1
|
Mateusiak Ł, Floru S, De Groof TWM, Wouters J, Declerck NB, Debie P, Janssen S, Zeven K, Puttemans J, Vincke C, Breckpot K, Devoogdt N, Hernot S. Generation and Characterization of Novel Pan-Cancer Anti-uPAR Fluorescent Nanobodies as Tools for Image-Guided Surgery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400700. [PMID: 38845188 PMCID: PMC11321701 DOI: 10.1002/advs.202400700] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/12/2024] [Indexed: 08/15/2024]
Abstract
Fluorescence molecular imaging plays a vital role in image-guided surgery. In this context, the urokinase plasminogen activator receptor (uPAR) is an interesting biomarker enabling the detection and delineation of various tumor types due to its elevated expression on both tumor cells and the tumor microenvironment. In this study, anti-uPAR Nanobodies (Nbs) are generated through llama immunization with human and murine uPAR protein. Extensive in vitro characterization and in vivo testing with radiolabeled variants are conducted to assess their pharmacokinetics and select lead compounds. Subsequently, the selected Nbs are converted into fluorescent agents, and their application for fluorescence-guided surgery is evaluated in various subcutaneous and orthotopic tumor models. The study yields a panel of high-affinity anti-uPAR Nbs, showing specific binding across multiple types of cancer cells in vitro and in vivo. Lead fluorescently-labeled compounds exhibit high tumor uptake with high contrast at 1 h after intravenous injection across all assessed uPAR-expressing tumor models, outperforming a non-targeting control Nb. Additionally, rapid and accurate tumor localization and demarcation are demonstrated in an orthotopic human glioma model. Utilizing these Nbs can potentially enhance the precision of surgical tumor resection and, consequently, improve survival rates in the clinic.
Collapse
Affiliation(s)
- Łukasz Mateusiak
- Laboratory for Molecular Imaging and TherapyVrije Universiteit Brussel (VUB)MITHLaarbeeklaan 103Brussels1090Belgium
| | - Sam Floru
- Laboratory for Molecular Imaging and TherapyVrije Universiteit Brussel (VUB)MITHLaarbeeklaan 103Brussels1090Belgium
| | - Timo W. M. De Groof
- Laboratory for Molecular Imaging and TherapyVrije Universiteit Brussel (VUB)MITHLaarbeeklaan 103Brussels1090Belgium
| | - Janne Wouters
- Laboratory for Molecular Imaging and TherapyVrije Universiteit Brussel (VUB)MITHLaarbeeklaan 103Brussels1090Belgium
| | - Noemi B. Declerck
- Laboratory for Molecular Imaging and TherapyVrije Universiteit Brussel (VUB)MITHLaarbeeklaan 103Brussels1090Belgium
| | - Pieterjan Debie
- Laboratory for Molecular Imaging and TherapyVrije Universiteit Brussel (VUB)MITHLaarbeeklaan 103Brussels1090Belgium
| | - Simone Janssen
- Laboratory for Molecular Imaging and TherapyVrije Universiteit Brussel (VUB)MITHLaarbeeklaan 103Brussels1090Belgium
- Faculty of Veterinary MedicineSmall Animal DepartmentGhent University (UGent)Salisburylaan 133Merelbeke9820Belgium
| | - Katty Zeven
- Laboratory for Molecular Imaging and TherapyVrije Universiteit Brussel (VUB)MITHLaarbeeklaan 103Brussels1090Belgium
| | - Janik Puttemans
- Laboratory for Molecular Imaging and TherapyVrije Universiteit Brussel (VUB)MITHLaarbeeklaan 103Brussels1090Belgium
| | - Cécile Vincke
- Laboratory for Cellular and Molecular ImmunologyVrije Universiteit Brussel (VUB)Pleinlaan 2Brussels1050Belgium
- Myeloid Cell Immunology LabVIB Center for Inflammation ResearchPleinlaan 2Brussels1050Belgium
| | - Karine Breckpot
- Laboratory for Molecular and Cellular TherapyVrije Universiteit Brussel (VUB)Laarbeeklaan 103Brussels1090Belgium
| | - Nick Devoogdt
- Laboratory for Molecular Imaging and TherapyVrije Universiteit Brussel (VUB)MITHLaarbeeklaan 103Brussels1090Belgium
| | - Sophie Hernot
- Laboratory for Molecular Imaging and TherapyVrije Universiteit Brussel (VUB)MITHLaarbeeklaan 103Brussels1090Belgium
| |
Collapse
|
2
|
Tian Z, Liang S, Zhou X, Luo H, Tian M, Zhang X, Guo C, Zhang J. Near-infrared-dye labeled tumor vascular-targeted dimer GEBP11 peptide for image-guided surgery in gastric cancer. Front Oncol 2022; 12:885036. [PMID: 36505820 PMCID: PMC9730820 DOI: 10.3389/fonc.2022.885036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction Positive resection margins occur in about 2.8%-8.2% gastric cancer surgeries and is associated with poor prognosis. Intraoperative guidance using Nearinfrared (NIR) fluorescence imaging is a promising technique for tumor detection and margin assessment. The goal of this study was to develop a tumor-specific probe for real-time intraoperative NIR fluorescence imaging guidance. Methods The tumor vascular homing peptide specific for gastric cancer, GEBP11, was conjugated with a near-infrared fluorophore, Cy5.5. The binding specificity of the GEBP11 probes to tumor vascular endothelial cells were confirmed by immunofluorescent staining. The ability of the probe to detect tumor lesions was evaluated in two xenograft models. An orthotopic gastric cancer xenograft model was used to evaluate the efficacy of the GEBP11 NIR probes in real-time surgical guidance. Results In vitro assay suggested that both mono and dimeric GEBP11 NIR probes could bind specifically to tumor vascular epithelial cells, with dimeric peptides showed better affinity. In tumor xenograft mice, live imaging suggested that comparing with free Cy5.5 probe, significantly stronger NIR signals could be detected at the tumor site at 24-48h after injection of mono or dimeric GEBP11 probes. Dimeric GEBP11 probe showed prolonged and stronger NIR signals than mono GEBP11 probe. Biodistribution assay suggested that GEBP11 NIR probes were enriched in gastric cancer xenografts. Using dimeric GEBP11 NIR probes in real-time surgery, the tumor margins and peritoneal metastases could be clearly visualized. Histological examination confirmed the complete resection of the tumor. Conclusion (GEBP11)2-ACP-Cy5.5 could be a potential useful probe for intraoperative florescence guidance in gastric cancer surgery.
Collapse
Affiliation(s)
- Zuhong Tian
- State Key Laboratory of Cancer Biology & XiJing Hospital of Digestive Diseases, Air Force Medical University, Xi’an, China
| | - Shuhui Liang
- State Key Laboratory of Cancer Biology & XiJing Hospital of Digestive Diseases, Air Force Medical University, Xi’an, China
| | - Xinmin Zhou
- State Key Laboratory of Cancer Biology & XiJing Hospital of Digestive Diseases, Air Force Medical University, Xi’an, China
| | | | - Miaomiao Tian
- State Key Laboratory of Cancer Biology & XiJing Hospital of Digestive Diseases, Air Force Medical University, Xi’an, China
| | - Xianghan Zhang
- Engineering Research Center of Molecular-imaging and Neuroimaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, China
| | - Changcun Guo
- State Key Laboratory of Cancer Biology & XiJing Hospital of Digestive Diseases, Air Force Medical University, Xi’an, China,*Correspondence: Changcun Guo, ; Jing Zhang,
| | - Jing Zhang
- State Key Laboratory of Cancer Biology & XiJing Hospital of Digestive Diseases, Air Force Medical University, Xi’an, China,*Correspondence: Changcun Guo, ; Jing Zhang,
| |
Collapse
|
3
|
Fundamentals and developments in fluorescence-guided cancer surgery. Nat Rev Clin Oncol 2022; 19:9-22. [PMID: 34493858 DOI: 10.1038/s41571-021-00548-3] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 02/07/2023]
Abstract
Fluorescence-guided surgery using tumour-targeted imaging agents has emerged over the past decade as a promising and effective method of intraoperative cancer detection. An impressive number of fluorescently labelled antibodies, peptides, particles and other molecules related to cancer hallmarks have been developed for the illumination of target lesions. New approaches are being implemented to translate these imaging agents into the clinic, although only a few have made it past early-phase clinical trials. For this translational process to succeed, target selection, imaging agents and their related detection systems and clinical implementation have to operate in perfect harmony to enable real-time intraoperative visualization that can benefit patients. Herein, we review key aspects of this imaging cascade and focus on imaging approaches and methods that have helped to shed new light onto the field of intraoperative fluorescence-guided cancer surgery with the singular goal of improving patient outcomes.
Collapse
|
4
|
Muñoz R, Girotti A, Hileeto D, Arias FJ. Metronomic Anti-Cancer Therapy: A Multimodal Therapy Governed by the Tumor Microenvironment. Cancers (Basel) 2021; 13:cancers13215414. [PMID: 34771577 PMCID: PMC8582362 DOI: 10.3390/cancers13215414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Metronomic chemotherapy with different mechanisms of action against cancer cells and their microenvironment represents an exceptional holistic cancer treatment. Each type of tumor has its own characteristics, including each individual tumor in each patient. Understanding the complexity of the dynamic interactions that take place between tumor and stromal cells and the microenvironment in tumor progression and metastases, as well as the response of the host and the tumor itself to anticancer therapy, will allow therapeutic actions with long-lasting effects to be implemented using metronomic regimens. This study aims to highlight the complexity of cellular interactions in the tumor microenvironment and summarize some of the preclinical and clinical results that explain the multimodality of metronomic therapy, which, together with its low toxicity, supports an inhibitory effect on the primary tumor and metastases. We also highlight the possible use of nano-therapeutic agents as good partners for metronomic chemotherapy. Abstract The concept of cancer as a systemic disease, and the therapeutic implications of this, has gained special relevance. This concept encompasses the interactions between tumor and stromal cells and their microenvironment in the complex setting of primary tumors and metastases. These factors determine cellular co-evolution in time and space, contribute to tumor progression, and could counteract therapeutic effects. Additionally, cancer therapies can induce cellular and molecular responses in the tumor and host that allow them to escape therapy and promote tumor progression. In this study, we describe the vascular network, tumor-infiltrated immune cells, and cancer-associated fibroblasts as sources of heterogeneity and plasticity in the tumor microenvironment, and their influence on cancer progression. We also discuss tumor and host responses to the chemotherapy regimen, at the maximum tolerated dose, mainly targeting cancer cells, and a multimodal metronomic chemotherapy approach targeting both cancer cells and their microenvironment. In a combination therapy context, metronomic chemotherapy exhibits antimetastatic efficacy with low toxicity but is not exempt from resistance mechanisms. As such, a better understanding of the interactions between the components of the tumor microenvironment could improve the selection of drug combinations and schedules, as well as the use of nano-therapeutic agents against certain malignancies.
Collapse
Affiliation(s)
- Raquel Muñoz
- Department of Biochemistry, Physiology and Molecular Biology, University of Valladolid, Paseo de Belén, 47011 Valladolid, Spain
- Smart Biodevices for NanoMed Group, University of Valladolid, LUCIA Building, Paseo de Belén, 47011 Valladolid, Spain;
- Correspondence:
| | - Alessandra Girotti
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), University of Valladolid, CIBER-BBN, LUCIA Building, Paseo de Belén, 47011 Valladolid, Spain;
| | - Denise Hileeto
- School of Optometry and Vision Science, University of Waterloo, Waterloo, ON N2L 361, Canada;
| | - Francisco Javier Arias
- Smart Biodevices for NanoMed Group, University of Valladolid, LUCIA Building, Paseo de Belén, 47011 Valladolid, Spain;
| |
Collapse
|
5
|
Slikboer SR, Pitchumony TS, Banevicius L, Mercanti N, Edem PE, Valliant JF. Imidazole fused phenanthroline (PIP) ligands for the preparation of multimodal Re(I) and 99mTc(I) probes. Dalton Trans 2020; 49:14826-14836. [PMID: 33034336 DOI: 10.1039/d0dt02829k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A small library of [2 + 1] 99mTc(i) complexes based on phenyl-imidazole-fused phenanthroline (PIP) ligands were synthesized and evaluated as multimodal molecular imaging probes. Using either a two-step or a one-pot synthesis method, 99mTc-PIP complexes containing N-methylimidazole as the monodentate ligand were prepared and isolated in good (54 to 89%) radiochemical yield, with the exception of one derivative bearing a strongly electron-withdrawing substituent. The stability of the [2 + 1] complexes was assessed in saline and in cysteine and histidine challenge studies, showing 6 hours stability, making them suitable for in vivo studies. In parallel, the Re(i) analogues were prepared as reference standards to verify the structure of the 99mTc complexes. The optical properties were consistent with other previously reported [2 + 1] type Re(i) complexes that have been used as cellular dyes and sensors. To facilitate the development of targeted derivatives, a tetrazine-PIP ligand was also synthesized. The 99mTc complex of the tetrazine PIP ligand effectively coupled to compounds containing a trans-cyclooctene (TCO) group including a TCO-albumin derivative, which was prepared as a model targeting molecule. An added benefit of the Re-PIP-Tz construct is that the emission from the metal complex was quenched by the presence of the tetrazine. Following the addition of TCO, there was a 70-fold increase in fluorescence emission, which can in future be leveraged during in vitro studies to reduce background signal.
Collapse
Affiliation(s)
- Samantha R Slikboer
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4 M1, Canada.
| | | | | | | | | | | |
Collapse
|
6
|
de Valk KS, Deken MM, Schaap DP, Meijer RP, Boogerd LS, Hoogstins CE, van der Valk MJ, Kamerling IM, Bhairosingh SS, Framery B, Hilling DE, Peeters KC, Holman FA, Kusters M, Rutten HJ, Cailler F, Burggraaf J, Vahrmeijer AL. Dose-Finding Study of a CEA-Targeting Agent, SGM-101, for Intraoperative Fluorescence Imaging of Colorectal Cancer. Ann Surg Oncol 2020; 28:1832-1844. [PMID: 33034788 PMCID: PMC7892528 DOI: 10.1245/s10434-020-09069-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 08/09/2020] [Indexed: 12/28/2022]
Abstract
Background Carcinoembryonic antigen is overexpressed in colorectal cancer (CRC), making it an optimal target for fluorescence imaging. A phase I/II study was designed to determine the optimal imaging dose of SGM-101 for intraoperative fluorescence imaging of primary and recurrent CRC. Methods Patients were included and received a single dose of SGM-101 at least 24 h before surgery. Patients who received routine anticancer therapy (i.e., radiotherapy or chemotherapy) also were eligible. A dedicated near-infrared imaging system was used for real-time fluorescence imaging during surgery. Safety assessments were performed and SGM-101 efficacy was evaluated per dose level to determine the most optimal imaging dose. Results Thirty-seven patients with CRC were included in the analysis. Fluorescence was visible in all primary and recurrent tumors. In seven patients, no fluorescence was seen; all were confirmed as pathological complete responses after neoadjuvant therapy. Two tumors showed false-positive fluorescence. In the 37 patients, a total of 97 lesions were excised. The highest mean intraoperative tumor-to-background ratio (TBR) of 1.9 (p = 0.019) was seen in the 10-mg dose. This dose showed a sensitivity of 96%, specificity of 63%, and negative predictive value of 94%. Nine patients (24%) had a surgical plan alteration based on fluorescence, with additional malignant lesions detected in six patients. Conclusions The optimal imaging dose was established at 10 mg 4 days before surgery. The results accentuate the potential of SGM-101 and designated a promising base for the multinational phase III study, which enrolled the first patients in June 2019. Electronic supplementary material The online version of this article (10.1245/s10434-020-09069-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kim S de Valk
- Centre for Human Drug Research, Leiden, The Netherlands.,Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Marion M Deken
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Dennis P Schaap
- Department of Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | - Ruben P Meijer
- Centre for Human Drug Research, Leiden, The Netherlands.,Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Leonora S Boogerd
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Charlotte E Hoogstins
- Centre for Human Drug Research, Leiden, The Netherlands.,Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | - Denise E Hilling
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Koen C Peeters
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Fabian A Holman
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Miranda Kusters
- Department of Surgery, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Harm J Rutten
- Department of Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | | | | | | |
Collapse
|
7
|
Chemotherapy resistance and stromal targets in breast cancer treatment: a review. Mol Biol Rep 2020; 47:8169-8177. [PMID: 33006013 PMCID: PMC7588379 DOI: 10.1007/s11033-020-05853-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 09/19/2020] [Indexed: 02/07/2023]
Abstract
Therapy resistance is a known problem in breast cancer and is associated with a variety of mechanisms. The role of the tumor microenvironment in cancer development and resistance mechanisms is becoming increasingly understood. Tumor–stroma is the main component of the tumor microenvironment. Stromal cells like cancer-associated fibroblasts (CAFs) are believed to contribute to chemotherapy resistance via the production of several secreted factors like cytokines and chemokines. CAFs are found to influence disease progression; patients with primary tumors with a high amount of tumor–stroma have a significantly worse outcome. Therefore the role of CAFs resistance mechanisms makes them a promising target in anti-cancer therapy. An overview of recent advances in strategies to target breast cancer stroma is given and the current literature regarding these stromal targets is discussed. CAF-specific proteins as well as secreted molecules involved in tumor–stroma interactions provide possibilities for stroma-specific therapy. The development of stroma-specific therapy is still in its infancy and the available literature is limited. Within the scope of personalized treatment, biomarkers based on the tumor–stroma have future potential for the improvement of treatment via image-guided surgery (IGS) and PET scanning.
Collapse
|
8
|
de Gooyer JM, Versleijen-Jonkers YMH, Hillebrandt-Roeffen MHS, Frielink C, Desar IME, de Wilt JHW, Flucke U, Rijpkema M. Immunohistochemical selection of biomarkers for tumor-targeted image-guided surgery of myxofibrosarcoma. Sci Rep 2020; 10:2915. [PMID: 32076024 PMCID: PMC7031512 DOI: 10.1038/s41598-020-59735-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/30/2020] [Indexed: 01/04/2023] Open
Abstract
Myxofibrosarcoma(MFS) is the most common soft tissue sarcoma(STS) in elderly patients. Surgical resection remains the main treatment modality but tumor borders can be difficult to delineate with conventional clinical methods. Incomplete resections are a common problem and local recurrence remains a clinical issue. A technique that has shown great potential in improving surgical treatment of solid tumors is tumor targeted imaging and image-guided surgery with near-infrared fluorescence. To facilitate this technique, it is essential to identify a biomarker that is highly and homogenously expressed on tumor cells, while being absent on healthy non-malignant tissue. The purpose of this study was to identify suitable molecular targets for tumor-targeted imaging of myxofibrosarcoma. Ten potential molecular targets for tumor targeted imaging were investigated with immunohistochemical analysis in myxofibrosarcoma tissue (n = 34). Results were quantified according to the immunoreactive score(IRS). Moderate expression rates were found for uPAR, PDGFRa and EMA/MUC1. High expression rates of VEGF and TEM1 were seen. Strong expression was most common for TEM1 (88.2%). These results confirms that TEM1 is a suitable target for tumor-targeted imaging of myxofibrosarcoma. Keywords Image-guided surgery; Immunohistochemistry; Molecular imaging; Myxofibrosarcoma; Soft tissue sarcoma; Tumor endothelial marker 1(TEM1), Vascular endothelial growth factor (VEGF).
Collapse
Affiliation(s)
- Jan Marie de Gooyer
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, the Netherlands. .,Department of Surgery, Radboud university medical center, Nijmegen, the Netherlands.
| | | | | | - Cathelijne Frielink
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, the Netherlands
| | - Ingrid M E Desar
- Department of Medical Oncology, Radboud university medical center, Nijmegen, the Netherlands
| | - Johannes H W de Wilt
- Department of Surgery, Radboud university medical center, Nijmegen, the Netherlands
| | - Uta Flucke
- Department of Pathology, Radboud university medical center, Nijmegen, the Netherlands
| | - Mark Rijpkema
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, the Netherlands
| |
Collapse
|
9
|
Debie P, Hernot S. Emerging Fluorescent Molecular Tracers to Guide Intra-Operative Surgical Decision-Making. Front Pharmacol 2019; 10:510. [PMID: 31139085 PMCID: PMC6527780 DOI: 10.3389/fphar.2019.00510] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/24/2019] [Indexed: 12/26/2022] Open
Abstract
Fluorescence imaging is an emerging technology that can provide real-time information about the operating field during cancer surgery. Non-specific fluorescent agents, used for the assessment of blood flow and sentinel lymph node detection, have so far dominated this field. However, over the last decade, several clinical studies have demonstrated the great potential of targeted fluorescent tracers to visualize tumor lesions in a more specific way. This has led to an exponential growth in the development of novel molecular fluorescent contrast agents. In this review, the design of fluorescent molecular tracers will be discussed, with particular attention for agents and approaches that are of interest for clinical translation.
Collapse
Affiliation(s)
| | - Sophie Hernot
- Laboratory for in vivo Cellular and Molecular Imaging (ICMI-BEFY/MIMA), Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
10
|
Debie P, Vanhoeij M, Poortmans N, Puttemans J, Gillis K, Devoogdt N, Lahoutte T, Hernot S. Improved Debulking of Peritoneal Tumor Implants by Near-Infrared Fluorescent Nanobody Image Guidance in an Experimental Mouse Model. Mol Imaging Biol 2019; 20:361-367. [PMID: 29090412 DOI: 10.1007/s11307-017-1134-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE Debulking followed by combination chemotherapy is currently regarded as the most effective treatment for advanced ovarian cancer. Prognosis depends drastically on the degree of debulking. Accordingly, near-infrared (NIR) fluorescence imaging has been proposed to revolutionize cancer surgery by acting as a sensitive, specific, and real-time tool enabling visualization of cancer lesions. We have previously developed a NIR-labeled nanobody that allows fast, specific, and high-contrast imaging of HER2-positive tumors. In this study, we applied this tracer during fluorescence-guided surgery in a mouse model and investigated the effect on surgical efficiency. PROCEDURES 0.5 × 106 SKOV3.IP1-Luc+ cells were inoculated intraperitoneally in athymic mice and were allowed to grow for 30 days. Two nanomoles of IRDye800CW-anti-HER2 nanobody was injected intravenously. After 1h30, mice were killed, randomized in two groups, and subjected to surgery. In the first animal group (n = 7), lesions were removed by a conventional surgical protocol, followed by excision of remaining fluorescent tissue using a NIR camera. The second group of mice (n = 6) underwent directly fluorescence-guided surgery. Bioluminescence imaging was performed before and after surgery. Resected tissue was categorized as visualized during conventional surgery or not, fluorescent or not, and bioluminescent positive or negative. RESULTS Fluorescence imaging allowed clear visualization of tumor nodules within the abdomen, up to submillimeter-sized lesions. Fluorescence guidance resulted in significantly reduced residual tumor as compared to conventional surgery. Moreover, sensitivity increased from 59.3 to 99.0 %, and the percentage of false positive lesions detected decreased from 19.6 to 7.1 %. CONCLUSIONS This study demonstrates the advantage of intraoperative fluorescence imaging using nanobody-based tracers on the efficiency of debulking surgery.
Collapse
Affiliation(s)
- Pieterjan Debie
- Laboratory for In vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laabeeklaan 103, 1090, Jette, Brussels, Belgium.
| | - Marian Vanhoeij
- Department of Oncological Surgery, UZ Brussel, Brussels, Belgium
| | | | - Janik Puttemans
- Laboratory for In vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laabeeklaan 103, 1090, Jette, Brussels, Belgium
| | - Kris Gillis
- Laboratory for In vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laabeeklaan 103, 1090, Jette, Brussels, Belgium.,Department of Cardiology, UZ Brussel, Brussels, Belgium
| | - Nick Devoogdt
- Laboratory for In vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laabeeklaan 103, 1090, Jette, Brussels, Belgium
| | - Tony Lahoutte
- Laboratory for In vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laabeeklaan 103, 1090, Jette, Brussels, Belgium.,Department of Nuclear Medicine, UZBrussel, Brussels, Belgium
| | - Sophie Hernot
- Laboratory for In vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laabeeklaan 103, 1090, Jette, Brussels, Belgium
| |
Collapse
|
11
|
Hoogstins CES, Boogerd LSF, Sibinga Mulder BG, Mieog JSD, Swijnenburg RJ, van de Velde CJH, Farina Sarasqueta A, Bonsing BA, Framery B, Pèlegrin A, Gutowski M, Cailler F, Burggraaf J, Vahrmeijer AL. Image-Guided Surgery in Patients with Pancreatic Cancer: First Results of a Clinical Trial Using SGM-101, a Novel Carcinoembryonic Antigen-Targeting, Near-Infrared Fluorescent Agent. Ann Surg Oncol 2018; 25:3350-3357. [PMID: 30051369 PMCID: PMC6132431 DOI: 10.1245/s10434-018-6655-7] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Indexed: 01/12/2023]
Abstract
Background Near-infrared (NIR) fluorescence is a promising novel imaging technique that can aid in intraoperative demarcation of pancreatic cancer (PDAC) and thus increase radical resection rates. This study investigated SGM-101, a novel, fluorescent-labeled anti-carcinoembryonic antigen (CEA) antibody. The phase 1 study aimed to assess the tolerability and feasibility of intraoperative fluorescence tumor imaging using SGM-101 in patients undergoing a surgical exploration for PDAC. Methods At least 48 h before undergoing surgery for PDAC, 12 patients were injected intravenously with 5, 7.5, or 10 mg of SGM-101. Tolerability assessments were performed at regular intervals after dosing. The surgical field was imaged using the Quest NIR imaging system. Concordance between fluorescence and tumor presence on histopathology was studied. Results In this study, SGM-101 specifically accumulated in CEA-expressing primary tumors and peritoneal and liver metastases, allowing real-time intraoperative fluorescence imaging. The mean tumor-to-background ratio (TBR) was 1.6 for primary tumors and 1.7 for metastatic lesions. One false-positive lesion was detected (CEA-expressing intraductal papillary mucinous neoplasm). False-negativity was seen twice as a consequence of overlying blood or tissue that blocked the fluorescent signal. Conclusion The use of a fluorescent-labeled anti-CEA antibody was safe and feasible for the intraoperative detection of both primary PDAC and metastases. These results warrant further research to determine the impact of this technique on clinical decision making and overall survival.
Collapse
Affiliation(s)
- Charlotte E S Hoogstins
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands.,Centre for Human Drug Research, Leiden, The Netherlands
| | - Leonora S F Boogerd
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | - J Sven D Mieog
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | - Bert A Bonsing
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | - André Pèlegrin
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
| | - Marian Gutowski
- Institut Régional du Cancer de Montpellier, Montpellier, France
| | | | - Jacobus Burggraaf
- Centre for Human Drug Research, Leiden, The Netherlands.,Leiden Academic Center for Drug Research, Leiden, The Netherlands
| | | |
Collapse
|
12
|
|
13
|
uPAR-targeted optical near-infrared (NIR) fluorescence imaging and PET for image-guided surgery in head and neck cancer: proof-of-concept in orthotopic xenograft model. Oncotarget 2017; 8:15407-15419. [PMID: 28039488 PMCID: PMC5362495 DOI: 10.18632/oncotarget.14282] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/30/2016] [Indexed: 12/29/2022] Open
Abstract
Purpose Urokinase-like Plasminogen Activator Receptor (uPAR) is overexpressed in a variety of carcinoma types, and therefore represents an attractive imaging target. The aim of this study was to assess the feasibility of two uPAR-targeted probes for PET and fluorescence tumor imaging in a human xenograft tongue cancer model. Experimental design and results Tumor growth of tongue cancer was monitored by bioluminescence imaging (BLI) and MRI. Either ICG-Glu-Glu-AE105 (fluorescent agent) or 64Cu-DOTA-AE105 (PET agent) was injected systemically, and fluorescence imaging or PET/CT imaging was performed. Tissue was collected for micro-fluorescence imaging and histology. A clear fluorescent signal was detected in the primary tumor with a mean in vivo tumor-to-background ratio of 2.5. Real-time fluorescence-guided tumor resection was possible, and sub-millimeter tumor deposits could be localized. Histological analysis showed co-localization of the fluorescent signal, uPAR expression and tumor deposits. In addition, the feasibility of uPAR-guided robotic cancer surgery was demonstrated. Also, uPAR-PET imaging showed a clear and localized signal in the tongue tumors. Conclusions This study demonstrated the feasibility of combining two uPAR-targeted probes in a preclinical head and neck cancer model. The PET modality provided preoperative non-invasive tumor imaging and the optical modality allowed for real-time fluorescence-guided tumor detection and resection. Clinical translation of this platform seems promising.
Collapse
|
14
|
Hoogstins CE, Weixler B, Boogerd LS, Hoppener DJ, Prevoo HA, Sier CF, Burger JW, Verhoef C, Bhairosingh S, Farina Sarasqueta A, Burggraaf J, Vahrmeijer AL. In Search for Optimal Targets for Intraoperative Fluorescence Imaging of Peritoneal Metastasis From Colorectal Cancer. BIOMARKERS IN CANCER 2017; 9:1179299X17728254. [PMID: 28874886 PMCID: PMC5576539 DOI: 10.1177/1179299x17728254] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 07/14/2017] [Indexed: 01/11/2023]
Abstract
Peritoneal metastasis (PM) occurs in about 10% of patients with colorectal cancer (CRC). Fluorescence imaging can enhance contrast between cancerous and benign tissue, enabling the surgeon to clearly visualize PM during cytoreductive surgery. This study assessed the suitability of different biomarkers as potential targets for tumor-targeted imaging of PM of CRC. Tissue samples from primary tumor and PM from patients with CRC were obtained from the pathology archives and immunohistochemical stainings were performed. Overexpression of the epithelial cell adhesion molecule (EpCAM) and carcinoembryonic antigen (CEA) was seen in 100% of PM samples and the expression was strong in >70% of samples. Tyrosine-kinase Met (C-Met) and folate receptor α overexpression was seen in 20% of PM samples. For successful application of tumor-targeted intraoperative fluorescence imaging of PM, biomarkers need to be identified. We demonstrated that both EpCAM and CEA are suitable targets for fluorescence imaging of PM in patients with CRC.
Collapse
Affiliation(s)
| | - Benjamin Weixler
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Leonora Sf Boogerd
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Diederik J Hoppener
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Hendrica Ajm Prevoo
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Cornelis Fm Sier
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Jacobus Wa Burger
- Department of Surgical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Cornelis Verhoef
- Department of Surgical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Shadvhi Bhairosingh
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Jacobus Burggraaf
- Department of Pharmacology, Centre for Human Drug Research, Leiden, The Netherlands
| | | |
Collapse
|
15
|
Tummers WS, Farina-Sarasqueta A, Boonstra MC, Prevoo HA, Sier CF, Mieog JS, Morreau J, van Eijck CH, Kuppen PJ, van de Velde CJ, Bonsing BA, Vahrmeijer AL, Swijnenburg RJ. Selection of optimal molecular targets for tumor-specific imaging in pancreatic ductal adenocarcinoma. Oncotarget 2017; 8:56816-56828. [PMID: 28915633 PMCID: PMC5593604 DOI: 10.18632/oncotarget.18232] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 05/01/2017] [Indexed: 12/21/2022] Open
Abstract
Discrimination of pancreatic ductal adenocarcinoma (PDAC) from chronic pancreatitis (CP) or peritumoral inflammation is challenging, both at preoperative imaging and during surgery, but it is crucial for proper therapy selection. Tumor-specific molecular imaging aims to enhance this discrimination and to help select and stratify patients for resection. We evaluated various biomarkers for the specific identification of PDAC and associated lymph node metastases. Using immunohistochemistry (IHC), expression levels and patterns were investigated of integrin αvβ6, carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5), Cathepsin E (Cath E), epidermal growth factor receptor (EGFR), hepatocyte growth factor receptor (c-MET), thymocyte differentiation antigen 1 (Thy1), and urokinase-type plasminogen activator receptor (uPAR). In a first cohort, multiple types of pancreatic tissue were evaluated (n=62); normal pancreatic tissue (n=8), CP (n=7), PDAC (n=9), tumor associated lymph nodes (n=32), and PDAC after neoadjuvant radiochemotherapy (n=6). In a second cohort, tissues were investigated (n=55) with IHC and immunofluorescence (IF) for concordance of biomarker expression in all tissue types, obtained from an individual patient. Integrin αvβ6 and CEACAM5 showed significantly higher expression levels in PDAC versus normal pancreatic tissue (P=0.001 and P<0.001, respectively) and CP (P=0.003 and P<0.001, respectively). Avβ6 and CEACAM5 expression identified tumor-positive lymph nodes correctly in 84% and 68%, respectively, and in 100% of tumor-negative nodes for both biomarkers. In conclusion, αvβ6 and CEACAM5 are excellent biomarkers to differentiate PDAC from surrounding tissue and to identify lymph node metastases. Individually or combined, these biomarkers are promising targets for tumor-specific molecular imaging of PDAC.
Collapse
Affiliation(s)
- Willemieke S Tummers
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Martin C Boonstra
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Hendrica A Prevoo
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Cornelis F Sier
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan S Mieog
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Johannes Morreau
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Casper H van Eijck
- Department of Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Peter J Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Bert A Bonsing
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | | |
Collapse
|
16
|
Boonstra MC, Van Driel PBAA, Keereweer S, Prevoo HAJM, Stammes MA, Baart VM, Löwik CWGM, Mazar AP, van de Velde CJH, Vahrmeijer AL, Sier CFM. Preclinical uPAR-targeted multimodal imaging of locoregional oral cancer. Oral Oncol 2017; 66:1-8. [PMID: 28249642 DOI: 10.1016/j.oraloncology.2016.12.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/27/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Establishing adequate resection margins and lymphatic mapping are crucial for the prognosis of oral cancer patients. Novel targeted imaging modalities are needed, enabling pre- and intraoperative detection of tumour cells, in combination with improved post-surgical examination by the pathologist. The urokinase-receptor (uPAR) is overexpressed in head and neck cancer, where it is associated with tumour progression and metastasis. MATERIAL AND METHODS To determine suitability of uPAR for molecular imaging of oral cancer surgery, human head and neck tumours were sectioned and stained for uPAR to evaluate the expression pattern compared to normal mucosa. Furthermore, metastatic oral squamous carcinoma cell line OSC-19 was used for targeting uPAR in in vivo mouse models. Using anti-uPAR antibody ATN-658, equipped with a multimodal label, the in vivo specificity was investigated and the optimal dose and time-window were evaluated. RESULTS All human oral cancer tissues expressed uPAR in epithelial and stromal cells. Hybrid ATN-658 clearly visualized tongue tumours in mice using either NIRF or SPECT imaging. Mean fluorescent TBRs over time were 4.3±0.7 with the specific tracer versus 1.7±0.1 with a control antibody. A significant difference in TBRs could be seen between 1nmol (150μg) and 0.34nmol (50μg) dose groups (n=4, p<0.05). Co-expression between BLI, GFP and the NIR fluorescent signals were seen in the tongue tumour, whereas human cytokeratin staining confirmed presence of malignant cells in the positive cervical lymph nodes. CONCLUSION This study shows the applicability of an uPAR specific multimodal tracer in an oral cancer model, combining SPECT with intraoperative guidance.
Collapse
Affiliation(s)
- M C Boonstra
- Department of Surgery, Leiden University Medical Centre, Leiden, Netherlands
| | - P B A A Van Driel
- Department of Radiology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - S Keereweer
- Department of Otorhinolaryngology, and Head & Neck Surgery, Erasmus Medical Centre, Rotterdam, Netherlands
| | - H A J M Prevoo
- Department of Surgery, Leiden University Medical Centre, Leiden, Netherlands
| | - M A Stammes
- Department of Radiology, Leiden University Medical Centre, Leiden, Netherlands; Percuros BV, Enschede, Netherlands
| | - V M Baart
- Department of Surgery, Leiden University Medical Centre, Leiden, Netherlands
| | - C W G M Löwik
- Department of Radiology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - A P Mazar
- Monopar Therapeutics Inc, Northbrook, IL, United States
| | - C J H van de Velde
- Department of Surgery, Leiden University Medical Centre, Leiden, Netherlands
| | - A L Vahrmeijer
- Department of Surgery, Leiden University Medical Centre, Leiden, Netherlands
| | - C F M Sier
- Department of Surgery, Leiden University Medical Centre, Leiden, Netherlands; Antibodies for Research Applications BV, Gouda, Netherlands.
| |
Collapse
|
17
|
[Intraoperative multidimensional visualization]. Chirurg 2016; 87:1015-1024. [PMID: 27796416 DOI: 10.1007/s00104-016-0314-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Modern intraoperative techniques of visualization are increasingly being applied in general and visceral surgery. The combination of diverse techniques provides the possibility of multidimensional intraoperative visualization of specific anatomical structures. Thus, it is possible to differentiate between normal tissue and tumor tissue and therefore exactly define tumor margins. The aim of intraoperative visualization of tissue that is to be resected and tissue that should be spared is to lead to a rational balance between oncological and functional results. Moreover, these techniques help to analyze the physiology and integrity of tissues. Using these methods surgeons are able to analyze tissue perfusion and oxygenation. However, to date it is not clear to what extent these imaging techniques are relevant in the clinical routine. The present manuscript reviews the relevant modern visualization techniques focusing on intraoperative computed tomography and magnetic resonance imaging as well as augmented reality, fluorescence imaging and optoacoustic imaging.
Collapse
|