunction, hypercontractility, vasospasm, and a pro-thrombotic phenotype. AFD patients display increased intima-media thickness (IMT) and reduced flow-mediated dilation (FMD), indicating heightened cardiovascular risk. Nailfold capillaroscopy (NFC) shows promise in diagnosing and monitoring microcirculatory disorders in AFD, though it remains underexplored. Morphological evidence of AFD as a storage disorder can be demonstrated through electron microscopy and immunodetection of Gb3. Secondary pathophysiological disturbances at cellular, tissue, and organ levels contribute to the clinical manifestations, with prominent lysosomal inclusions observed in vascular, cardiac, renal, and neuronal cells. Chronic accumulation of Gb3 represents a state of ongoing toxicity, leading to increased cell turnover, particularly in vascular endothelial cells. AFD-related vascular pathology includes increased renin-angiotensin system activation, endothelial dysfunction, and smooth muscle cell proliferation, resulting in IMT increase. Furthermore, microvascular alterations, such as atypical capillaries observed through NFC, suggest early microvascular involvement. This review aims to unravel the complex interplay between inflammation, oxidative stress, and endothelial dysfunction in AFD, highlighting the potential connections between metabolic disturbances, oxidative stress, inflammation, and fibrosis in vascular and cardiac complications. By exploring novel cardiovascular risk factors and potential diagnostic tools, we can advance our understanding of these mechanisms, which extend beyond sphingolipid accumulation to include other significant contributors to disease pathogenesis. This comprehensive approach can pave the way for innovative therapeutic strategies and improved patient outcomes.
Collapse
Affiliation(s)
| | | | - Ines Paola Monte
- Department of General Surgery and Medical-Surgical Specialties (CHIRMED), University of Catania, Via S. Sofia 78, 95100 Catania, Italy; (D.C.F.); (F.L.D.P.)
| |
Collapse
|
2
|
Cacciapuoti M, Bertoldi G, Caputo I, Driussi G, Carraro G, Calò LA. Oxidative stress and its role in Fabry disease. J Nephrol 2024; 37:1201-1207. [PMID: 38878155 DOI: 10.1007/s40620-024-01934-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 03/20/2024] [Indexed: 09/18/2024]
Abstract
Fabry disease is a rare X-linked disease characterized by deficient expression and activity of alpha-galactosidase A with consequent lysosomal accumulation of glycosphingolipids, particularly globotriaosylceramide in various organs. Currently, enzyme replacement therapy with recombinant human α-galactosidase is the cornerstone of the treatment of Fabry patients, although in the long term enzyme replacement therapy fails to halt disease progression, in particular in case of late diagnosis. This suggests that the adverse outcomes cannot be justified by the lysosomal accumulation of glycosphingolipids alone, and that additional therapies targeted at further pathophysiologic mechanisms might contribute to halting the progression of cardiac, cerebrovascular and kidney disease in Fabry patients. Recent evidence points toward the involvement of oxidative stress, oxidative stress signaling and inflammation in the pathophysiology of cardio cerebrovascular and kidney damage in Fabry patients. This review reports the current knowledge of the involvement of oxidative stress in Fabry disease, which clearly points toward the involvement of oxidative stress in the pathophysiology of the medium to long-term cardio-cerebrovascular-kidney damage of Fabry patients and summarizes the antioxidant therapeutic approaches currently available in the literature. This important role played by oxidative stress suggests potential novel additional therapeutic interventions by either pharmacologic or nutritional measures, on top of enzyme replacement therapy, aimed at improving/halting the progression of cardio-cerebrovascular disease and nephropathy that occur in Fabry patients.
Collapse
Affiliation(s)
- Martina Cacciapuoti
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy
| | - Giovanni Bertoldi
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy
| | - Ilaria Caputo
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy
| | - Giulia Driussi
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy
| | - Gianni Carraro
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy
| | - Lorenzo A Calò
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy.
| |
Collapse
|
3
|
Muscogiuri G, De Marco O, Di Lorenzo T, Amicone M, Capuano I, Riccio E, Iaccarino G, Bianco A, Di Risi T, Pisani A. Diet and Physical Activity in Fabry Disease: A Narrative Review. Nutrients 2024; 16:1061. [PMID: 38613094 PMCID: PMC11013480 DOI: 10.3390/nu16071061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Fabry disease (FD) is caused by mutations in the galactosidase alpha (GLA) gene which lead to the accumulation of globotriaosylceramide (Gb-3). Enzyme replacement therapy (ERT) and oral chaperone therapy are the current pharmacological treatments for this condition. However, in the literature, there is a growing emphasis on exploring non-pharmacological therapeutic strategies to improve the quality of life of patients with FD. In particular, the nutritional approach to FD has been marginally addressed in the scientific literature, although specific dietary interventions may be useful for the management of nephropathy and gastrointestinal complications, which are often present in patients with FD. Especially in cases of confirmed diagnosis of irritable bowel syndrome (IBS), a low-FODMAP diet can represent an effective approach to improving intestinal manifestations. Furthermore, it is known that some food components, such as polyphenols, may be able to modulate some pathogenetic mechanisms underlying the disease, such as inflammation and oxidative stress. Therefore, the use of healthy dietary patterns should be encouraged in this patient group. Sports practice can be useful for patients with multi-organ involvement, particularly in cardiovascular, renal, and neurological aspects. Therefore, the aim of this review is to summarize current knowledge on the role of nutrition and physical activity in FD patients.
Collapse
Affiliation(s)
- Giovanna Muscogiuri
- Unità di Endocrinologia, Dipartimento di Medicina Clinica e Chirurgia, Diabetologia ed Andrologia, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy;
- Endocrinology Unit, Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy;
| | - Oriana De Marco
- Chair of Nephrology “Federico II”, Department of Public Health, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy; (M.A.); (I.C.); (T.D.R.); or (A.P.)
| | - Tonia Di Lorenzo
- Endocrinology Unit, Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy;
| | - Maria Amicone
- Chair of Nephrology “Federico II”, Department of Public Health, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy; (M.A.); (I.C.); (T.D.R.); or (A.P.)
| | - Ivana Capuano
- Chair of Nephrology “Federico II”, Department of Public Health, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy; (M.A.); (I.C.); (T.D.R.); or (A.P.)
| | - Eleonora Riccio
- Institute for Biomedical Research and Innovation, National Research Council of Italy, 90146 Palermo, Italy;
| | - Guido Iaccarino
- Interdepartmental Research Center for Arterial Hypertension and Associated Pathologies (CIRIAPA)-Hypertension Research Center, University of Naples “Federico II”, 80131 Naples, Italy; (G.I.); (A.B.)
- Department of Clinical Medicine and Surgery, Univeristy of Naples Federico II, 80131 Naples, Italy
| | - Antonio Bianco
- Interdepartmental Research Center for Arterial Hypertension and Associated Pathologies (CIRIAPA)-Hypertension Research Center, University of Naples “Federico II”, 80131 Naples, Italy; (G.I.); (A.B.)
- DAI Endocrinologia, Diabetologia, Andrologia e Nutrizione Ambulatorio AFA “Attività Fisica Adattata”, University of Naples “Federico II”, 80131 Naples, Italy
| | - Teodolinda Di Risi
- Chair of Nephrology “Federico II”, Department of Public Health, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy; (M.A.); (I.C.); (T.D.R.); or (A.P.)
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Antonio Pisani
- Chair of Nephrology “Federico II”, Department of Public Health, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy; (M.A.); (I.C.); (T.D.R.); or (A.P.)
| |
Collapse
|
4
|
Weissman D, Dudek J, Sequeira V, Maack C. Fabry Disease: Cardiac Implications and Molecular Mechanisms. Curr Heart Fail Rep 2024; 21:81-100. [PMID: 38289538 PMCID: PMC10923975 DOI: 10.1007/s11897-024-00645-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/05/2024] [Indexed: 03/09/2024]
Abstract
PURPOSE OF REVIEW This review explores the interplay among metabolic dysfunction, oxidative stress, inflammation, and fibrosis in Fabry disease, focusing on their potential implications for cardiac involvement. We aim to discuss the biochemical processes that operate in parallel to sphingolipid accumulation and contribute to disease pathogenesis, emphasizing the importance of a comprehensive understanding of these processes. RECENT FINDINGS Beyond sphingolipid accumulation, emerging studies have revealed that mitochondrial dysfunction, oxidative stress, and chronic inflammation could be significant contributors to Fabry disease and cardiac involvement. These factors promote cardiac remodeling and fibrosis and may predispose Fabry patients to conduction disturbances, ventricular arrhythmias, and heart failure. While current treatments, such as enzyme replacement therapy and pharmacological chaperones, address disease progression and symptoms, their effectiveness is limited. Our review uncovers the potential relationships among metabolic disturbances, oxidative stress, inflammation, and fibrosis in Fabry disease-related cardiac complications. Current findings suggest that beyond sphingolipid accumulation, other mechanisms may significantly contribute to disease pathogenesis. This prompts the exploration of innovative therapeutic strategies and underscores the importance of a holistic approach to understanding and managing Fabry disease.
Collapse
Affiliation(s)
- David Weissman
- Department of Translational Research, Comprehensive Heart Failure Center, University Hospital Würzburg, Am Schwarzenberg 15, Haus A15, 97078, Würzburg, Germany
| | - Jan Dudek
- Department of Translational Research, Comprehensive Heart Failure Center, University Hospital Würzburg, Am Schwarzenberg 15, Haus A15, 97078, Würzburg, Germany
| | - Vasco Sequeira
- Department of Translational Research, Comprehensive Heart Failure Center, University Hospital Würzburg, Am Schwarzenberg 15, Haus A15, 97078, Würzburg, Germany
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center, University Hospital Würzburg, Am Schwarzenberg 15, Haus A15, 97078, Würzburg, Germany.
| |
Collapse
|
5
|
Yu B, Atta MG, Brennan DC, Kant S. Outcomes and management of kidney transplant recipients with Fabry disease: a review. J Nephrol 2024; 37:561-571. [PMID: 38227277 DOI: 10.1007/s40620-023-01853-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/27/2023] [Indexed: 01/17/2024]
Abstract
Fabry disease is an X-linked inheritable lysosomal storage disease caused by various mutations of the galactosidase α gene resulting in α-galactosidase deficiency. Chronic kidney disease (CKD) is one of the most significant consequences of Fabry disease, with risk of end-stage kidney disease (ESKD) in this population. Like for other patients with ESKD, kidney transplant is the optimal treatment for Fabry disease patients with ESKD. However, enzyme replacement therapy and newer Fabry disease treatments remain important to mitigate other end organ damage such as cardiomyopathy post transplantation. This review is a primer on Fabry disease, which examines the outcomes of disease in the context of kidney transplant prior to, and during, the enzyme replacement treatment era, medical treatment of kidney transplant recipients with Fabry disease, and progress in screening studies.
Collapse
Affiliation(s)
- Bo Yu
- Department of Medicine, University of Maryland Medical Center, Midtown Campus, Baltimore, MD, USA
| | - Mohamed G Atta
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel C Brennan
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Comprehensive Transplant Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sam Kant
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Comprehensive Transplant Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Lenzini L, Iori E, Vettore M, Gugelmo G, Radu C, Padoan A, Carraro G, Simioni P, Calò L, Avogaro A, Rossi GP, Vitturi N. Increased Soluble Interleukin 6 Receptors in Fabry Disease. J Clin Med 2023; 13:218. [PMID: 38202225 PMCID: PMC10780051 DOI: 10.3390/jcm13010218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/15/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Fabry disease (FD) is an X-linked lysosome storage disease that results in the accumulation of globotriaosylceramide (Gb3) throughout the body leading to irreversible target organ damage. As the role of secondary mediators (inflammatory molecules) and their mechanisms has not been fully elucidated, we focused on the interleukin (IL)-6 system in adult FD patients and in matched healthy subjects. To obtain insights into the complex regulation of IL-6 actions, we used a novel approach that integrates information from plasma and exosomes of FD patients (n = 20) and of healthy controls (n = 15). Soluble IL-6 receptor (sIL-6R) levels were measured in plasma with the ELISA method, and membrane-bound IL-6R was quantified in plasma and urinary exosomes using flow cytometry. In FD patients, the levels of soluble IL-6R in plasma were higher than in control subjects (28.0 ± 5.4 ng/mL vs. 18.9 ± 5.4 ng/mL, p < 0.0001); they were also higher in FD subjects with the classical form as compared to those with the late-onset form of the disease (36.0 ± 11.4 ng/mL vs. 26.1 ± 4.5 ng/mL, p < 0.0001). The percentage of urinary exosomes positive for IL-6R was slightly lower in FD (97 ± 1 vs. 100 ± 0% of events positive for IL-6R, p < 0.05); plasma IL-6 levels were not increased. These results suggest a potential role of IL-6 in triggering the inflammatory response in FD. As in FD patients only the levels of sIL-6Rs are consistently higher than in healthy controls, the IL-6 pathogenic signal seems to prevail over the homeostatic one, suggesting a potential mechanism causing multi-systemic damage in FD.
Collapse
Affiliation(s)
- Livia Lenzini
- Internal & Emergency Medicine Unit, Department of Medicine, Padova University Hospital, 35128 Padova, Italy; (L.L.); (G.P.R.)
| | - Elisabetta Iori
- Division of Metabolic Diseases, Department of Medicine, Padova University Hospital, 35128 Padova, Italy; (E.I.); (M.V.); (A.A.)
| | - Monica Vettore
- Division of Metabolic Diseases, Department of Medicine, Padova University Hospital, 35128 Padova, Italy; (E.I.); (M.V.); (A.A.)
| | - Giorgia Gugelmo
- Division of Clinical Nutrition, Department of Medicine, Padova University Hospital, 35128 Padova, Italy;
| | - Claudia Radu
- General Medicine and Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine, Padova University Hospital, 35128 Padova, Italy; (C.R.); (P.S.)
| | - Andrea Padoan
- Laboratory Medicine Unit, Department of Medicine, Padova University Hospital, 35128 Padova, Italy;
| | - Gianni Carraro
- Nephrology, Dialysis and Transplant Unit, Department of Medicine, Padova University Hospital, 35128 Padova, Italy; (G.C.); (L.C.)
| | - Paolo Simioni
- General Medicine and Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine, Padova University Hospital, 35128 Padova, Italy; (C.R.); (P.S.)
| | - Lorenzo Calò
- Nephrology, Dialysis and Transplant Unit, Department of Medicine, Padova University Hospital, 35128 Padova, Italy; (G.C.); (L.C.)
| | - Angelo Avogaro
- Division of Metabolic Diseases, Department of Medicine, Padova University Hospital, 35128 Padova, Italy; (E.I.); (M.V.); (A.A.)
| | - Gian Paolo Rossi
- Internal & Emergency Medicine Unit, Department of Medicine, Padova University Hospital, 35128 Padova, Italy; (L.L.); (G.P.R.)
| | - Nicola Vitturi
- Division of Metabolic Diseases, Department of Medicine, Padova University Hospital, 35128 Padova, Italy; (E.I.); (M.V.); (A.A.)
| |
Collapse
|
7
|
Caputo I, Bertoldi G, Driussi G, Cacciapuoti M, Calò LA. The RAAS Goodfellas in Cardiovascular System. J Clin Med 2023; 12:6873. [PMID: 37959338 PMCID: PMC10649249 DOI: 10.3390/jcm12216873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
In the last two decades, the study of the renin-angiotensin-aldosterone system (RAAS) has revealed a counterregulatory protective axis. This protective arm is characterized by ACE2/Ang 1-7/MasR and Ang 1-9 that largely counteracts the classic arm of the RAAS mediated by ACE/Ang II/AT1R/aldosterone and plays an important role in the prevention of inflammation, oxidative stress, hypertension, and cardiovascular remodeling. A growing body of evidence suggests that enhancement of this counterregulatory arm of RAAS represents an important therapeutic approach to facing cardiovascular comorbidities. In this review, we provide an overview of the beneficial effects of ACE2, Ang 1-7/MasR, and Ang 1-9 in the context of oxidative stress, vascular dysfunction, and organ damage.
Collapse
Affiliation(s)
| | | | | | | | - Lorenzo A. Calò
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine—DIMED, University of Padua, Via Giustiniani, 2, 35128 Padova, Italy; (I.C.); (G.B.); (G.D.); (M.C.)
| |
Collapse
|
8
|
Rroji M, Figurek A, Spasovski G. Proteomic Approaches and Potential Applications in Autosomal Dominant Polycystic Kidney Disease and Fabry Disease. Diagnostics (Basel) 2023; 13:1152. [PMID: 36980460 PMCID: PMC10047122 DOI: 10.3390/diagnostics13061152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Although rare, hereditary diseases, such as autosomal dominant polycystic kidney disease (ADPKD) and Fabry disease (FD) may significantly progress towards severe nephropathy. It is crucial to characterize it accurately, predict the course of the illness and estimate treatment effectiveness. A huge effort has been undertaken to find reliable biomarkers that might be useful for an early prevention of the disease progression and/or any invasive diagnostic procedures. The study of proteomics, or the small peptide composition of a sample, is a field of study under continuous development. Over the past years, several strategies have been created to study and define the proteome of samples from widely varying origins. However, urinary proteomics has become essential for discovering novel biomarkers in kidney disease. Here, the extracellular vesicles in human urine that contain cell-specific marker proteins from every segment of the nephron, offer a source of potentially valuable urinary biomarkers, and may play an essential role in kidney development and kidney disease. This review summarizes the relevant literature investigating the proteomic approaches and potential applications in the regular studies of ADPKD and FD.
Collapse
Affiliation(s)
- Merita Rroji
- Department of Nephrology, Faculty of Medicine, University of Medicine Tirana, 1001 Tirana, Albania
| | - Andreja Figurek
- Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland
| | - Goce Spasovski
- University Clinic for Nephrology, Medical Faculty, University St. Cyril and Methodius, 1000 Skopje, North Macedonia
| |
Collapse
|
9
|
Biochemical Mechanisms beyond Glycosphingolipid Accumulation in Fabry Disease: Might They Provide Additional Therapeutic Treatments? J Clin Med 2023; 12:jcm12052063. [PMID: 36902850 PMCID: PMC10004377 DOI: 10.3390/jcm12052063] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Fabry disease is a rare X-linked disease characterized by deficient expression and activity of alpha-galactosidase A (α-GalA) with consequent lysosomal accumulation of glycosphingolipid in various organs. Currently, enzyme replacement therapy is the cornerstone of the treatment of all Fabry patients, although in the long-term it fails to completely halt the disease's progression. This suggests on one hand that the adverse outcomes cannot be justified only by the lysosomal accumulation of glycosphingolipids and on the other that additional therapies targeted at specific secondary mechanisms might contribute to halt the progression of cardiac, cerebrovascular, and renal disease that occur in Fabry patients. Several studies reported how secondary biochemical processes beyond Gb3 and lyso-Gb3 accumulation-such as oxidative stress, compromised energy metabolism, altered membrane lipid, disturbed cellular trafficking, and impaired autophagy-might exacerbate Fabry disease adverse outcomes. This review aims to summarize the current knowledge of these pathogenetic intracellular mechanisms in Fabry disease, which might suggest novel additional strategies for its treatment.
Collapse
|