1
|
Yazdan M, Naghib SM, Mozafari MR. Liposomal Nano-Based Drug Delivery Systems for Breast Cancer Therapy: Recent Advances and Progresses. Anticancer Agents Med Chem 2024; 24:896-915. [PMID: 38529608 DOI: 10.2174/0118715206293653240322041047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/27/2024]
Abstract
Breast cancer is a highly prevalent disease on a global scale, with a 30% incidence rate among women and a 14% mortality rate. Developing countries bear a disproportionate share of the disease burden, while countries with greater technological advancements exhibit a higher incidence. A mere 7% of women under the age of 40 are diagnosed with breast cancer, and the prevalence of this ailment is significantly diminished among those aged 35 and younger. Chemotherapy, radiation therapy, and surgical intervention comprise the treatment protocol. However, the ongoing quest for a definitive cure for breast cancer continues. The propensity for cancer stem cells to metastasize and resistance to treatment constitute their Achilles' heel. The advancement of drug delivery techniques that target cancer cells specifically holds significant promise in terms of facilitating timely detection and effective intervention. Novel approaches to pharmaceutical delivery, including nanostructures and liposomes, may bring about substantial changes in the way breast cancer is managed. These systems offer a multitude of advantages, such as heightened bioavailability, enhanced solubility, targeted tumor destruction, and diminished adverse effects. The application of nano-drug delivery systems to administer anti-breast cancer medications is a significant subject of research. This article delves into the domain of breast cancer, conventional treatment methods, the incorporation of nanotechnology into managerial tactics, and strategic approaches aimed at tackling the disease at its core.
Collapse
Affiliation(s)
- Mostafa Yazdan
- Department of Nanotechnology, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran
| | - Seyed Morteza Naghib
- Department of Nanotechnology, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
2
|
Cui L, Wang X, Zhang D. TLRs as a Promise Target Along With Immune Checkpoint Against Gastric Cancer. Front Cell Dev Biol 2021; 8:611444. [PMID: 33469538 PMCID: PMC7813757 DOI: 10.3389/fcell.2020.611444] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer (GC) is one of the most common cancers in the world, and the incidence of gastric cancer in Asia appears to increase in recent years. Although there is a lot of improvement in treatment approaches, the prognosis of GC is poor. So it is urgent to search for a novel and more effective treatment to improve the survival rate of patients. Both innate immunity and adaptive immunity are important in cancer. In the innate immune system, pattern recognition receptors (PRRs) activate immune responses by recognizing pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). Toll-like receptors (TLRs) are a class of pattern recognition receptors (PRRs). Many studies have reported that TLRs are involved in the occurrence, development, and treatment of GC. Therefore, TLRs are potential targets for immunotherapy to gastric cancer. However, gastric cancer is a heterogeneous disorder, and TLRs function in GC is complex. TLRs agonists can be potentially used not only as therapeutic agents to treat gastric cancer but also as adjuvants in conjunction with other immunotherapies. They might provide a promising new target for GC treatment. In the review, we sort out the mechanism of TLRs involved in tumor immunity and summarize the current progress in TLRs-based therapeutic approaches and other immunotherapies in the treatment of GC.
Collapse
Affiliation(s)
- Lin Cui
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xiuqing Wang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Dekai Zhang
- Center for Infectious and Inflammatory Diseases, Texas A&M University, Houston, TX, United States
| |
Collapse
|
3
|
Azizian K, Pustokhina I, Ghanavati R, Hamblin MR, Amini A, Kouhsari E. The potential use of theranostic bacteria in cancer. J Cell Physiol 2020; 236:4184-4194. [PMID: 33174198 DOI: 10.1002/jcp.30152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/04/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023]
Abstract
Conventional chemotherapy approaches have not been fully successful in the treatment of cancer, due to limitations imposed by the pathophysiology of solid tumors, leading to nonspecific drug uptake by healthy cells, poor bioavailability, and toxicity. Thus, novel therapeutic modalities for more efficient cancer treatment are urgently required. Living bacteria can be used as a theranostic approach for the simultaneous diagnosis and therapy of tumors. Herein, we summarize the currently available literature focused on the advantages and challenges for the use of theranostic bacteria in cancer therapy.
Collapse
Affiliation(s)
- Khalil Azizian
- Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| | - Inna Pustokhina
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA.,Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Abolfazl Amini
- Department of Medical Biotechnology, Faculty of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ebrahim Kouhsari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
4
|
Madhubala V, Pugazhendhi A, Thirunavukarasu K. Cytotoxic and immunomodulatory effects of the low concentration of titanium dioxide nanoparticles (TiO2 NPs) on human cell lines - An in vitro study. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.08.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
5
|
Wu Y, Huang W, Chen L, Jin M, Gao Z, An C, Lin H. Anti-tumor outcome evaluation against non-small cell lung cancer in vitro and in vivo using PolyI:C as nucleic acid therapeutic agent. Am J Transl Res 2019; 11:1919-1937. [PMID: 31105808 PMCID: PMC6511752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/24/2019] [Indexed: 06/09/2023]
Abstract
PolyI:C as a ligand of toll-like receptor 3 has been explored as a nucleic acid therapeutic agent for anti-tumor therapy. The previous PolyI:C studies mainly focused on anti-tumor evaluation at cell level and anti-tumor mechanism involved in MyD88-independent pathway. However, there is a lack of information about the ability of PolyI:C to affect PI3K/Akt/p53 signaling pathway in non-small cell lung cancer (NSCLC), and its pharmacodynamic evaluation in vivo still remain unclear so far. In this study, we explored the anti-tumor mechanism and efficacy in vivo of PolyI:C in NSCLC. Our results showed that PolyI:C had the ability to inhibit tumor cell proliferation and promote cell apoptosis by inducing G1 cell cycle block in LL/2 and A549 NSCLC cells. In vivo animal studies also demonstrated that PolyI:C effectively inhibited the tumor growth, suppressed spontaneous metastasis and prolonged the survival time of LL/2 tumor-bearing mice. Moreover, western blotting and immunohistochemistry assays showed that its anti-tumor mechanism was associated with the interference with PI3K/Akt/p53 signaling pathway. Our results confirmed that PolyI:C increased the expression of CD80, CD86 in spleen dendritic cells of tumor-bearing mice and cytokine secretion in healthy mice. Generally, our study suggests that PolyI:C can become a promising anti-tumor agent.
Collapse
Affiliation(s)
- Yedan Wu
- Department of Respiratory Medicine, Affiliated Hospital of Yanbian UniversityYanji 133000, Jilin, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100050, China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100050, China
| | - Liqing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100050, China
| | - Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100050, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100050, China
| | - Changshan An
- Department of Respiratory Medicine, Affiliated Hospital of Yanbian UniversityYanji 133000, Jilin, China
| | - Haixiang Lin
- Xinfu (Beijing) Pharmaceutical Technology Co., LtdBeijing 100085, China
| |
Collapse
|
6
|
ILC3-derived OX40L is essential for homeostasis of intestinal Tregs in immunodeficient mice. Cell Mol Immunol 2019; 17:163-177. [PMID: 30760919 DOI: 10.1038/s41423-019-0200-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/27/2018] [Indexed: 12/13/2022] Open
Abstract
OX40L is one of the co-stimulatory molecules that can be expressed by splenic lymphoid tissue inducer (Lti) cells, a subset of group 3 innate lymphoid cells (ILC3s). OX40L expression in subsets of intestinal ILC3s and the molecular regulation of OX40L expression in ILC3s are unknown. Here, we showed intestinal ILC3s marked as an OX40Lhigh population among all the intestinal leukocytes and were the dominant source of OX40L in Rag1-/- mice. All ILC3 subsets expressed OX40L, and NCR-ILC3s were the most abundant source of OX40L. The expression of OX40L in ILC3s could be upregulated during inflammation. In addition to tumor necrosis factor (TNF)-like cytokine 1A (TL1A), which has been known as a trigger for OX40L, we found that Poly (I:C) representing viral stimulus promoted OX40L expression in ILC3s via a cell-autonomous manner. Furthermore, we demonstrated that IL-7-STAT5 signaling sustained OX40L expression by ILC3s. Intestinal regulatory T cells (Tregs), most of which expressed OX40, had defective expansion in chimeric mice, in which ILC3s were specifically deficient for OX40L expression. Consistently, co-localization of Tregs and ILC3s was found in the cryptopatches of the intestine, which suggests the close interaction between ILC3s and Tregs. Our study has unveiled the crosstalk between Tregs and ILC3s in mucosal tissues through OX40-OX40L signaling, which is crucial for the homeostasis of intestinal Tregs.
Collapse
|
7
|
Langut Y, Edinger N, Flashner-Abramson E, Melamed-Book N, Lebendiker M, Levi-Kalisman Y, Klein S, Levitzki A. PSMA-homing dsRNA chimeric protein vector kills prostate cancer cells and activates anti-tumor bystander responses. Oncotarget 2018; 8:24046-24062. [PMID: 28445962 PMCID: PMC5421826 DOI: 10.18632/oncotarget.15733] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/11/2017] [Indexed: 01/12/2023] Open
Abstract
The treatment of metastatic androgen-resistant prostate cancer remains a challenge. We describe a protein vector that selectively delivers synthetic dsRNA, polyinosinic/polycytidylic acid (polyIC), to prostate tumors by targeting prostate specific membrane antigen (PSMA), which is overexpressed on the surface of prostate cancer cells. The chimeric protein is built from the double stranded RNA (dsRNA) binding domain of PKR tethered to a single chain anti-PSMA antibody. When complexed with polyIC, the chimera demonstrates selective and efficient killing of prostate cancer cells. The treatment causes the targeted cancer cells to undergo apoptosis and to secrete toxic cytokines. In a bystander effect, these cytokines kill neighboring cancer cells that do not necessarily overexpress PSMA, and activate immune cells that enhance the killing effect. The strong effects of the targeted polyIC are demonstrated on both 2D cell cultures and 3D tumor spheroids.
Collapse
Affiliation(s)
- Yael Langut
- Department of Biological Chemistry, Unit of Cellular Signaling, Silberman Institute of Life Sciences, Safra Campus, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nufar Edinger
- Department of Biological Chemistry, Unit of Cellular Signaling, Silberman Institute of Life Sciences, Safra Campus, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Efrat Flashner-Abramson
- Department of Biological Chemistry, Unit of Cellular Signaling, Silberman Institute of Life Sciences, Safra Campus, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Naomi Melamed-Book
- Department of Biological Chemistry, Unit of Bio-Imaging, Silberman Institute of Life Sciences, Safra Campus, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mario Lebendiker
- The Protein Purification Facility, Wolfson Center for Applied Structural Biology, Silberman Institute of Life Sciences, Safra Campus, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yael Levi-Kalisman
- The Center for Nanoscience and Nanotechnology, Silberman Institute for Life Sciences, Safra Campus, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shoshana Klein
- Department of Biological Chemistry, Unit of Cellular Signaling, Silberman Institute of Life Sciences, Safra Campus, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alexander Levitzki
- Department of Biological Chemistry, Unit of Cellular Signaling, Silberman Institute of Life Sciences, Safra Campus, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
8
|
Moradi-Marjaneh R, Hassanian SM, Fiuji H, Soleimanpour S, Ferns GA, Avan A, Khazaei M. Toll like receptor signaling pathway as a potential therapeutic target in colorectal cancer. J Cell Physiol 2018; 233:5613-5622. [PMID: 29150944 DOI: 10.1002/jcp.26273] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 11/06/2017] [Indexed: 12/14/2022]
Abstract
Toll like receptor (TLR) signaling is involved in activating innate and adaptive immune responses and plays a critical role in inflammation-induced diseases such as colorectal cancer (CRC). Dysregulation of this signaling pathway can result in disturbance of epithelial layer hemostasis, chronic inflammatory, excessive repair responses, and development of CRC. There is now substantial evidence for the benefit of targeting of this pathway in cancer treatment, and several agents have been approved, such as BCG (Bacillus Calmette Guérin), MPL (monophosphoryl lipid A) and imiquimod. This review summarizes the current knowledge about the different functions of TLRs on tumor cells and their application in cancer therapy with particular emphasis on recent preclinical and clinical research in treatment of CRC.
Collapse
Affiliation(s)
- Reyhaneh Moradi-Marjaneh
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Microanatomy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Fiuji
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, United Kingdom
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
PSMA-targeted polyinosine/polycytosine vector induces prostate tumor regression and invokes an antitumor immune response in mice. Proc Natl Acad Sci U S A 2017; 114:13655-13660. [PMID: 29229829 DOI: 10.1073/pnas.1714587115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
There is an urgent need for an effective treatment for metastatic prostate cancer (PC). Prostate tumors invariably overexpress prostate surface membrane antigen (PSMA). We designed a nonviral vector, PEI-PEG-DUPA (PPD), comprising polyethylenimine-polyethyleneglycol (PEI-PEG) tethered to the PSMA ligand, 2-[3-(1, 3-dicarboxy propyl)ureido] pentanedioic acid (DUPA), to treat PC. The purpose of PEI is to bind polyinosinic/polycytosinic acid (polyIC) and allow endosomal release, while DUPA targets PC cells. PolyIC activates multiple pathways that lead to tumor cell death and to the activation of bystander effects that harness the immune system against the tumor, attacking nontargeted neighboring tumor cells and reducing the probability of acquired resistance and disease recurrence. Targeting polyIC directly to tumor cells avoids the toxicity associated with systemic delivery. PPD selectively delivered polyIC into PSMA-overexpressing PC cells, inducing apoptosis, cytokine secretion, and the recruitment of human peripheral blood mononuclear cells (PBMCs). PSMA-overexpressing tumors in nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice with partially reconstituted immune systems were significantly shrunken following PPD/polyIC treatment, in all cases. Half of the tumors showed complete regression. PPD/polyIC invokes antitumor immunity, but unlike many immunotherapies does not need to be personalized for each patient. The potent antitumor effects of PPD/polyIC should spur its development for clinical use.
Collapse
|
10
|
Abstract
Toll-like receptors (TLRs), as the most important pattern recognition receptors in innate immunity, play a pivotal role in inducing immune response through recognition of microbial invaders or specific agonists. Recent studies have suggested that TLRs could serve as important regulators in the development of a variety of cancer. However, increasing evidences have shown that TLRs may display quite opposite outcomes in cancer development. Although several potential therapeutic Toll-like receptor ligands have been found, the mechanism and therapy prospect of TLRs in cancer development has to be further elucidated to accelerate the clinical application. By performing a systematic review of the present findings on TLRs in cancer immunology, we attempted to evaluate the therapeutic potential of TLRs in cancer therapy and elucidate the potential mechanism of cancer progress regulated by TLR signaling and the reported targets on TLRs for clinical application. An electronic databases search was conducted in PubMed, Chinese Scientific Journal Database, and Chinese Biomedical Literature Database from their inception to February 1, 2016. The following keywords were used to search the databases: Toll-like receptors, cancer therapy, therapeutic target, innate immunity. Of 244 studies that were identified, 97 nonrelevant studies were excluded. In total, 147 full-text articles were assessed, and from these, 54 were excluded as they did not provide complete key information. Thus, 93 studies were considered eligible and included in the analysis. According to the data from the included trials, 14 TLR ligands (77.8%) from 82 studies have been demonstrated to display antitumor property in various cancers, whereas 4 ligands (22.2%) from 11 studies promote tumors. Among them, only 3 TLR ligands have been approved for cancer therapy, and 9 ligands were in clinical trials. In addition, the potential mechanism of recently reported targets on TLRs for clinical application was also evaluated in this review. We show that targeting TLRs in cancer immunotherapy is a promising strategy for cancer therapy, and the specific TLR ligands, either alone or combination, exhibit antitumor potential.
Collapse
|
11
|
Pollock JK, Verma NK, O'Boyle NM, Carr M, Meegan MJ, Zisterer DM. Combretastatin (CA)-4 and its novel analogue CA-432 impair T-cell migration through the Rho/ROCK signalling pathway. Biochem Pharmacol 2014; 92:544-57. [PMID: 25450669 DOI: 10.1016/j.bcp.2014.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/02/2014] [Accepted: 10/03/2014] [Indexed: 10/24/2022]
Abstract
The capacity of T-lymphocytes to migrate and localise in tissues is important in their protective function against infectious agents, however, the ability of these cells to infiltrate the tumour microenvironment is a major contributing factor in the development of cancer. T-cell migration requires ligand (ICAM-1)/integrin (LFA-1) interaction, activating intracellular signalling pathways which result in a distinct polarised morphology, with an actin-rich lamellipodium and microtubule (MT)-rich uropod. Combretastatin (CA)-4 is a MT-destabilising agent that possesses potent anti-tumour properties. In this study, the effect of CA-4 and its novel analogue CA-432 on human T-cell migration was assessed. Cellular pretreatment with either of CA compounds inhibited the migration and chemotaxis of the T-cell line HuT-78 and primary peripheral blood lymphocyte (PBL) T-cells. This migration-inhibitory effect of CA compounds was due to the disruption of the MT network of T-cells through tubulin depolymerisation, reduced tubulin acetylation and decreased MT stability. In addition, both CA compounds induced the RhoA/RhoA associated kinase (ROCK) signalling pathway, leading to the phosphorylation of myosin light chain (MLC). Furthermore, the siRNA-mediated depletion of GEF-H1, a MT-associated nucleotide exchange factor that activates RhoA upon release from MTs, in T-cells prevented CA-induced phosphorylation of MLC and attenuated the formation of actin-rich membrane protrusions and cell contractility. These results suggest an important role for a GEF-H1/RhoA/ROCK/MLC signalling axis in mediating CA-induced contractility of T-cells. Therapeutic agents that target cytoskeletal proteins and are effective in inhibiting cell migration may open new avenues in the treatment of cancer and metastasis.
Collapse
Affiliation(s)
- Jade K Pollock
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Navin K Verma
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.
| | - Niamh M O'Boyle
- School of Pharmacy, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Miriam Carr
- School of Pharmacy, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Mary J Meegan
- School of Pharmacy, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Daniela M Zisterer
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, Ireland.
| |
Collapse
|
12
|
Lächelt U, Wittmann V, Müller K, Edinger D, Kos P, Höhn M, Wagner E. Synthetic polyglutamylation of dual-functional MTX ligands for enhanced combined cytotoxicity of poly(I:C) nanoplexes. Mol Pharm 2014; 11:2631-9. [PMID: 24754871 DOI: 10.1021/mp500017u] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The antifolate drug methotrexate (MTX) can serve as a dual-functional ligand in antitumoral drug delivery, inducing both a folate receptor mediated cellular uptake and an intracellular cytotoxic action. Bioactivity of MTX however changes by conjugation; the activity can be affected by the hampered intracellular conversion to more potent poly-γ-glutamyl derivatives. Therefore, in a cancer combination therapy approach for the codelivery of cytotoxic dsRNA polyinosinic-polycytidylic acid poly(I:C), a set of molecularly precise oligo(ethanamino)amides were synthesized comprising poly(ethylene glycol) conjugated MTX ligands. The conjugates differed in the number of additional glutamic acid residues to investigate the effect of different degrees of synthetic "a priori" polyglutamylation. The bioactivity of these compounds concerning dihydrofolate reductase (DHFR) inhibition, cytotoxicity, nucleic acid binding potency, cellular uptake of poly(I:C) polyplexes, and combined antifolate/poly(I:C) toxicity was investigated. Synthetic polyglutamylation had a crucial impact on several stages of efficient poly(I:C) delivery and combined MTX cytotoxicity. DHFR inhibition of the conjugates significantly increased with increasing polyglutamate chain length. The library member with highest glutamylation degree even outperformed free MTX in direct comparison. Studies in KB cells showed the corresponding enhanced cytotoxicity by polyglutamylation. Also poly(I:C) polyplexes of the glutamylated MTX variants exhibited higher cellular uptake in the folate receptor positive cell line. Finally, a synergistic combined cytotoxicity of polyglutamylated MTX ligands and complexed poly(I:C) cargo was observed in transfected KB cells. The present structure-activity relationship study of MTX-based ligands pinpoints the concept of synthetic polyglutamylation as a promising approach for optimizing bioactivity of antifolate conjugates, which might be considered as a useful tool also in context of other drug delivery systems.
Collapse
Affiliation(s)
- Ulrich Lächelt
- Pharmaceutical Biotechnology, Center for System-based Drug Research, Ludwig-Maximilians-University Munich , Butenandtstrasse 5-13, 81377 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|