1
|
Locquet MA, Brahmi M, Blay JY, Dutour A. Radiotherapy in bone sarcoma: the quest for better treatment option. BMC Cancer 2023; 23:742. [PMID: 37563551 PMCID: PMC10416357 DOI: 10.1186/s12885-023-11232-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/26/2023] [Indexed: 08/12/2023] Open
Abstract
Bone sarcomas are rare tumors representing 0.2% of all cancers. While osteosarcoma and Ewing sarcoma mainly affect children and young adults, chondrosarcoma and chordoma have a preferential incidence in people over the age of 40. Despite this range in populations affected, all bone sarcoma patients require complex transdisciplinary management and share some similarities. The cornerstone of all bone sarcoma treatment is monobloc resection of the tumor with adequate margins in healthy surrounding tissues. Adjuvant chemo- and/or radiotherapy are often included depending on the location of the tumor, quality of resection or presence of metastases. High dose radiotherapy is largely applied to allow better local control in case of incomplete primary tumor resection or for unresectable tumors. With the development of advanced techniques such as proton, carbon ion therapy, radiotherapy is gaining popularity for the treatment of bone sarcomas, enabling the delivery of higher doses of radiation, while sparing surrounding healthy tissues. Nevertheless, bone sarcomas are radioresistant tumors, and some mechanisms involved in this radioresistance have been reported. Hypoxia for instance, can potentially be targeted to improve tumor response to radiotherapy and decrease radiation-induced cellular toxicity. In this review, the benefits and drawbacks of radiotherapy in bone sarcoma will be addressed. Finally, new strategies combining a radiosensitizing agent and radiotherapy and their applicability in bone sarcoma will be presented.
Collapse
Affiliation(s)
- Marie-Anaïs Locquet
- Cell Death and Pediatric Cancer Team, Cancer Initiation and Tumor Cell Identity Department, INSERM1052, CNRS5286, Cancer Research Center of Lyon, F-69008, Lyon, France
| | - Mehdi Brahmi
- Department of Medical Oncology, Centre Leon Berard, Unicancer Lyon, 69008, Lyon, France
| | - Jean-Yves Blay
- Cell Death and Pediatric Cancer Team, Cancer Initiation and Tumor Cell Identity Department, INSERM1052, CNRS5286, Cancer Research Center of Lyon, F-69008, Lyon, France
- Department of Medical Oncology, Centre Leon Berard, Unicancer Lyon, 69008, Lyon, France
- Université Claude Bernard Lyon I, Lyon, France
| | - Aurélie Dutour
- Cell Death and Pediatric Cancer Team, Cancer Initiation and Tumor Cell Identity Department, INSERM1052, CNRS5286, Cancer Research Center of Lyon, F-69008, Lyon, France.
| |
Collapse
|
2
|
miR-145-loaded micelleplexes as a novel therapeutic strategy to inhibit proliferation and migration of osteosarcoma cells. Eur J Pharm Sci 2018; 123:28-42. [PMID: 30010029 DOI: 10.1016/j.ejps.2018.07.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/12/2018] [Accepted: 07/09/2018] [Indexed: 12/20/2022]
Abstract
Osteosarcoma (OS), the main primary malignancy of bone, is the second leading cause of cancer in children and young adults. Despite the advances in modern treatments, the 5-year survival rate is retained in 60-70%, since the conventional treatment options available are associated with relapse, chemoresistance, and development of metastases, which frequently lead to patients death. In this regard, there is an increasing need to search and develop novel and alternative therapeutic approaches. Concerning this, gene therapy appears as an innovative and promising treatment option. This therapeutic option aims to deliver genetic material, through nanosystems, to repress or replace the expression of mutated genes involved in important regulatory pathways. To attain this goal, gene therapy is decidedly dependent on the efficiency of utilized vectors, constituting such a very important parameter to take in consideration. In this work, the main goal was centered on the development and full characterization of an efficient micellar nanosystem, based on the chemical conjugation between the amphiphilic copolymer Pluronic® L64 and the cationic polymer polyethyleneimine (PEI), to deliver the therapeutic miRNA-145 into OS cells leading to inhibition of cell proliferation and migration, and ultimately inducing cell death, crafting a novel anticancer therapeutic approach to OS.
Collapse
|
3
|
Radi ZA, Stewart ZS, O'Neil SP. Accidental and Programmed Cell Death in Investigative and Toxicologic Pathology. ACTA ACUST UNITED AC 2018; 76:e51. [PMID: 30040239 DOI: 10.1002/cptx.51] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cellular development and homeostasis are regulated via programmed cell death (PCD; apoptosis), which is a genetically regulated cellular process. Accidental cell death (ACD; necrosis) can be triggered by chemical, physical, or mechanical stress. Necrosis is the presence of dead tissues or cells in a living organism regardless of the initiating process and can be observed in infectious and non-infectious diseases and toxicities. This article describes tissue-based immunohistotechnical protocols used for assessing PCD and necrosis in formalin-fixed tissues obtained from preclinical species used in investigative and toxicologic pathology. Two commonly employed protocols for the identification of PCD and necrosis are described in this article: immunohistochemistry (IHC) for cleaved caspase 3, and terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL). TUNEL has been used to detect DNA fragmentation by labeling the terminal ends of nucleic acids in necrotic and apoptotic cells. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Zaher A Radi
- Drug Safety R&D, Pfizer Inc., Cambridge, Massachusetts
| | | | | |
Collapse
|
4
|
Liu X, Yang W, Guan Z, Yu W, Fan B, Xu N, Liao DJ. There are only four basic modes of cell death, although there are many ad-hoc variants adapted to different situations. Cell Biosci 2018; 8:6. [PMID: 29435221 PMCID: PMC5796572 DOI: 10.1186/s13578-018-0206-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 01/19/2018] [Indexed: 02/06/2023] Open
Abstract
There have been enough cell death modes delineated in the biomedical literature to befuddle all cell death researchers. Mulling over cell death from the viewpoints of the host tissue or organ and of the host animal, we construe that there should be only two physiological cell death modes, i.e. apoptosis and senescent death (SD), as well as two pathological modes, i.e. necrosis and stress-induced cell death (SICD). Other death modes described in the literature are ad-hoc variants or coalescences of some of these four basic ones in different physiological or pathological situations. SD, SICD and necrosis kill useful cells and will thus trigger regeneration, wound healing and probably also scar formation. SICD and necrosis will likely instigate inflammation as well. Apoptosis occurs as a mechanism to purge no-longer useful cells from a tissue via phagocytosis by cells with phagocytic ability that are collectively tagged by us as scavengers, including macrophages; therefore apoptosis is not followed by regeneration and inflammation. The answer for the question of “who dies” clearly differentiates apoptosis from SD, SICD and necrosis, despite other similarities and disparities among the four demise modes. Apoptosis cannot occur in cell lines in vitro, because cell lines are immortalized by reprogramming the death program of the parental cells, because in culture there lack scavengers and complex communications among different cell types, and because culture condition is a stress to the cells. Several issues of cell death that remain enigmatic to us are also described for peers to deliberate and debate.
Collapse
Affiliation(s)
- Xingde Liu
- 1Department of Cardiology, Guizhou Medical University Hospital, Guiyang, 550004 Guizhou People's Republic of China
| | - Wenxiu Yang
- 2Department of Pathology, Guizhou Medical University Hospital, Guiyang, 550004 Guizhou People's Republic of China
| | - Zhizhong Guan
- 3Key Lab of Endemic and Ethnic Diseases of the Ministry of Education of China in Guizhou Medical University, Guiyang, 550004 People's Republic of China
| | - Wenfeng Yu
- 3Key Lab of Endemic and Ethnic Diseases of the Ministry of Education of China in Guizhou Medical University, Guiyang, 550004 People's Republic of China
| | - Bin Fan
- 2Department of Pathology, Guizhou Medical University Hospital, Guiyang, 550004 Guizhou People's Republic of China
| | - Ningzhi Xu
- 4Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - D Joshua Liao
- 2Department of Pathology, Guizhou Medical University Hospital, Guiyang, 550004 Guizhou People's Republic of China.,3Key Lab of Endemic and Ethnic Diseases of the Ministry of Education of China in Guizhou Medical University, Guiyang, 550004 People's Republic of China.,4Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
5
|
Méry B, Guy JB, Vallard A, Espenel S, Ardail D, Rodriguez-Lafrasse C, Rancoule C, Magné N. In Vitro Cell Death Determination for Drug Discovery: A Landscape Review of Real Issues. J Cell Death 2017; 10:1179670717691251. [PMID: 28469473 PMCID: PMC5392044 DOI: 10.1177/1179670717691251] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/07/2017] [Indexed: 12/19/2022] Open
Abstract
Cell death plays a crucial role for a myriad of physiological processes, and several human diseases such as cancer are characterized by its deregulation. There are many methods available for both quantifying and qualifying the accurate process of cell death which occurs. Choosing the right assay tool is essential to generate meaningful data, provide sufficient information for clinical applications, and understand cell death processes. In vitro cell death assays are important steps in the search for new therapies against cancer as the ultimate goal remains the elaboration of drugs that interfere with specific cell death mechanisms. However, choosing a cell viability or cytotoxicity assay among the many available options is a daunting task. Indeed, cell death can be approached by several viewpoints and require a more holistic approach. This review provides an overview of cell death assays usually used in vitro for assessing cell death so as to elaborate new potential chemotherapeutics and discusses considerations for using each assay.
Collapse
Affiliation(s)
- Benoite Méry
- Département de Radiothérapie, Institut de Cancérologie de la Loire Lucien Neuwirth, Saint-Priest-en-Jarez, France.,Laboratoire de Radiobiologie Cellulaire et Moléculaire, CNRS UMR 5822, Institut de Physique Nucléaire de Lyon (IPNL), Villeurbanne, France
| | - Jean-Baptiste Guy
- Département de Radiothérapie, Institut de Cancérologie de la Loire Lucien Neuwirth, Saint-Priest-en-Jarez, France.,Laboratoire de Radiobiologie Cellulaire et Moléculaire, CNRS UMR 5822, Institut de Physique Nucléaire de Lyon (IPNL), Villeurbanne, France
| | - Alexis Vallard
- Département de Radiothérapie, Institut de Cancérologie de la Loire Lucien Neuwirth, Saint-Priest-en-Jarez, France
| | - Sophie Espenel
- Département de Radiothérapie, Institut de Cancérologie de la Loire Lucien Neuwirth, Saint-Priest-en-Jarez, France
| | - Dominique Ardail
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, CNRS UMR 5822, Institut de Physique Nucléaire de Lyon (IPNL), Villeurbanne, France
| | - Claire Rodriguez-Lafrasse
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, CNRS UMR 5822, Institut de Physique Nucléaire de Lyon (IPNL), Villeurbanne, France.,Institut de Physique Nucléaire de Lyon (IPNL), Villeurbanne, France.,Faculté de Médecine Lyon-Sud, Université Claude Bernard Lyon 1, Oullins, France
| | - Chloé Rancoule
- Département de Radiothérapie, Institut de Cancérologie de la Loire Lucien Neuwirth, Saint-Priest-en-Jarez, France
| | - Nicolas Magné
- Département de Radiothérapie, Institut de Cancérologie de la Loire Lucien Neuwirth, Saint-Priest-en-Jarez, France.,Laboratoire de Radiobiologie Cellulaire et Moléculaire, CNRS UMR 5822, Institut de Physique Nucléaire de Lyon (IPNL), Villeurbanne, France
| |
Collapse
|
6
|
Cui H, Wu S, Shang Y, Li Z, Chen M, Li F, Wang C. Pleurotus nebrodensis polysaccharide(PN50G) evokes A549 cell apoptosis by the ROS/AMPK/PI3K/AKT/mTOR pathway to suppress tumor growth. Food Funct 2016; 7:1616-27. [PMID: 26918909 DOI: 10.1039/c6fo00027d] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since the strong antineoplastic potential against A549 cells of Pleurotus nebrodensis polysaccharide (PN50G) in vitro has been proven previously, the definitive mechanism of PN50G-induced apoptosis in A549 cells in vivo was further investigated. All the results indicated that PN50G significantly suppressed tumor growth in A549 tumor-bearing mice. Tumor cells treated with PN50G were arrested in the G0/G1 phase, and marked changes in the expression of cell cycle-related proteins, including cyclin D1, cyclin A and cyclin B1, were observed. Moreover, western blotting analysis indicated that PN50G triggered the mitochondrial apoptotic pathway, for an increased Bax/Bcl-2 ratio, release of cytochrome c, cleavage of caspase-3 and PRPP in A549 tumor cells were observed. And the decrease in the expression of the translation related protein P70S6K was observed, because PN50G activated AMPK phosphorylation, but inhibited PI3K/AKT phosphorylation and suppressed the activation of the mammalian target of rapamycin (mTOR) induced by PN50G. In vivo imaging was performed on tumor-bearing mice, and the results indicated that PN50G significantly increased the intracellular levels of reactive oxygen species (ROS). Furthermore, it indicated that PN50G promoted the protein expression of Beclin 1 and LC-3 in a dose-dependent manner. All the results suggested that PN50G-mediated apoptosis and autophagy of A549 tumor cells in vivo mainly involved in the mitochondrial pathway and the AMPK/PI3K/mTOR pathway.
Collapse
Affiliation(s)
- Haiyan Cui
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Shufen Wu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Yunfei Shang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Zhenjing Li
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Mianhua Chen
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Fengjuan Li
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Changlu Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
7
|
Alday E, Valencia D, Carreño AL, Picerno P, Piccinelli AL, Rastrelli L, Robles-Zepeda R, Hernandez J, Velazquez C. Apoptotic induction by pinobanksin and some of its ester derivatives from Sonoran propolis in a B-cell lymphoma cell line. Chem Biol Interact 2015; 242:35-44. [PMID: 26367700 DOI: 10.1016/j.cbi.2015.09.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/21/2015] [Accepted: 09/09/2015] [Indexed: 02/06/2023]
Abstract
Propolis is a resinous substance produced by honeybees (Apis mellifera) from the selective collection of exudates and bud secretions from several plants. In previous works, we reported the antiproliferative activity of Sonoran propolis (SP) on cancer cells; in addition we suggested the induction of apoptosis after treatment with SP due to the presence of morphological changes and a characteristic DNA fragmentation pattern. Herein, in this study we demonstrated that the antiproliferative effect of SP is induced through apoptosis in a B-cell lymphoma cancer cell line, M12.C3.F6, by an annexin V-FITC/Propidium iodide double labeling. This apoptotic effect of SP resulted to be mediated by modulations in the loss of mitochondrial membrane potential (ΔΨm) and through activation of caspases signaling pathway (3, 8 and 9). Afterward, in order to characterize the chemical constituents of SP that induce apoptosis in cancer cells, an HPLC-PDA-ESI-MS/MS method followed by a preparative isolation procedure and NMR spectroscopy analysis have been used. Eighteen flavonoids, commonly described in propolis from temperate regions, were characterized. Chrysin, pinocembrin, pinobanksin and its ester derivatives are the main constituents of SP and some of them have never been reported in SP. In addition, two esters of pinobanksin (8 and 13) are described by first time in propolis samples in general. The antiproliferative activity on M12.C3.F6 cells through apoptosis induction was exhibited by pinobanksin (4), pinobanksin-3-O-propanoate (14), pinobanksin-3-O-butyrate (16), pinobanksin-3-O-pentanoate (17), and the already reported galangin (11), chrysin (9) and CAPE. To our knowledge this is the first report of bioactivity of pinobanksin and some of its ester derivatives as apoptosis inducers. Further studies are needed to advance in the understanding of the molecular basis of apoptosis induction by SP and its constituents, as well as the structure-activity relationship of them.
Collapse
Affiliation(s)
- Efrain Alday
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales s/n, 83000 Hermosillo, Son., Mexico
| | - Dora Valencia
- Department of Chemical Biological and Agropecuary Sciences, University of Sonora, Av. Universidad e Irigoyen, 83600 Caborca, Son., Mexico
| | - Ana Laura Carreño
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales s/n, 83000 Hermosillo, Son., Mexico
| | - Patrizia Picerno
- Dipartimento di Farmacia, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Anna Lisa Piccinelli
- Dipartimento di Farmacia, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Luca Rastrelli
- Dipartimento di Farmacia, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Ramon Robles-Zepeda
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales s/n, 83000 Hermosillo, Son., Mexico
| | - Javier Hernandez
- Unidad de Servicios de Apoyo en Resolución Analítica, Universidad Veracruzana, 575 Xalapa, Ver., Mexico
| | - Carlos Velazquez
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales s/n, 83000 Hermosillo, Son., Mexico.
| |
Collapse
|