1
|
Dang Y, Sun J, Wu Z, Mao B, Hang Q, Huang J, Zhao X, Xia J, Chen C, Yao W, Lu D, Liu Q. Prenatal exposure to barium and arsenic and the odds of congenital heart defects in offspring: a nested case-control study within a birth cohort in Lanzhou, China. Front Public Health 2025; 13:1597178. [PMID: 40376064 PMCID: PMC12078137 DOI: 10.3389/fpubh.2025.1597178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Accepted: 04/14/2025] [Indexed: 05/18/2025] Open
Abstract
Background Previous studies have identified that exposure to heavy metals increases the prevalence of congenital heart defects (CHDs); however, limited information exists regarding the association between combined exposure to barium (Ba) and arsenic (As), and CHDs. This study aims to investigate the association between prenatal exposure to Ba and As (both independently and in combination) and the risk of CHDs in offspring. Methods In a birth cohort study conducted in Lanzhou, China, a total of 97 mother-newborn pairs were designated as the case group, with an additional 194 pairs constituting the control group. The concentrations of Ba and As in maternal blood were quantified utilizing an inductively coupled plasma mass spectrometer. A multivariate logistic regression model was employed to examine the association between Ba and As exposure levels and the risk of neonatal CHDs and their subtypes. Interaction effects were further evaluated through the application of both additive and multiplicative models. Results The concentration of As in the blood of pregnant women is positively correlated with Ba levels. Higher concentrations of maternal blood Ba level was associated with greater odds of CHDs (p = 0.008), including the isolated CHDs (p = 0.013), the multiple CHDs (p = 0.032), PDA (p = 0.014), and ASDs (p = 0.031); Similarly, higher concentrations of maternal blood As level was associated with greater odds of CHDs (p = 0.013), including the isolated CHDs (p = 0.016), the multiple CHDs (p = 0.003), PDA (p = 0.005), ASDs (p = 0.017), and AVSDs (p = 0.034). Elevated levels of barium and arsenic in maternal blood were significantly associated with increased odds of CHDs and their subtypes in offspring (All p < 0.05). Furthermore, a significant multiplicative interaction between Ba and As levels in maternal blood was identified in relation to total CHDs (p = 0.04). Conclusion Exposure to Ba or As individually, as well as combined exposure to both, is significantly associated with an increased risk of CHDs in offspring.
Collapse
Affiliation(s)
- Yun Dang
- Gansu Provincial Maternity and Child-Care Hospital/Gansu Provincial Central Hospital, Lanzhou, China
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jianhao Sun
- Gansu Provincial Maternity and Child-Care Hospital/Gansu Provincial Central Hospital, Lanzhou, China
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Zhenzhen Wu
- Gansu Provincial Maternity and Child-Care Hospital/Gansu Provincial Central Hospital, Lanzhou, China
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Baohong Mao
- Gansu Provincial Maternity and Child-Care Hospital/Gansu Provincial Central Hospital, Lanzhou, China
| | - Qinglei Hang
- Department of Clinical Medicine, Medical College, Key Laboratory of Jiangsu Province University for Nucleic Acid & Cell Fate Manipulation, Yangzhou University, Yangzhou, China
| | - Jie Huang
- Gansu Provincial Maternity and Child-Care Hospital/Gansu Provincial Central Hospital, Lanzhou, China
| | - Xiaoli Zhao
- Gansu Provincial Maternity and Child-Care Hospital/Gansu Provincial Central Hospital, Lanzhou, China
| | - Ji Xia
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Cheng Chen
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | | | - Dan Lu
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Qing Liu
- Gansu Provincial Maternity and Child-Care Hospital/Gansu Provincial Central Hospital, Lanzhou, China
| |
Collapse
|
2
|
Zhang Y, Zhang Z, Li H, Xiao Y, Ying H. Recent advancements in the application of multi-elemental profiling and ionomics in cardiovascular diseases. J Trace Elem Med Biol 2025; 88:127616. [PMID: 39933207 DOI: 10.1016/j.jtemb.2025.127616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/13/2025]
Abstract
BACKGROUND Trace elements and minerals are crucial for human growth and health, whose imbalance is associated with a variety of diseases. Recently, multi-elemental profiling and ionomics have been rapidly developed and widely used to study the distribution, variation, and interactions of various elements in diverse physiological and pathological conditions. By utilizing high-throughput elemental analytical techniques and bioinformatics approaches, researchers can uncover the relationship between the metabolism and balance of different elements and numerous human diseases. METHODS The presented work reviews recent advances in multi-elemental and ionomic profiling of human biological samples for several major types of cardiovascular diseases. RESULTS Research indicates distinct and dynamic patterns of ion contents in these diseases. Accumulation of copper and environmental toxic metals as well as deficiencies in zinc and selenium appear to be the most significant risk factors for the majority of cardiovascular diseases, suggesting that an imbalance in these elements may play a role in the development of these illnesses. Furthermore, each type of cardiovascular disease exhibits a relatively unique distribution of ions in biofluid and hair samples from patients, potentially serving as indicators for the specific disease. CONCLUSION Multi-elemental profiling and ionomics not only enhance our understanding of the association between elemental dyshomeostasis and the development of cardiovascular diseases but also facilitate the discovery of novel diagnostic and prognostic markers for these conditions.
Collapse
Affiliation(s)
- Yan Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong Province 518055, PR China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong Province 518055, PR China.
| | - Zaicheng Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong Province 518055, PR China
| | - Hengtao Li
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong Province 518055, PR China
| | - Yao Xiao
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong Province 518055, PR China
| | - Huimin Ying
- Department of Endocrinology, Hangzhou Xixi Hospital, Hangzhou Sixth People's Hospital, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province 310023, PR China.
| |
Collapse
|
3
|
Coelho ARF, Simões M, Reboredo FH, Almeida J, Cawina J, Lidon F. Impact of Deactivated Mine Waste Substrates on the Growth and Cu, As and Pb Accumulation in Tubers, Roots, Stems and Leaves of Three Solanum tuberosum L. Varieties. PLANTS (BASEL, SWITZERLAND) 2025; 14:230. [PMID: 39861583 PMCID: PMC11769473 DOI: 10.3390/plants14020230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/20/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
Potato (Solanum tuberosum L.) is the world's third most popular vegetable in terms of consumption and the fourth most produced. Potatoes can be easily cultivated in different climates and locations around the globe and often in soils contaminated by heavy metals due to industrial activities. This study assessed heavy metal accumulation in different organs of three S. tuberosum L. varieties (Agria, Désirée, and Red Lady) grown in different substrate formulations containing slag and waste from the Caveira polymetallic sulfite mine in Portugal. Results reveal that Cu, Pb, and As accumulation in the different organs of the plant depends on variety and substrate formulation, with tubers exceeding reference values from the literature. Tubers accumulated less Cu (varying between 17.3 and 32 mg/kg), Pb (varying between 5 and 27.6 mg/kg) and As (varying between 4 and 14.8 mg/kg) compared to other plant organs, and the Désirée variety exhibited high Pb (with a maximum of 27.6 mg/kg) accumulation in tubers compared to the remaining varieties. Although the phenological development of plants was not impacted, substrate formulation played a critical role in the plant's metal uptake. The Agria variety presented a lower contamination risk in tubers, but potato cultivation in contaminated soils can present a risk to human health.
Collapse
Affiliation(s)
- Ana R. F. Coelho
- Earth Sciences Department, NOVA School of Sciences and Technology, Campus de Caparica, 2829-516 Caparica, Portugal; (M.S.); (J.A.); (J.C.); (F.L.)
- GeoBioTec Research Center, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Manuela Simões
- Earth Sciences Department, NOVA School of Sciences and Technology, Campus de Caparica, 2829-516 Caparica, Portugal; (M.S.); (J.A.); (J.C.); (F.L.)
- GeoBioTec Research Center, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Fernando H. Reboredo
- Earth Sciences Department, NOVA School of Sciences and Technology, Campus de Caparica, 2829-516 Caparica, Portugal; (M.S.); (J.A.); (J.C.); (F.L.)
- GeoBioTec Research Center, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - José Almeida
- Earth Sciences Department, NOVA School of Sciences and Technology, Campus de Caparica, 2829-516 Caparica, Portugal; (M.S.); (J.A.); (J.C.); (F.L.)
- GeoBioTec Research Center, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Joaquim Cawina
- Earth Sciences Department, NOVA School of Sciences and Technology, Campus de Caparica, 2829-516 Caparica, Portugal; (M.S.); (J.A.); (J.C.); (F.L.)
| | - Fernando Lidon
- Earth Sciences Department, NOVA School of Sciences and Technology, Campus de Caparica, 2829-516 Caparica, Portugal; (M.S.); (J.A.); (J.C.); (F.L.)
- GeoBioTec Research Center, NOVA University Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
4
|
Li Y, Liu L, Zhang J, Lan Y, Liang Y, Wang S, Chen M, He Y, Zhang M, Wang X, Wang Y. Trace elements exposure affects the outcomes of in vitro fertilization embryo transfer, a cohort study in Northern China. J Assist Reprod Genet 2024; 41:3405-3414. [PMID: 39477908 PMCID: PMC11706816 DOI: 10.1007/s10815-024-03300-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/17/2024] [Indexed: 01/11/2025] Open
Abstract
PURPOSE With urbanization and industrialization process accelerated, humans are exposed more and more trace elements. This study aimed to explore the potential associations of trace elements with the outcomes of in vitro fertilization embryo transfer (IVF-ET). METHODS Total 181 women who underwent IVF-ET were enrolled, among which 89 women underwent fresh ET after IVF. Trace elements were measured in the serum and follicular fluid (FF) samples by inductively coupled plasma-mass spectroscopy. The associations of the levels of different trace elements with IVF-ET outcomes, including normal fertilization, high-quality embryos, and clinical pregnancy (fresh ET) were analyzed. RESULTS Twenty-five out of twenty-eight trace elements showed higher concentrations in the serum than those in the FF. Normal fertilization was positively associated with Cu and Mn in the FF. High-quality embryos was positively associated with Cu in the serum and FF, and Zn in the serum. Clinical pregnancy was positively associated with Ge in the serum, and inversely associated with Al, Ba, and Pb in the serum. Additionally, poor outcomes of IVF-ET should be noticed in women with FF level of Cu < 955.38 ng/mL, FF level of Mn < 3.42 ng/mL, serum level of Ge < 6.11 ng/mL, serum level of Al > 28.44 ng/mL, and serum level of Pb > 0.90 ng/mL. CONCLUSIONS IVF-ET outcomes were positively associated with Cu, Mn, Zn, and Ge, and inversely associated with Al and Pb. Properly controlling the exposure of relevant trace elements is necessary for patients with the need of IVF-ET.
Collapse
Affiliation(s)
- Ying Li
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, No. 251 Yaojiayuan Road, Chaoyang District, Beijing, 100026, China
| | - Lin Liu
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Dian Diagnostics Group Co., Ltd., Hangzhou, 310030, China
| | - Jun Zhang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, No. 251 Yaojiayuan Road, Chaoyang District, Beijing, 100026, China
| | - Yonglian Lan
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, No. 251 Yaojiayuan Road, Chaoyang District, Beijing, 100026, China
| | - Yu Liang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, No. 251 Yaojiayuan Road, Chaoyang District, Beijing, 100026, China
| | - Shuyu Wang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, No. 251 Yaojiayuan Road, Chaoyang District, Beijing, 100026, China
| | - Miaomiao Chen
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Dian Diagnostics Group Co., Ltd., Hangzhou, 310030, China
| | - Yanbin He
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Dian Diagnostics Group Co., Ltd., Hangzhou, 310030, China
| | - Meng Zhang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, No. 251 Yaojiayuan Road, Chaoyang District, Beijing, 100026, China
| | - Xin Wang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, No. 251 Yaojiayuan Road, Chaoyang District, Beijing, 100026, China
| | - Yipeng Wang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, No. 251 Yaojiayuan Road, Chaoyang District, Beijing, 100026, China.
| |
Collapse
|
5
|
Asare P, Sarpong K, Gyamfi O, Ankapong E, Agyei V, Amissah-Reynolds PK, Dartey E. Contamination and health risk assessment of potentially toxic elements in rice (Oryza sativa) and soil from Ashanti Region. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1139. [PMID: 39480605 DOI: 10.1007/s10661-024-13340-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024]
Abstract
Anthropogenic activities release potentially toxic elements into the environment, which contaminate the food chain. The main objective of this research was to analyze the concentrations of As, Cd, Cr, Hg, and Pb in rice grains and soils, establish their correlation and transfer factors between soil and rice grains as well as evaluate their human health risk from consumption of rice cultivated in the Asante Akim area. The levels of As, Cd, Cr, Hg, and Pb in soil and rice samples were assayed using an Agilent 7700 Series inductively coupled plasma-mass spectrophotometer. The mean heavy metal content in soil was 7.5, 0.52, 0.47, 1.30, and 8.69 mg/kg for As, Cd, Cr, Hg, and Pb, respectively. Mean levels of the potentially toxic elements in rice were 0.082, 0.27, 0.48, 0.028, and 0.14 mg/kg for As, Cd, Cr, Hg, and Pb, respectively. Soil pollution indices showed that the soils were unpolluted with the potentially toxic elements studied. The concentrations of the potentially toxic elements in rice were below the maximum allowable concentration (MAC) recommended by the Codex Alimentary Commission except Cd which was marginally higher than the MAC. Dietary exposure to the elements to consumers was assessed by comparing the estimated daily intake (EDI) to the provisional tolerable daily intake (PTDI). The estimated daily intake values for As, Cd, Cr, Hg, and Pb were 1.45 × 10-4, 4.8 × 10-4, 8.5 × 10-4, 4.95 × 10-5, and 2.4 × 10-4, respectively. The HQ for all the potentially toxic elements was less than the permissible value of 1, suggesting that the consumption of rice from the study area constitutes no potential non-carcinogenic health risk to the population. This study is unique because the risk is evaluated from rice that is directly consumed, and this gives a clearer picture of the risk to humans. Regular monitoring studies should be conducted to ascertain the levels of heavy metals in rice cultivated in the area since heavy metals can accumulate and the concentrations could increase to toxic levels with time.
Collapse
Affiliation(s)
- Portia Asare
- Department of Chemistry Education, Akenten Appiah-Menka University of Skills Training and Entrepreneurial Development, Asante Mampong, Ghana
| | - Kofi Sarpong
- Department of Chemistry Education, Akenten Appiah-Menka University of Skills Training and Entrepreneurial Development, Asante Mampong, Ghana.
| | - Opoku Gyamfi
- Department of Chemistry Education, Akenten Appiah-Menka University of Skills Training and Entrepreneurial Development, Asante Mampong, Ghana.
| | - Edward Ankapong
- Department of Chemistry Education, Akenten Appiah-Menka University of Skills Training and Entrepreneurial Development, Asante Mampong, Ghana
| | - Victor Agyei
- Department of Biological Sciences Education, Akenten Appiah-Menka University of Skills Training and Entrepreneurial Development, Asante Mampong, Ghana
| | - Papa Kofi Amissah-Reynolds
- Department of Biological Sciences Education, Akenten Appiah-Menka University of Skills Training and Entrepreneurial Development, Asante Mampong, Ghana
| | - Emmanuel Dartey
- Department of Chemistry Education, Akenten Appiah-Menka University of Skills Training and Entrepreneurial Development, Asante Mampong, Ghana
| |
Collapse
|
6
|
Li M, Xin Y, Sun X, Zhang X, Xu Y, Cheng X, Gao S, Huo L. Willow catkin template synthesis of NiS@NSC hollow tubes for highly sensitive dual-function electrochemical detection of acetaminophen and Cu 2. Mikrochim Acta 2024; 191:694. [PMID: 39441430 DOI: 10.1007/s00604-024-06731-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024]
Abstract
Public health and environmental well-being have become increasingly threatened by the contamination of pharmaceuticals and heavy metal ions. This study focuses on addressing this critical issue by developing a novel electrochemical sensor for the dual-functional detection of acetaminophen (AP) and Cu2+. Utilizing willow catkins as a biomass template, a hollow tubular NiS@NSC composite was prepared by simple nickel salt impregnation combined with calcination and sulfurization. A highly sensitive dual-functional electrochemical sensor was thus constructed that can detect both acetaminophen (AP) and Cu2+. By examining its electrochemical properties, the sensor achieves an impressive detection limit of 1.33 pM for AP, with a linear range of 4.00 pM ~ 0.15 mM. The sensor can also detect Cu2+, with a detection limit of 1.04 µM, and a linear range of 3.13 µM ~ 0.66 mM. The sensor also exhibits strong resistance to interference, and good repeatability and stability. In addition, the sensor has demonstrated good performance in actual sample analysis, including the detection of AP in serum and Cu2+ in wastewater. This excellent electrochemical sensing performance is mainly attributed to the synergistic effect of its unique tubular structure and highly conductive N, S co-doped carbon. This results in the sensor exhibiting minimal charge transfer resistance, an extensive electrochemically active surface area, and a high density of active sites.
Collapse
Affiliation(s)
- Menghao Li
- Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Materials Science, Ministry of Education, Heilongjiang University, Harbin, 150080, China
| | - Yuying Xin
- Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Materials Science, Ministry of Education, Heilongjiang University, Harbin, 150080, China
| | - Xiaohan Sun
- Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Materials Science, Ministry of Education, Heilongjiang University, Harbin, 150080, China
| | - Xianfa Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Materials Science, Ministry of Education, Heilongjiang University, Harbin, 150080, China.
| | - Yingming Xu
- Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Materials Science, Ministry of Education, Heilongjiang University, Harbin, 150080, China
| | - Xiaoli Cheng
- Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Materials Science, Ministry of Education, Heilongjiang University, Harbin, 150080, China
| | - Shan Gao
- Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Materials Science, Ministry of Education, Heilongjiang University, Harbin, 150080, China
| | - Lihua Huo
- Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Materials Science, Ministry of Education, Heilongjiang University, Harbin, 150080, China.
| |
Collapse
|
7
|
Lin H, Luo X, Yu D, He C, Cao W, He L, Liang Z, Zhou J, Fang G. Risk assessment of As, Cd, Cr, and Pb via the consumption of seafood in Haikou. Sci Rep 2024; 14:19549. [PMID: 39174616 PMCID: PMC11341763 DOI: 10.1038/s41598-024-70409-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024] Open
Abstract
In order to mitigate the risk of excessive heavy metal intake, a study was conducted to assess the levels of arsenic (As), cadmium (Cd), chromium (Cr), and lead (Pb) contamination in 23 edible seafood species obtained from markets in Haikou. The findings were analyzed to evaluate the potential health hazards posed to the local population through consumption. The metals were detected via inductively coupled plasma mass spectrometry (ICP-MS) for quantification. The non-carcinogenic and carcinogenic health risks in humans were assessed via target hazard quotient (THQ), combined target hazard quotient (CTHQ), and target cancer risk (TR). The results indicated that the rank order based on the median metal concentration was As > Cd > Cr > Pb. THQ and CTHQ showed that nine seafood species posed a non-carcinogenic risk regarding from As and Cd consumption separately, or the four targeted metals ingestion together. TR assessment indicated that the InAs in all the species presented a carcinogenic risk to coastal residents. The Cd content in bivalves, algae, and several crustacean (Mantis Shrimp, Orchid Crab, Red spot Swimming Crab) and fish species (Japanese Scad, Pacific Saury), and Cr levels in most bivalve species (Razor Clams, White Clams, Fan Shells, Oysters, Blood Clams) presented a carcinogenic risk. The As, Cd, Pb, and Cr levels of seafood in Haikou were assessed species presented a potential health risk. Necessitating stricter risk should be management and detection capability and monitoring will be improved.
Collapse
Affiliation(s)
- Huimin Lin
- Laboratory of Tropical Environment and Health, Department of Nutrition and Food Hygiene, Heinz Mehlhorn Academician Workstation, School of Public Health, Hainan Medical University, Haikou, 571199, Hainan, China
| | - Xinru Luo
- Laboratory of Tropical Environment and Health, Department of Nutrition and Food Hygiene, Heinz Mehlhorn Academician Workstation, School of Public Health, Hainan Medical University, Haikou, 571199, Hainan, China
| | - De'e Yu
- Laboratory of Tropical Environment and Health, Department of Nutrition and Food Hygiene, Heinz Mehlhorn Academician Workstation, School of Public Health, Hainan Medical University, Haikou, 571199, Hainan, China
| | - Changhua He
- Hainan Provincial Center for Disease Control and Prevention, Haikou, 570203, Hainan, China
| | - Wenting Cao
- Laboratory of Tropical Environment and Health, Department of Nutrition and Food Hygiene, Heinz Mehlhorn Academician Workstation, School of Public Health, Hainan Medical University, Haikou, 571199, Hainan, China
| | - Limin He
- Laboratory of Tropical Environment and Health, Department of Nutrition and Food Hygiene, Heinz Mehlhorn Academician Workstation, School of Public Health, Hainan Medical University, Haikou, 571199, Hainan, China
| | - Zhennuan Liang
- Wenchang Health Service Center, Wenchang, 571300, Hainan, China
| | - Jing Zhou
- Laboratory of Tropical Environment and Health, Department of Nutrition and Food Hygiene, Heinz Mehlhorn Academician Workstation, School of Public Health, Hainan Medical University, Haikou, 571199, Hainan, China.
| | - Guihong Fang
- Laboratory of Tropical Environment and Health, Department of Nutrition and Food Hygiene, Heinz Mehlhorn Academician Workstation, School of Public Health, Hainan Medical University, Haikou, 571199, Hainan, China.
| |
Collapse
|
8
|
Jin S, Yoon SZ, Choi YJ, Kang G, Choi SU. Prenatal exposure to air pollutants and the risk of congenital heart disease: a Korean national health insurance database-based study. Sci Rep 2024; 14:16940. [PMID: 39043676 PMCID: PMC11266520 DOI: 10.1038/s41598-024-63150-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/25/2024] [Indexed: 07/25/2024] Open
Abstract
Air pollution and heavy metal exposure are emerging public health concerns. Prenatal exposure to air pollutants and heavy metals has been implicated in the development of congenital heart disease (CHD). However, the relationship between exposure to airborne heavy metals and CHD has not yet been investigated. Therefore, in this large population-based study, we investigated the association between air pollutants, including airborne heavy metals, and the risk of CHD using national health insurance claims data from South Korea. Data regarding 1,129,442 newborns and their mothers were matched with air pollutant levels during the first 8 weeks of gestation. In the five-air pollutant model, we found significant positive correlations between prenatal exposure to sulfur dioxide (SO2; odds ratio [OR] 6.843, 95% confidence interval [CI] 5.746-8.149) and cadmium (Cd; OR 1.513, 95% CI 1.187-1.930) and the risk of ventricular septal defects in newborns. This study highlights the association between prenatal exposure to air pollutants, including airborne heavy metals, and an elevated CHD risk. Further research is essential to validate and expand these findings, with the ultimate goal of enhancing public health outcomes.
Collapse
Affiliation(s)
- Sejong Jin
- Department of Anesthesiology and Pain Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, 15355, Republic of Korea
- Department of Neuroscience, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Seung Zhoo Yoon
- Department of Anesthesiology and Pain Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Yoon Ji Choi
- Department of Anesthesiology and Pain Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, 15355, Republic of Korea.
| | - Giung Kang
- Department of Anesthesiology and Pain Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, 15355, Republic of Korea
| | - Sung Uk Choi
- Department of Anesthesiology and Pain Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| |
Collapse
|
9
|
Teschke R. Copper, Iron, Cadmium, and Arsenic, All Generated in the Universe: Elucidating Their Environmental Impact Risk on Human Health Including Clinical Liver Injury. Int J Mol Sci 2024; 25:6662. [PMID: 38928368 PMCID: PMC11203474 DOI: 10.3390/ijms25126662] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Humans are continuously exposed to various heavy metals including copper, iron, cadmium, and arsenic, which were specifically selected for the current analysis because they are among the most frequently encountered environmental mankind and industrial pollutants potentially causing human health hazards and liver injury. So far, these issues were poorly assessed and remained a matter of debate, also due to inconsistent results. The aim of the actual report is to thoroughly analyze the positive as well as negative effects of these four heavy metals on human health. Copper and iron are correctly viewed as pollutant elements essential for maintaining human health because they are part of important enzymes and metabolic pathways. Healthy individuals are prepared through various genetically based mechanisms to maintain cellular copper and iron homeostasis, thereby circumventing or reducing hazardous liver and organ injury due to excessive amounts of these metals continuously entering the human body. In a few humans with gene aberration, however, liver and organ injury may develop because excessively accumulated copper can lead to Wilson disease and substantial iron deposition to hemochromatosis. At the molecular level, toxicities of some heavy metals are traced back to the Haber Weiss and Fenton reactions involving reactive oxygen species formed in the course of oxidative stress. On the other hand, cellular homeostasis for cadmium and arsenic cannot be provided, causing their life-long excessive deposition in the liver and other organs. Consequently, cadmium and arsenic represent health hazards leading to higher disability-adjusted life years and increased mortality rates due to cancer and non-cancer diseases. For unknown reasons, however, liver injury in humans exposed to cadmium and arsenic is rarely observed. In sum, copper and iron are good for the human health of most individuals except for those with Wilson disease or hemochromatosis at risk of liver injury through radical formation, while cadmium and arsenic lack any beneficial effects but rather are potentially hazardous to human health with a focus on increased disability potential and risk for cancer. Primary efforts should focus on reducing the industrial emission of hazardous heavy metals.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, 63450 Hanau, Germany; ; Tel.: +49-6181/21859; Fax: +49-6181/2964211
- Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/Main, 60590 Hanau, Germany
| |
Collapse
|
10
|
Hu Y, Wang J, Yang Y, Li S, Wu Q, Nepovimova E, Zhang X, Kuca K. Revolutionizing soil heavy metal remediation: Cutting-edge innovations in plant disposal technology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170577. [PMID: 38311074 DOI: 10.1016/j.scitotenv.2024.170577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/08/2024] [Accepted: 01/28/2024] [Indexed: 02/06/2024]
Abstract
Soil contamination with heavy metals has emerged as a global environmental threat, compromising agricultural productivity, ecosystem integrity, and human health. Conventional remediation techniques often fall short due to high costs, operational complexities, and environmental drawbacks. Plant-based disposal technologies, including biochar, phytometallurgy, and phrolysis, have emerged as promising solutions in this regard. Grounded in a novel experimental framework, biochar is studied for its dual role as soil amendment and metal adsorbent, while phytometallurgy is explored for its potential in resource recovery and economic benefits derived from harvested metal-rich plant biomass. Pyrolysis, in turn, is assessed for transforming contaminated biomass into value-added products, thereby minimizing waste. These plant disposal technologies create a circular model of remediation and resource utilization that holds the potential for application in large-scale soil recovery projects, development of environmentally friendly agro-industries, and advancement in sustainable waste management practices. This review mainly discussed cutting-edge plant disposal technologies-biochar application, phytometallurgy, and pyrolysis-as revolutionary approaches to soil heavy metal remediation. The efficacy, cost-effectiveness, and environmental impact of these innovative technologies are especially evaluated in comparison with traditional methods. The success of these applications could signal a paradigm shift in how we approach both environmental remediation and resource recovery, with profound implications for sustainable development and circular economy strategies.
Collapse
Affiliation(s)
- Yucheng Hu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Junbang Wang
- National Ecosystem Science Data Center, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongsheng Yang
- The Key Laboratory of Restoration Ecology in Cold Region of Qinghai Province/Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810001, China
| | - Sha Li
- School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
| | - Qinghua Wu
- College Life Science, Yangtze University, Jingzhou 434025, China; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 500 03, Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 500 03, Czech Republic
| | - Xiujuan Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 500 03, Czech Republic.
| |
Collapse
|
11
|
Nie Z, Xu H, Qiu M, Liu M, Chu C, Bloom MS, Ou Y. Associations of maternal exposure to multiple plasma trace elements with the prevalence of fetal congenital heart defects: A nested case-control study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169409. [PMID: 38114028 DOI: 10.1016/j.scitotenv.2023.169409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Scanty knowledge prevails regarding the combined impact of multiple plasma trace elements and main contributors on the prevalence of congenital heart defects (CHDs) in offspring. Thus, we performed a nested case-control analysis in a neonates cohort to investigate this important public health issue. METHODS We selected 164 pairs of cases and non-malformed controls from live births registered in the parent cohort (n = 11,578) at the same hospital. Plasma levels of 14 trace elements were determined by inductively coupled plasma-mass spectrometry. The odds ratios (ORs) of exposure were compared between cases and controls. Bayesian Kernel Machine Regression (BKMR) and Quantile g-Computation (QgC) models were employed to assess the cumulative effect of exposure to trace elements. RESULTS We found positive associations and linear dose-response relationships between plasma Pb and Sn and CHD. BKMR models indicated that the overall effect of the trace element mixture was associated with CHDs below the 45th percentile or above the 50th percentile, and the combined effect was primarily attributed to Sn and Pb. The QgC model indicated significantly increased odds of CHD with simultaneous exposure to all studied trace elements (OR: 2.19, 95%CI: 1.44-3.33). CONCLUSIONS This study is the first to report an association between elevated levels of mixed trace elements in maternal plasma with an increased prevalence of fetal CHDs, particularly in the case of Pb and Sn. Findings from this study provide further evidence of the important of heavy metal pollution to human health, and can help stakeholders prioritize policies and develop interventions to target the leading contributors to human exposure.
Collapse
Affiliation(s)
- Zhiqiang Nie
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Department of Epidemiology, Global Health Research Center, Guangdong Provincial People's Hospital, Guangdong, Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hongbin Xu
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Min Qiu
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Mingqin Liu
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Chu Chu
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Michael S Bloom
- Department of Global and Community Health, George Mason University, Fairfax, VA, USA.
| | - Yanqiu Ou
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| |
Collapse
|
12
|
Firincă C, Zamfir LG, Constantin M, Răut I, Capră L, Popa D, Jinga ML, Baroi AM, Fierăscu RC, Corneli NO, Postolache C, Doni M, Gurban AM, Jecu L, Șesan TE. Microbial Removal of Heavy Metals from Contaminated Environments Using Metal-Resistant Indigenous Strains. J Xenobiot 2023; 14:51-78. [PMID: 38249101 PMCID: PMC10801475 DOI: 10.3390/jox14010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Contamination of soil with heavy metals has become a matter of global importance due to its impact on agriculture, environmental integrity, and therefore human health and safety. Several microbial strains isolated from soil contaminated by long-term chemical and petrochemical activities were found to manifest various levels of tolerance to Cr, Pb, and Zn, out of which Bacillus marisflavi and Trichoderma longibrachiatum exhibited above-moderate tolerance. The concentrations of target heavy metals before and after bioremediation were determined using electrochemical screen-printed electrodes (SPE) modified with different nanomaterials. The morpho-structural SEM/EDX analyses confirmed the presence of metal ions on the surface of the cell, with metal uptake being mediated by biosorption with hydroxyl, carboxyl, and amino groups as per FTIR observations. T. longibrachiatum was observed to pose a higher bioremediation potential compared to B. marisflavi, removing 87% of Cr and 67% of Zn, respectively. Conversely, B. marisflavi removed 86% of Pb from the solution, compared to 48% by T. longibrachiatum. Therefore, the fungal strain T. longibrachiatum could represent a viable option for Cr and Zn bioremediation strategies, whereas the bacterial strain B. marisflavi may be used in Pb bioremediation applications.
Collapse
Affiliation(s)
- Cristina Firincă
- Biotechnology and Bioanalysis Departments, National Institute of Research and Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independenței, 060021 Bucharest, Romania; (C.F.); (M.D.)
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 91–95 Spl. Independenței, 050095 Bucharest, Romania
| | - Lucian-Gabriel Zamfir
- Biotechnology and Bioanalysis Departments, National Institute of Research and Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independenței, 060021 Bucharest, Romania; (C.F.); (M.D.)
| | - Mariana Constantin
- Biotechnology and Bioanalysis Departments, National Institute of Research and Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independenței, 060021 Bucharest, Romania; (C.F.); (M.D.)
- Department of Pharmacy, Faculty of Pharmacy, University Titu Maiorescu of Bucharest, 040441 Bucharest, Romania
| | - Iuliana Răut
- Biotechnology and Bioanalysis Departments, National Institute of Research and Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independenței, 060021 Bucharest, Romania; (C.F.); (M.D.)
| | - Luiza Capră
- Biotechnology and Bioanalysis Departments, National Institute of Research and Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independenței, 060021 Bucharest, Romania; (C.F.); (M.D.)
| | - Diana Popa
- Biotechnology and Bioanalysis Departments, National Institute of Research and Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independenței, 060021 Bucharest, Romania; (C.F.); (M.D.)
| | - Maria-Lorena Jinga
- Biotechnology and Bioanalysis Departments, National Institute of Research and Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independenței, 060021 Bucharest, Romania; (C.F.); (M.D.)
| | - Anda Maria Baroi
- Biotechnology and Bioanalysis Departments, National Institute of Research and Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independenței, 060021 Bucharest, Romania; (C.F.); (M.D.)
| | - Radu Claudiu Fierăscu
- Biotechnology and Bioanalysis Departments, National Institute of Research and Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independenței, 060021 Bucharest, Romania; (C.F.); (M.D.)
| | - Nicoleta Olguța Corneli
- National Institute of Research and Development for Microbiology and Immunology—Cantacuzino, 103 Spl. Independenței, 050096 Bucharest, Romania
| | - Carmen Postolache
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 91–95 Spl. Independenței, 050095 Bucharest, Romania
| | - Mihaela Doni
- Biotechnology and Bioanalysis Departments, National Institute of Research and Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independenței, 060021 Bucharest, Romania; (C.F.); (M.D.)
| | - Ana-Maria Gurban
- Biotechnology and Bioanalysis Departments, National Institute of Research and Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independenței, 060021 Bucharest, Romania; (C.F.); (M.D.)
| | - Luiza Jecu
- Biotechnology and Bioanalysis Departments, National Institute of Research and Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independenței, 060021 Bucharest, Romania; (C.F.); (M.D.)
| | - Tatiana Eugenia Șesan
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 91–95 Spl. Independenței, 050095 Bucharest, Romania
- Field Crop Section, Academy of Agricultural and Forestry Sciences, Bd Mărăști 61, 011464 Bucharest, Romania
| |
Collapse
|
13
|
Fu J, Wang Q, Wang N, Li S, Zhang H, Zhu Y, Guo H, Wang F, He L, Xia S, Cao B. Serum and urinary essential trace elements in association with major depressive disorders: a case-control study. Front Psychiatry 2023; 14:1297411. [PMID: 38106999 PMCID: PMC10722235 DOI: 10.3389/fpsyt.2023.1297411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/30/2023] [Indexed: 12/19/2023] Open
Abstract
Introduction The etiology and pathophysiology of major depressive disorders (MDDs) remain unclear. Increasing evidence has demonstrated that essential trace elements (ETEs), such as iodine (I), zinc (Zn), copper (Cu), selenium (Se), cobalt (Co), and molybdenum (Mo), play vital roles in MDDs. Methods In total, 72 patients with MDD and 75 healthy controls (HCs) in the Zhumadian Second People's Hospital, Henan Province, China were recruited in our study. The levels of different ETEs were examined in both serum and urine, using an inductively coupled plasma mass spectrometer (ICP-MS), for both the MDD patients and HCs. Results The serum levels of I, Se, Cu, and Mo were significantly lower in the MDD patients compared to the HCs (p < 0.05), and the urinary levels of I and Zn were significantly higher in the MDD patients compared to the HCs (p < 0.05). The serum concentration of I (Q3: OR = 0.210, Q4: OR = 0.272) was negatively associated with MDD after adjusting for potential confounders, including age, gender, and BMI, and the urinary concentration of I (Q4: OR = 2.952) was positively associated. Conclusions The higher levels of I, Se, Cu, and Mo in serum might be protective against the development of MDD, and the excess I and Zn in urine may be associated with MDD pathogenesis. Future research needs to gain a deeper understanding of the metabolic pathways of ETEs, especially I, Se, Zn, Cu, and Mo, in MDD, and their role in the pathogenesis of depression.
Collapse
Affiliation(s)
- Jiyong Fu
- Zhumadian Second People's Hospital, Zhumadian, Henan, China
| | - Qinqin Wang
- Zhumadian Second People's Hospital, Zhumadian, Henan, China
| | - Na Wang
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Ministry of Education, Southwest University, Chongqing, China
| | - Shilong Li
- Zhumadian Second People's Hospital, Zhumadian, Henan, China
| | - Hongwei Zhang
- Zhumadian Second People's Hospital, Zhumadian, Henan, China
| | - Yuxing Zhu
- Zhumadian Second People's Hospital, Zhumadian, Henan, China
| | - Hua Guo
- Zhumadian Second People's Hospital, Zhumadian, Henan, China
| | - Fukun Wang
- Zhumadian Second People's Hospital, Zhumadian, Henan, China
| | - Lei He
- Zhumadian Second People's Hospital, Zhumadian, Henan, China
| | - Shuang Xia
- Zhumadian Second People's Hospital, Zhumadian, Henan, China
| | - Bing Cao
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Ministry of Education, Southwest University, Chongqing, China
| |
Collapse
|
14
|
Dabravolski SA, Sukhorukov VN, Melnichenko AA, Khotina VA, Orekhov AN. The Role of Selenium in Atherosclerosis Development, Progression, Prevention and Treatment. Biomedicines 2023; 11:2010. [PMID: 37509649 PMCID: PMC10377679 DOI: 10.3390/biomedicines11072010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/11/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
Selenium is an essential trace element that is essential for various metabolic processes, protection from oxidative stress and proper functioning of the cardiovascular system. Se deficiency has long been associated with multiple cardiovascular diseases, including endemic Keshan's disease, common heart failure, coronary heart disease, myocardial infarction and atherosclerosis. Through selenoenzymes and selenoproteins, Se is involved in numerous crucial processes, such as redox homeostasis regulation, oxidative stress, calcium flux and thyroid hormone metabolism; an unbalanced Se supply may disrupt these processes. In this review, we focus on the importance of Se in cardiovascular health and provide updated information on the role of Se in specific processes involved in the development and pathogenesis of atherosclerosis (oxidative stress, inflammation, endothelial dysfunction, vascular calcification and vascular cell apoptosis). We also discuss recent randomised trials investigating Se supplementation as a potential therapeutic and preventive agent for atherosclerosis treatment.
Collapse
Affiliation(s)
- Siarhei A Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Snunit 51, P.O. Box 78, Karmiel 2161002, Israel
| | - Vasily N Sukhorukov
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, Moscow 125315, Russia
| | - Alexandra A Melnichenko
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, Moscow 125315, Russia
| | - Victoria A Khotina
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, Moscow 125315, Russia
| | - Alexander N Orekhov
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, Moscow 125315, Russia
| |
Collapse
|