1
|
Groen SR, Keszthelyi D, Szallasi A, van Veghel JA, Alleleyn AME, Csekő K, Helyes Z, Samarska I, Grabsch HI, Masclee AAM, Weerts ZZRM. Gastric Carcinogenesis and Potential Role of the Transient Receptor Potential Vanilloid 1 (TRPV1) Receptor: An Observational Histopathological Study. Int J Mol Sci 2024; 25:8294. [PMID: 39125864 PMCID: PMC11312730 DOI: 10.3390/ijms25158294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
The potential role of the transient receptor potential Vanilloid 1 (TRPV1) non-selective cation channel in gastric carcinogenesis remains unclear. The main objective of this study was to evaluate TRPV1 expression in gastric cancer (GC) and precursor lesions compared with controls. Patient inclusion was based on a retrospective review of pathology records. Patients were subdivided into five groups: Helicobacter pylori (H. pylori)-associated gastritis with gastric intestinal metaplasia (GIM) (n = 12), chronic atrophic gastritis (CAG) with GIM (n = 13), H. pylori-associated gastritis without GIM (n = 19), GC (n = 6) and controls (n = 5). TRPV1 expression was determined with immunohistochemistry and was significantly higher in patients with H. pylori-associated gastritis compared with controls (p = 0.002). TRPV1 expression was even higher in the presence of GIM compared with patients without GIM and controls (p < 0.001). There was a complete loss of TRPV1 expression in patients with GC. TRPV1 expression seems to contribute to gastric-mucosal inflammation and precursors of GC, which significantly increases in cancer precursor lesions but is completely lost in GC. These findings suggest TRPV1 expression to be a potential marker for precancerous conditions and a target for individualized treatment. Longitudinal studies are necessary to further address the role of TRPV1 in gastric carcinogenesis.
Collapse
Affiliation(s)
- Sylvester R. Groen
- Department of Gastroenterology and Hepatology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, 6629 HX Maastricht, The Netherlands; (S.R.G.); (J.A.v.V.); (A.M.E.A.); (Z.Z.R.M.W.)
| | - Daniel Keszthelyi
- Department of Gastroenterology and Hepatology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, 6629 HX Maastricht, The Netherlands; (S.R.G.); (J.A.v.V.); (A.M.E.A.); (Z.Z.R.M.W.)
| | - Arpad Szallasi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1083 Budapest, Hungary;
| | - Jara A. van Veghel
- Department of Gastroenterology and Hepatology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, 6629 HX Maastricht, The Netherlands; (S.R.G.); (J.A.v.V.); (A.M.E.A.); (Z.Z.R.M.W.)
| | - Annick M. E. Alleleyn
- Department of Gastroenterology and Hepatology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, 6629 HX Maastricht, The Netherlands; (S.R.G.); (J.A.v.V.); (A.M.E.A.); (Z.Z.R.M.W.)
| | - Kata Csekő
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary; (K.C.); (Z.H.)
- HUN-REN Chronic Pain Research Group, University of Pécs, 7624 Pécs, Hungary
- National Laboratory for Drug Research and Development, 1117 Budapest, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary; (K.C.); (Z.H.)
- HUN-REN Chronic Pain Research Group, University of Pécs, 7624 Pécs, Hungary
- National Laboratory for Drug Research and Development, 1117 Budapest, Hungary
| | - Iryna Samarska
- Department of Pathology, Maastricht University Medical Center+, 6629 HX Maastricht, The Netherlands; (I.S.); (H.I.G.)
| | - Heike I. Grabsch
- Department of Pathology, Maastricht University Medical Center+, 6629 HX Maastricht, The Netherlands; (I.S.); (H.I.G.)
- Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James’s University, University of Leeds, Leeds LS2 9JT, UK
| | - Ad A. M. Masclee
- Department of Gastroenterology and Hepatology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, 6629 HX Maastricht, The Netherlands; (S.R.G.); (J.A.v.V.); (A.M.E.A.); (Z.Z.R.M.W.)
| | - Zsa Zsa R. M. Weerts
- Department of Gastroenterology and Hepatology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, 6629 HX Maastricht, The Netherlands; (S.R.G.); (J.A.v.V.); (A.M.E.A.); (Z.Z.R.M.W.)
| |
Collapse
|
2
|
Kostelecka K, Bryliński Ł, Komar O, Michalczyk J, Miłosz A, Biłogras J, Woliński F, Forma A, Baj J. An Overview of the Spices Used for the Prevention and Potential Treatment of Gastric Cancer. Cancers (Basel) 2024; 16:1611. [PMID: 38672692 PMCID: PMC11049028 DOI: 10.3390/cancers16081611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Gastric cancer (GC) ranks third in terms of cancer-related deaths and is the fifth most commonly diagnosed type of cancer. Its risk factors include Helicobacter pylori infection, Epstein-Barr virus infection, the consumption of broiled and charbroiled animal meats, salt-preserved and smoke-enhanced foods, alcohol drinking, tobacco smoking, exposure to ionizing radiation, and positive family history. The limited effectiveness of conventional therapies and the widespread risk factors of GC encourage the search for new methods of treatment and prevention. In the quest for cheap and commonly available medications, numerous studies focus on herbal medicine, traditional brews, and spices. In this review, we outline the potential use of spices, including turmeric, ginger, garlic, black cumin, chili pepper, saffron, black pepper, rosemary, galangal, coriander, wasabi, cinnamon, oregano, cardamom, fenugreek, caraway, clove, dill, thyme, Piper sarmentosum, basil, as well as the compounds they contain, in the prevention and treatment of GC. We present the potential molecular mechanisms responsible for the effectivity of a given seasoning substance and their impact on GC cells. We discuss their potential effects on proliferation, apoptosis, and migration. For most of the spices discussed, we also outline the unavailability and side effects of their use.
Collapse
Affiliation(s)
- Katarzyna Kostelecka
- Department of Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland; (K.K.); (Ł.B.); (O.K.); (J.M.); (A.M.); (J.B.); (J.B.)
| | - Łukasz Bryliński
- Department of Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland; (K.K.); (Ł.B.); (O.K.); (J.M.); (A.M.); (J.B.); (J.B.)
| | - Olga Komar
- Department of Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland; (K.K.); (Ł.B.); (O.K.); (J.M.); (A.M.); (J.B.); (J.B.)
| | - Justyna Michalczyk
- Department of Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland; (K.K.); (Ł.B.); (O.K.); (J.M.); (A.M.); (J.B.); (J.B.)
| | - Agata Miłosz
- Department of Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland; (K.K.); (Ł.B.); (O.K.); (J.M.); (A.M.); (J.B.); (J.B.)
| | - Jan Biłogras
- Department of Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland; (K.K.); (Ł.B.); (O.K.); (J.M.); (A.M.); (J.B.); (J.B.)
| | - Filip Woliński
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland;
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland;
| | - Jacek Baj
- Department of Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland; (K.K.); (Ł.B.); (O.K.); (J.M.); (A.M.); (J.B.); (J.B.)
| |
Collapse
|
3
|
Hudáková T, Šemeláková M, Očenáš P, Kožurková M, Krochtová K, Sovová S, Tóthová Z, Guľášová Z, Popelka P, Solár P. Chili pepper extracts, capsaicin, and dihydrocapsaicin as potential anticancer agents targeting topoisomerases. BMC Complement Med Ther 2024; 24:96. [PMID: 38383414 PMCID: PMC10880293 DOI: 10.1186/s12906-024-04394-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 02/07/2024] [Indexed: 02/23/2024] Open
Abstract
DNA topoisomerases regulate conformational changes in DNA topology during normal cell growth, such as replication, transcription, recombination, and repair, and may be targeted for anticancer drugs. A DNA topology assay was used to investigate DNA-damaging/protective activities of extracts from Habanero Red (HR), Habanero Maya Red (HMR), Trinidad Moruga Scorpion (TMS), Jalapeno (J), Serrano pepper (SP), Habanero Red Savina (HRS), Bhut Jolokia (BJ), and Jamaica Rosso (JR) peppers, demonstrating their inhibitory effect on the relaxation of pBR by Topo I. DNA topoisomerase II (Topo II) is proven therapeutic target of anticancer drugs. Complete inhibition of Topo II was observed for samples TMS, HR, and HMR. Extracts J and SP had the lowest capsaicin and dihydrocapsaicin content compared to other peppers. HR, HMR, TMS, J, S, HRS, BJ, JR extracts showed the anticancer effect, examined by MTS and xCell assay on the in vitro culture of human colon carcinoma cell line HCT116.
Collapse
Affiliation(s)
- Terézia Hudáková
- Department of Medical Biology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11, Košice, Slovakia
| | - Martina Šemeláková
- Department of Medical Biology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11, Košice, Slovakia
| | - Peter Očenáš
- Department of Chemistry, Biochemistry and Biophysics, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81, Košice, Slovakia
| | - Mária Kožurková
- Department of Biochemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Moyzesova 11, 040 01, Košice, Slovakia
| | - Kristína Krochtová
- Department of Biochemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Moyzesova 11, 040 01, Košice, Slovakia
| | - Simona Sovová
- Department of Biochemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Moyzesova 11, 040 01, Košice, Slovakia
| | - Zuzana Tóthová
- Department of Medical Biology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11, Košice, Slovakia
| | - Zuzana Guľášová
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11, Košice, Slovakia
| | - Peter Popelka
- Department of Food Hygiene, Technology and Safety, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81, Košice, Slovakia
| | - Peter Solár
- Department of Medical Biology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11, Košice, Slovakia.
| |
Collapse
|