1
|
D'Amora U, Scialla S, Fasolino I, Ronca A, Soriente A, De Cesare N, Manini P, Phua JW, Pezzella A, Raucci MG, Ambrosio L. Eumelanin pigment release from photo-crosslinkable methacrylated gelatin-based cryogels: Exploring the physicochemical properties and antioxidant efficacy in wound healing. BIOMATERIALS ADVANCES 2025; 170:214214. [PMID: 39904018 DOI: 10.1016/j.bioadv.2025.214214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/18/2024] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
Managing wounds in certain phases of the healing process still represents a big challenge. The oxidative stress, caused by reactive oxygen species (ROS), is one of the hallmarks controlling the wound healing-related process. Multifunctional biomaterials with excellent biocompatibility, tuneable properties, and easy functionalization, may allow realizing suitable three-dimensional (3D) and extracellular matrix (ECM)-mimicking structures, to efficiently control ROS levels. This might be a promising strategy for healing severe wounds. Herein, photo-crosslinkable methacrylated gelatin (GelMA)-based spongy-like cryogels (from 5 to 20 % w/v) incorporating Eumelanin from Black Soldier Flies (BSF-Eumel, 0.5 and 1.0 mg/mL), a pigment endowed with marked antioxidant properties, were developed. GelMA-based cryogels were fabricated by an easily handled and scalable cryogelation process followed by ultraviolet (UV) photo-crosslinking. BSF-Eumel sub-micrometer particles were embedded into GelMA-based cryogels by passive permeation of the solution within the polymeric network. BSF-Eumel addition resulted in more hydrophilic and porous structures, exhibiting a good stability and a prolonged release within 14 days. Furthermore, GelMA/BSF-Eumel cryogels exhibited good antioxidant activity, confirmed by a powerful quenching effect on 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical (59 % at 1.0 mg/mL of BSF-Eumel). Moreover, GelMA/BSF-Eumel cryogels at the highest GelMA concentrations (10 and 20 % w/v) accelerated human dermal fibroblasts-adult (HDF-a) migration, promoting wound closure within 24 h. They also proved to mitigate oxidative stress, modulating the production of ROS levels and preventing superoxide dismutase (SOD) activity inhibition in HDFs stimulated by lipopolysaccharide (LPS), owing to the release of BSF-Eumel. Such remarkable outcomes make GelMA/BSF-Eumel cryogels a promising antioxidant platform for wound healing.
Collapse
Affiliation(s)
- Ugo D'Amora
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80125 Naples, Italy.
| | - Stefania Scialla
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80125 Naples, Italy
| | - Ines Fasolino
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80125 Naples, Italy
| | - Alfredo Ronca
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80125 Naples, Italy.
| | - Alessandra Soriente
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80125 Naples, Italy
| | - Noemi De Cesare
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80125 Naples, Italy
| | - Paola Manini
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; Bioelectronics Task Force, University of Naples Federico II, 80126 Naples, Italy
| | - Jun Wei Phua
- Insectta Pte. Ltd., 8 Cleantech Loop, Singapore 637145, Singapore
| | - Alessandro Pezzella
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80125 Naples, Italy; Bioelectronics Task Force, University of Naples Federico II, 80126 Naples, Italy; Department of Physics "E. Pancini", University of Naples Federico II, 80126 Naples, Italy
| | - Maria Grazia Raucci
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80125 Naples, Italy; Bioelectronics Task Force, University of Naples Federico II, 80126 Naples, Italy
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80125 Naples, Italy
| |
Collapse
|
2
|
Giani M, Valentino C, Vigani B, Ruggeri M, Guarnieri A, Salvia R, Scieuzo C, Falabella P, Sandri G, Rossi S. Hermetia illucens-derived chitosan as a promising sustainable biomaterial for wound healing applications: development of sponge-like scaffolds. Int J Biol Macromol 2025; 304:140903. [PMID: 39938837 DOI: 10.1016/j.ijbiomac.2025.140903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/29/2025] [Accepted: 02/09/2025] [Indexed: 02/14/2025]
Abstract
Chitosan (CS), a biopolymer known for its wound-healing properties, has garnered significant interest in biomedical research. This study explores the potential of two Hermetia illucens-derived CS types-unbleached CS and bleached CS-as novel biomaterials for wound-healing applications, in comparison with commercial CS derived from the shells of Pandalus borealis (cold-water shrimp). CS was extracted from pupal exuviae, a byproduct of insect farming, which supports a circular economy by converting waste into valuable molecules for biomedical applications. Unbleached CS exhibited viscosity and viscoelastic properties comparable to those of commercial CS. The critical entanglement concentration (CEC) of unbleached CS (1.15 ± 0.05 % w/v) was similar to that of commercial CS (1.18 ± 0.09 % w/v). Moreover, both Hermetia illucens-derived CS types (unbleached and bleached) demonstrated a greater capability to enhance fibroblast viability (135 ± 7 % and 123 ± 6 %, respectively) compared to commercial CS (115 ± 7 %). Further investigation revealed that unbleached CS exhibited increased antioxidant activity, reversing >30 % of the loss of viability caused by H2O2 treatment, and demonstrated anti-inflammatory properties, decreasing IL-6 levels by 66 ± 2 %. Sponge-like scaffolds based on unbleached CS and commercial CS were prepared via freeze-drying. When comparing structural and functional properties of commercial and unbleached CS scaffolds, the unbleached CS scaffolds exhibited higher porosity (67.9 ± 2.7 %), smaller pore size (216 ± 35 nm), higher swelling ratio (25.4 ± 1.9), greater resistance to degradation, and enhanced fibroblast proliferation. These findings underscore the potential of insect-derived CS as a sustainable and bioactive material for wound healing. However, further research is required to fully understand its interactions and mechanisms in tissue repair.
Collapse
Affiliation(s)
- Micaela Giani
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Caterina Valentino
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Barbara Vigani
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Marco Ruggeri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Anna Guarnieri
- Department of Basic and Applied Sciences, University of Basilicata, Via dell'Ateneo Lucano, 10, 85100 Potenza, Italy
| | - Rosanna Salvia
- Department of Basic and Applied Sciences, University of Basilicata, Via dell'Ateneo Lucano, 10, 85100 Potenza, Italy; Spin off Xflies s.r.l, University of Basilicata, Via dell'Ateneo Lucano, 10, 85100 Potenza, Italy
| | - Carmen Scieuzo
- Department of Basic and Applied Sciences, University of Basilicata, Via dell'Ateneo Lucano, 10, 85100 Potenza, Italy; Spin off Xflies s.r.l, University of Basilicata, Via dell'Ateneo Lucano, 10, 85100 Potenza, Italy
| | - Patrizia Falabella
- Department of Basic and Applied Sciences, University of Basilicata, Via dell'Ateneo Lucano, 10, 85100 Potenza, Italy; Spin off Xflies s.r.l, University of Basilicata, Via dell'Ateneo Lucano, 10, 85100 Potenza, Italy
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
3
|
Wang F, Han C, Zhang J, Zhang P, Zhang X, Yue X, Zhao Y, Dai X. Comparative Genomic Analysis of Two Monokaryons of Auricularia heimuer Hei29. J Fungi (Basel) 2025; 11:122. [PMID: 39997416 PMCID: PMC11856363 DOI: 10.3390/jof11020122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
Auricularia heimuer is a valuable traditional Chinese fungus used as food and medicine. Hei29 is a strain derived from wild A. heimuer through systematic domestication and selection. It has been the primary A. heimuer variety in Northeast China for 30 years and offers the advantages of high yield, good commercial property, and stable traits. This study used protoplast nucleation on Hei29 to produce two amiable and paired monokaryons, Hei29-D1 and Hei29-D2. The genome of Hei29 was sequenced utilizing the Illumina PE150 and PacBio Sequel sequencing platforms. Hei29-D1 and Hei29-D2 had genomic sizes of 47.54 Mb and 47.49 Mb, GC contents of 56.95% and 56.99%, and an N50 of 2.37 Mb and 4.28 Mb, respectively. Hei29's genome possessed two phytoene synthase (PSY) protein genes, one of which-PSY encoded by g894-has a transmembrane domain. The phylogenetic tree showed that Hei29 shared the closest evolutionary relationship with Auricularia subglabra TFB-10046 SS5. Collinearity analysis showed that the correlation between the two monokaryons was as high as 90.81%. Cluster analysis revealed that Hei29 contains 12,362 core genes, 223 unique genes in Hei29-D1, and 228 unique genes in Hei29-D2. This study is the first to sequence two related and paired monokaryons from A. heimuer, which is critical for fully understanding the genetic composition and information of the characteristic strain of A. heimuer in Northeast China. It establishes the data and theoretical foundation for gene mining, usage, and molecular breeding. It further promotes the genetic breeding and active substance utilization of A. heimuer.
Collapse
Affiliation(s)
- Fengli Wang
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China; (F.W.); (C.H.)
| | - Chuang Han
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China; (F.W.); (C.H.)
- College of Plant Protection, Northeast Agricultural University/Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Harbin 150030, China
| | - Jiechi Zhang
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China; (F.W.); (C.H.)
| | - Piqi Zhang
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China; (F.W.); (C.H.)
| | - Xiaojia Zhang
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China; (F.W.); (C.H.)
| | - Xin Yue
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China; (F.W.); (C.H.)
| | - Yanshu Zhao
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China; (F.W.); (C.H.)
| | - Xiaodong Dai
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China; (F.W.); (C.H.)
| |
Collapse
|
4
|
Wang J, Ma Z, Wang C, Chen W. Melanin in Auricularia auricula: biosynthesis, production, physicochemical characterization, biological functions, and applications. Food Sci Biotechnol 2024; 33:1751-1758. [PMID: 38752125 PMCID: PMC11091032 DOI: 10.1007/s10068-024-01542-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/16/2024] [Accepted: 02/07/2024] [Indexed: 05/18/2024] Open
Abstract
Auricularia auricular (A. auricula), a nutritious fungus and traditional medicinal resource, is known for melanin. This review aims to summarize the research progress on melanin in A. auricula, specifically focusing on biosynthesis, fermentation production, extraction processes, physicochemical characterization, biological functions, and applications. The biosynthesis of melanin in A. auricula primarily involves the oxidative polymerization reaction of phenolic compounds. To enhance melanin production, strategies such as deep fermentation culture, selection of optimal fermentation materials, and optimization of the culture medium have been employed. Various extraction processes have been compared to determine their impact on the physicochemical properties and stability of melanin. Moreover, the antioxidant and antibiofilm activities of A. auricula melanin, as well as its potential beneficial effects on the human body through in vivo experiments, have been investigated. These findings provide valuable insights into the application of A. auricula melanin and serve as a reference for future research in this field. Graphical abstract
Collapse
Affiliation(s)
- Jiaying Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, 100048 People’s Republic of China
| | - Zihui Ma
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, 100048 People’s Republic of China
| | - Chengtao Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, 100048 People’s Republic of China
| | - Wei Chen
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, 100048 People’s Republic of China
| |
Collapse
|
5
|
Arslan NP, Dawar P, Albayrak S, Doymus M, Azad F, Esim N, Taskin M. Fungi-derived natural antioxidants. Crit Rev Food Sci Nutr 2023; 65:1593-1616. [PMID: 38156661 DOI: 10.1080/10408398.2023.2298770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
In humans, exogenous antioxidants aid the endogenous antioxidant system to detoxify excess ROS generated during oxidative stress, thereby protecting the body against various diseases and stressful conditions. The majority of natural antioxidants available on the consumer market are plant-based; however, fungi are being recognized as alternative sources of various natural antioxidants such as polysaccharides, pigments, peptides, sterols, phenolics, alkaloids, and flavonoids. In addition, some exogenous antioxidants are exclusively found in fungi. Fungi-derived antioxidants exhibit scavenging activities against DPPH, ABTS, hydroxyl, superoxide, hydrogen peroxide, and nitric oxide radicals in vitro. Furthermore, in vivo models, application of fungal-derived antioxidants increase the level of various antioxidant enzymes, such as catalases, superoxide dismutases, and glutathione peroxidases, and reduce the level of malondialdehyde. Therefore, fungi-derived antioxidants have potential to be used in the food, cosmetic, and pharmaceutical industries. This review summarizes the antioxidant potential of different fungi (mushrooms, yeasts, and molds)-derived natural compounds such as polysaccharides, pigments, peptides, ergothioneine, ergosterol, phenolics, alkaloids, etc.
Collapse
Affiliation(s)
| | - Pranav Dawar
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Seyda Albayrak
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, Erzurum, Turkey
| | - Meryem Doymus
- Vocational School of Health Services of Hinis, Ataturk University, Erzurum, Turkey
| | - Fakhrul Azad
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Nevzat Esim
- Department of Molecular Biology and Genetics, Science and Art Faculty, Bingol University, Bingol, Turkey
| | - Mesut Taskin
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, Erzurum, Turkey
| |
Collapse
|
6
|
Qiu Z, Wang S, Zhao J, Cui L, Wang X, Cai N, Li H, Ren S, Li T, Shu L. Synthesis and structural characteristics analysis of melanin pigments induced by blue light in Morchella sextelata. Front Microbiol 2023; 14:1276457. [PMID: 37840742 PMCID: PMC10573313 DOI: 10.3389/fmicb.2023.1276457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
Morchella sextelata, a highly sought-after edible mushroom worldwide, is evaluated based on its cap color as an essential commercial property indicator. In the present study, the effects of blue light on cap pigmentation in M. sextelata, as well as the synthesis and structural characteristics of melanin pigments within the cap were examined. The results showed that an increase in the proportion of blue light within the lighting environment promoted melanin synthesis and melanization of the cap. Transmission and scanning electron microscopy revealed the localization of melanin within the mycelium and its ultrastructural characteristics. The UV-visible analysis demonstrated that melanin exhibited a maximum absorption peak at 220 nm and possessed high alkaline solubility as well as acid precipitability. The structural characteristics of melanin were analyzed using FTIR, NMR, HPLC, and elemental analysis, which confirmed the presence of eumelanin, pheomelanin, and allomelanin in both brown and black caps. Furthermore, blue light can stimulate the synthesis of both eumelanin and pheomelanin. The obtained results can serve as the foundation for comprehending the mechanism by which light regulates color formation in mushrooms.
Collapse
Affiliation(s)
- Zhiheng Qiu
- Modern Protected Horticulture Engineering & Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| | - Shuang Wang
- Modern Protected Horticulture Engineering & Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| | - Jiazhi Zhao
- Modern Protected Horticulture Engineering & Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| | - Lingxiu Cui
- Modern Protected Horticulture Engineering & Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| | - Xinyi Wang
- Modern Protected Horticulture Engineering & Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| | - Nuo Cai
- Modern Protected Horticulture Engineering & Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| | - Hongpeng Li
- Modern Protected Horticulture Engineering & Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| | - Shuhua Ren
- Modern Protected Horticulture Engineering & Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| | - Tianlai Li
- Modern Protected Horticulture Engineering & Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| | - Lili Shu
- Modern Protected Horticulture Engineering & Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| |
Collapse
|