1
|
Tynianskaia L, Heide M. Human-specific genetic hallmarks in neocortical development: focus on neural progenitors. Curr Opin Genet Dev 2024; 89:102267. [PMID: 39378630 PMCID: PMC7617552 DOI: 10.1016/j.gde.2024.102267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/07/2024] [Accepted: 09/15/2024] [Indexed: 10/10/2024]
Abstract
The evolutionary expansion of the neocortex in the ape lineage is the basis for the development of higher cognitive abilities. However, the human brain has uniquely increased in size and degree of folding, forming an essential foundation for advanced cognitive functions. This raises the question: what factors distinguish humans from our closest living primate relatives, such as chimpanzees and bonobos, which exhibit comparatively constrained cognitive capabilities? In this review, we focus on recent studies examining (modern) human-specific genetic traits that influence neural progenitor cells, whose behavior and activity are crucial for shaping cortical morphology. We emphasize the role of human-specific genetic modifications in signaling pathways that enhance the abundance of apical and basal progenitors, as well as the importance of basal progenitor metabolism in their proliferation in human. Additionally, we discuss how changes in neuron morphology contribute to the evolution of human cognition and provide our perspective on future directions in the field.
Collapse
Affiliation(s)
- Lidiia Tynianskaia
- German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077Göttingen, Germany
| | - Michael Heide
- German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077Göttingen, Germany
| |
Collapse
|
2
|
Sun Z, Liang C, Ling Y, Chen Y, Ma Z, Xu Y, Liu Z. A study on the subchronic toxicity of triclocarban to the early-life development of oryzias melastigma and focused on the analysis of osmoregulatory regulation mechanisms. Comp Biochem Physiol C Toxicol Pharmacol 2024; 279:109882. [PMID: 38437996 DOI: 10.1016/j.cbpc.2024.109882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/27/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
Triclocarban (TCC), a novel antimicrobial agent found in personal care products, has been extensively detected in marine environments. However, research on the toxic effects of TCC on marine organisms remains inadequate. This study delved into the subchronic toxic effects of TCC on the early life stages of marine medaka (Oryzias melastigma, O. melastigma), revealing that TCC could reduce embryo heart rate and hatching rate while diminishing the survival rate of larvae. Biomarker assays indicated that TCC could inflict damage on the embryos' antioxidant and nervous systems. Transcriptomic analysis suggested that TCC could impact cell growth, reproduction, and various life processes, activating cancer signaling pathways, increasing the likelihood of cancer, and exerting toxic effects on the immune and osmoregulatory systems. To validate and enhance our understanding of TCC's unique toxic impact on the osmoregulatory system of O. melastigma, we conducted homology modeling and molecular docking analyses on the protein involved in osmoregulation. The study intuitively revealed the potential binding affinity of TCC to sodium/potassium-transporting ATPase subunit alph (ATP1A1), indicating its ability to disrupt osmotic balance in marine fish by affecting this target protein. In summary, the results of this study will further enhance our comprehension of the potential toxic effects and mechanisms of TCC on the early stages of marine fish, with a specific focus on its unique toxic effects in osmoregulation.
Collapse
Affiliation(s)
- Zhecheng Sun
- School of Environmental Science and Engineering, Nanjing tech university, Nanjing 211816, China
| | - Chuan Liang
- School of Environmental Science and Engineering, Nanjing tech university, Nanjing 211816, China
| | - Yunzhe Ling
- School of Environmental Science and Engineering, Nanjing tech university, Nanjing 211816, China
| | - Yang Chen
- School of Environmental Science and Engineering, Nanjing tech university, Nanjing 211816, China
| | - Zhengzhuo Ma
- School of Environmental Science and Engineering, Nanjing tech university, Nanjing 211816, China
| | - Yanhua Xu
- School of Environmental Science and Engineering, Nanjing tech university, Nanjing 211816, China
| | - Zhiying Liu
- School of Environmental Science and Engineering, Nanjing tech university, Nanjing 211816, China.
| |
Collapse
|
3
|
Soumoy L, Genbauffe A, Mouchart L, Sperone A, Trelcat A, Mukeba-Harchies L, Wells M, Blankert B, Najem A, Ghanem G, Saussez S, Journe F. ATP1A1 is a promising new target for melanoma treatment and can be inhibited by its physiological ligand bufalin to restore targeted therapy efficacy. Cancer Cell Int 2024; 24:8. [PMID: 38178183 PMCID: PMC10765859 DOI: 10.1186/s12935-023-03196-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 12/26/2023] [Indexed: 01/06/2024] Open
Abstract
Despite advancements in treating metastatic melanoma, many patients exhibit resistance to targeted therapies. Our study focuses on ATP1A1, a sodium pump subunit associated with cancer development. We aimed to assess ATP1A1 prognostic value in melanoma patients and examine the impact of its ligand, bufalin, on melanoma cell lines in vitro and in vivo. High ATP1A1 expression (IHC) correlated with reduced overall survival in melanoma patients. Resistance to BRAF inhibitor was linked to elevated ATP1A1 levels in patient biopsies (IHC, qPCR) and cell lines (Western blot, qPCR). Additionally, high ATP1A1 mRNA expression positively correlated with differentiation/pigmentation markers based on data from The Cancer Genome Atlas (TCGA) databases and Verfaillie proliferative gene signature analysis. Bufalin specifically targeted ATP1A1 in caveolae, (proximity ligation assay) and influenced Src phosphorylation (Western blot), thereby disrupting multiple signaling pathways (phosphokinase array). In vitro, bufalin induced apoptosis in melanoma cell lines by acting on ATP1A1 (siRNA experiments) and, in vivo, significantly impeded melanoma growth using a nude mouse xenograft model with continuous bufalin delivery via an osmotic pump. In conclusion, our study demonstrates that ATP1A1 could serve as a prognostic marker for patient survival and a predictive marker for response to BRAF inhibitor therapy. By targeting ATP1A1, bufalin inhibited cell proliferation, induced apoptosis in vitro, and effectively suppressed tumor development in mice. Thus, our findings strongly support ATP1A1 as a promising therapeutic target, with bufalin as a potential agent to disrupt its tumor-promoting activity.
Collapse
Affiliation(s)
- Laura Soumoy
- Laboratory of Human Anatomy and Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons (UMONS), 7000, Mons, Belgium.
- Institut National de la Santé et de la Recherche Médicale (INSERM) U981, Gustave Roussy Cancer Campus, Villejuif, France.
| | - Aline Genbauffe
- Laboratory of Human Anatomy and Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons (UMONS), 7000, Mons, Belgium
| | - Lena Mouchart
- Laboratory of Human Anatomy and Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons (UMONS), 7000, Mons, Belgium
| | - Alexandra Sperone
- Laboratory of Human Anatomy and Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons (UMONS), 7000, Mons, Belgium
| | - Anne Trelcat
- Laboratory of Human Anatomy and Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons (UMONS), 7000, Mons, Belgium
| | - Léa Mukeba-Harchies
- Laboratory of Human Anatomy and Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons (UMONS), 7000, Mons, Belgium
| | - Mathilde Wells
- Laboratory of Pharmaceutical Analysis, Faculty of Medicine and Pharmacy, University of Mons (UMONS), 7000, Mons, Belgium
| | - Bertrand Blankert
- Laboratory of Pharmaceutical Analysis, Faculty of Medicine and Pharmacy, University of Mons (UMONS), 7000, Mons, Belgium
| | - Ahmad Najem
- Laboratory of Clinical and Experimental Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1000, Brussels, Belgium
| | - Ghanem Ghanem
- Laboratory of Clinical and Experimental Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1000, Brussels, Belgium
| | - Sven Saussez
- Laboratory of Human Anatomy and Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons (UMONS), 7000, Mons, Belgium
- Department of Otolaryngology and Head and Neck Surgery, CHU Saint-Pierre, 1000, Brussels, Belgium
| | - Fabrice Journe
- Laboratory of Human Anatomy and Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons (UMONS), 7000, Mons, Belgium.
- Laboratory of Clinical and Experimental Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1000, Brussels, Belgium.
| |
Collapse
|
4
|
Feng X, Li J, Li H, Chen X, Liu D, Li R. Bioactive C21 Steroidal Glycosides from Euphorbia kansui Promoted HepG2 Cell Apoptosis via the Degradation of ATP1A1 and Inhibited Macrophage Polarization under Co-Cultivation. Molecules 2023; 28:2830. [PMID: 36985801 PMCID: PMC10058894 DOI: 10.3390/molecules28062830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Euphorbia kansui is clinically used for the treatment of esophageal cancer, lung cancer, cancerous melanoma, asthma, pleural disorders, ascites, and pertussis, among other conditions. In this study, 12 steroids were obtained and identified from E. kansui, and cynsaccatol L (5), which showed the best effects in terms of inhibiting the proliferation of HepG2 cells and the immune regulation of macrophages. Furthermore, 5 induced typical apoptotic characteristics in HepG2 cells, such as morphological changes and the caspase cascade, as well as inducing autophagy-dependent apoptosis via mitochondrial dysfunction and reactive oxygen species (ROS) accumulation. The antitumor mechanism of 5 might be related to promoting the endocytosis and degradation of ATP1A1 protein and then down-regulating the downstream AKT and ERK signaling pathways. Furthermore, the antiproliferation effect of 5 in co-cultivation with macrophages was investigated, which showed that 5 promoted the apoptosis of HepG2 cells by modulating the release of inflammatory cytokines, such as TNF-α and IFN-γ; regulating the M2-subtype polarization of macrophages; promoting the phagocytosis of macrophages. In conclusion, 5 exerted anti-proliferative effects by promoting the degradation of ATP1A1 and inhibiting the ATP1A1-AKT/ERK signaling pathway in HepG2. Furthermore, it regulated macrophage function in co-cultivation, thereby further exerting adjuvant anti-HepG2 activity.
Collapse
Affiliation(s)
- Xiaoyi Feng
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- Faculty of basic Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Jianchun Li
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Hongmei Li
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xuanqin Chen
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Dan Liu
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Rongtao Li
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
5
|
Qi J, Mo F, An NA, Mi T, Wang J, Qi J, Li X, Zhang B, Xia L, Lu Y, Sun G, Wang X, Li C, Hu B. A Human-Specific De Novo Gene Promotes Cortical Expansion and Folding. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204140. [PMID: 36638273 PMCID: PMC9982566 DOI: 10.1002/advs.202204140] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Newly originated de novo genes have been linked to the formation and function of the human brain. However, how a specific gene originates from ancestral noncoding DNAs and becomes involved in the preexisting network for functional outcomes remains elusive. Here, a human-specific de novo gene, SP0535, is identified that is preferentially expressed in the ventricular zone of the human fetal brain and plays an important role in cortical development and function. In human embryonic stem cell-derived cortical organoids, knockout of SP0535 compromises their growth and neurogenesis. In SP0535 transgenic (TG) mice, expression of SP0535 induces fetal cortex expansion and sulci and gyri-like structure formation. The progenitors and neurons in the SP0535 TG mouse cortex tend to proliferate and differentiate in ways that are unique to humans. SP0535 TG adult mice also exhibit improved cognitive ability and working memory. Mechanistically, SP0535 interacts with the membrane protein Na+ /K+ ATPase subunit alpha-1 (ATP1A1) and releases Src from the ATP1A1-Src complex, allowing increased level of Src phosphorylation that promotes cell proliferation. Thus, SP0535 is the first proven human-specific de novo gene that promotes cortical expansion and folding, and can function through incorporating into an existing conserved molecular network.
Collapse
Affiliation(s)
- Jianhuan Qi
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijing100049China
| | - Fan Mo
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijing100049China
| | - Ni A. An
- Laboratory of Bioinformatics and Genomic MedicineInstitute of Molecular MedicineCollege of Future TechnologyPeking UniversityBeijing100871China
| | - Tingwei Mi
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
| | - Jiaxin Wang
- Laboratory of Bioinformatics and Genomic MedicineInstitute of Molecular MedicineCollege of Future TechnologyPeking UniversityBeijing100871China
| | - Jun‐Tian Qi
- Laboratory of Bioinformatics and Genomic MedicineInstitute of Molecular MedicineCollege of Future TechnologyPeking UniversityBeijing100871China
| | - Xiangshang Li
- Laboratory of Bioinformatics and Genomic MedicineInstitute of Molecular MedicineCollege of Future TechnologyPeking UniversityBeijing100871China
| | - Boya Zhang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
| | - Longkuo Xia
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijing100049China
| | - Yingfei Lu
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijing100049China
| | - Gaoying Sun
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijing100049China
| | - Xinyue Wang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijing100049China
| | - Chuan‐Yun Li
- Laboratory of Bioinformatics and Genomic MedicineInstitute of Molecular MedicineCollege of Future TechnologyPeking UniversityBeijing100871China
| | - Baoyang Hu
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijing100049China
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
- Beijing Institute for Stem Cell and Regenerative MedicineBeijing100101China
| |
Collapse
|
6
|
Meng L, Lu H, Li Y, Zhao J, He S, Wang Z, Shen J, Huang H, Xiao J, Sooranna SR, Song J. Human papillomavirus infection can alter the level of tumour stemness and T cell infiltration in patients with head and neck squamous cell carcinoma. Front Immunol 2022; 13:1013542. [PMID: 36420261 PMCID: PMC9676257 DOI: 10.3389/fimmu.2022.1013542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/17/2022] [Indexed: 07/20/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) usually has a poor prognosis and is associated with a high mortality rate. Its etiology is mainly the result from long-term exposure to either alcohol, tobacco or human papillomavirus (HPV) infection or a combination of these insults. However, HNSCC patients with HPV have been found to show a survival advantage over those without the virus, but the mechanism that confers this advantage is unclear. Due to the large number of HPV-independent HNSCC cases, there is a possibility that the difference in prognosis between HPV-positive (HPV+) and negative (HPV-) patients is due to different carcinogens. To clarify this, we used scRNA data and viral tracking methods in order to identify HPV+ and HPV- cells in the tumour tissues of patients infected with HPV. By comparing HPV+ and HPV- malignant cells, we found a higher level of tumour stemness in HPV- tumour cells. Using tumour stemness-related genes, we established a six-gene prognostic signature that was used to divide the patients into low- and high-risk groups. It was found that HPV patients who were at low-risk of contracting HNSCC had a higher number of CD8+ T-cells as well as a higher expression of immune checkpoint molecules. Correspondingly, we found that HPV+ tumour cells expressed higher levels of CCL4, and these were highly correlated with CD8+ T cells infiltration and immune checkpoint molecules. These data suggest that the stemness features of tumour cells are not only associated with the prognostic risk, but that it could also affect the immune cell interactions and associated signalling pathways.
Collapse
Affiliation(s)
- Lingzhang Meng
- Institute of Cardiovascular Sciences, Guangxi Academy of Medical Sciences, Nanning, China
- Center for Systemic Inflammation Research (CSIR), School of Preclinical Medicine, Youjiang Medical University for Nationalities, Baise, China
| | - Heming Lu
- Second Division of Department of Radiation Oncology, Guangxi Academy of Medical Sciences, Nanning, China
- Second Division of Department of Radiation Oncology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yueyong Li
- Department of Interventive Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jingjie Zhao
- Life Science and Clinical Research Center, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Siyuan He
- Center for Systemic Inflammation Research (CSIR), School of Preclinical Medicine, Youjiang Medical University for Nationalities, Baise, China
| | - Zechen Wang
- Center for Systemic Inflammation Research (CSIR), School of Preclinical Medicine, Youjiang Medical University for Nationalities, Baise, China
| | - Jiajia Shen
- Center for Systemic Inflammation Research (CSIR), School of Preclinical Medicine, Youjiang Medical University for Nationalities, Baise, China
| | - Huixian Huang
- Second Division of Department of Radiation Oncology, Guangxi Academy of Medical Sciences, Nanning, China
- Second Division of Department of Radiation Oncology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jinru Xiao
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Suren Rao Sooranna
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Chelsea & Westminster Hospital, London, United Kingdom
| | - Jian Song
- Institute of Cardiovascular Sciences, Guangxi Academy of Medical Sciences, Nanning, China
- Center for Systemic Inflammation Research (CSIR), School of Preclinical Medicine, Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
7
|
Vasileva NS, Kuligina EV, Dymova MA, Savinovskaya YI, Zinchenko ND, Ageenko AB, Mishinov SV, Dome AS, Stepanov GA, Richter VA, Semenov DV. Transcriptome Changes in Glioma Cells Cultivated under Conditions of Neurosphere Formation. Cells 2022; 11:cells11193106. [PMID: 36231068 PMCID: PMC9563256 DOI: 10.3390/cells11193106] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Glioma is the most common and heterogeneous primary brain tumor. The development of a new relevant preclinical models is necessary. As research moves from cultures of adherent gliomas to a more relevant model, neurospheres, it is necessary to understand the changes that cells undergo at the transcriptome level. In the present work, we used three patient-derived gliomas and two immortalized glioblastomas, while their cultivation was carried out under adherent culture and neurosphere (NS) conditions. When comparing the transcriptomes of monolayer (ML) and NS cell cultures, we used Enrichr genes sets enrichment analysis to describe transcription factors (TFs) and the pathways involved in the formation of glioma NS. It was observed that NS formation is accompanied by the activation of five common gliomas of TFs, SOX2, UBTF, NFE2L2, TCF3 and STAT3. The sets of transcripts controlled by TFs MYC and MAX were suppressed in NS. Upregulated genes are involved in the processes of the epithelial-mesenchymal transition, cancer stemness, invasion and migration of glioma cells. However, MYC/MAX-dependent downregulated genes are involved in translation, focal adhesion and apical junction. Furthermore, we found three EGFR and FGFR signaling feedback regulators common to all analyzed gliomas-SPRY4, ERRFI1, and RAB31-which can be used for creating new therapeutic strategies of suppressing the invasion and progression of gliomas.
Collapse
Affiliation(s)
- Natalia S. Vasileva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Lavrentyev Avenue 8, Novosibirsk 630090, Russia
| | - Elena V. Kuligina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Lavrentyev Avenue 8, Novosibirsk 630090, Russia
| | - Maya A. Dymova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Lavrentyev Avenue 8, Novosibirsk 630090, Russia
| | - Yulya I. Savinovskaya
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Lavrentyev Avenue 8, Novosibirsk 630090, Russia
| | - Nikita D. Zinchenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Lavrentyev Avenue 8, Novosibirsk 630090, Russia
| | - Alisa B. Ageenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Lavrentyev Avenue 8, Novosibirsk 630090, Russia
| | - Sergey V. Mishinov
- Novosibirsk Research Institute of Traumatology and Orthopedics n.a. Ya.L. Tsivyan, Department of Neurosurgery, Frunze Street 17, Novosibirsk 630091, Russia
| | - Anton S. Dome
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Lavrentyev Avenue 8, Novosibirsk 630090, Russia
| | - Grigory A. Stepanov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Lavrentyev Avenue 8, Novosibirsk 630090, Russia
| | - Vladimir A. Richter
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Lavrentyev Avenue 8, Novosibirsk 630090, Russia
| | - Dmitry V. Semenov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Lavrentyev Avenue 8, Novosibirsk 630090, Russia
- Correspondence: ; Tel.: +73-833635189
| |
Collapse
|
8
|
Pan X, Burgman B, Wu E, Huang JH, Sahni N, Stephen Yi S. i-Modern: Integrated multi-omics network model identifies potential therapeutic targets in glioma by deep learning with interpretability. Comput Struct Biotechnol J 2022; 20:3511-3521. [PMID: 35860408 PMCID: PMC9284388 DOI: 10.1016/j.csbj.2022.06.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/26/2022] [Accepted: 06/26/2022] [Indexed: 12/13/2022] Open
Abstract
Effective and precise classification of glioma patients for their disease risks is critical to improving early diagnosis and patient survival. In the recent past, a significant amount of multi-omics data derived from cancer patients has emerged. However, a robust framework for integrating multi-omics data types to efficiently and precisely subgroup glioma patients and predict survival prognosis is still lacking. In addition, effective therapeutic targets for treating glioma patients with poor prognoses are in dire need. To begin to resolve this difficulty, we developed i-Modern, an integrated Multi-omics deep learning network method, and optimized a sophisticated computational model in gliomas that can accurately stratify patients based on their prognosis. We built a survival-associated predictive framework integrating transcription profile, miRNA expression, somatic mutations, copy number variation (CNV), DNA methylation, and protein expression. This framework achieved promising performance in distinguishing high-risk glioma patients from those with good prognoses. Furthermore, we constructed multiple fully connected neural networks that are trained on prioritized multi-omics signatures or even only potential single-omics signatures, based on our customized scoring system. Together, the landmark multi-omics signatures we identified may serve as potential therapeutic targets in gliomas.
Collapse
Affiliation(s)
- Xingxin Pan
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| | - Brandon Burgman
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA.,Interdisciplinary Life Sciences Graduate Programs (ILSGP), College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Erxi Wu
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA.,Neuroscience Institute and Department of Neurosurgery, Baylor Scott & White Health, Temple, TX 76502, USA.,Department of Surgery, Texas A & M University Health Science Center, College of Medicine, Temple, TX 76508, USA.,Department of Pharmaceutical Sciences, Texas A & M University Health Science Center, College of Pharmacy, College Station, TX 77843, USA
| | - Jason H Huang
- Neuroscience Institute and Department of Neurosurgery, Baylor Scott & White Health, Temple, TX 76502, USA.,Department of Surgery, Texas A & M University Health Science Center, College of Medicine, Temple, TX 76508, USA
| | - Nidhi Sahni
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA.,Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Quantitative and Computational Biosciences Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - S Stephen Yi
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA.,Department of Surgery, Texas A & M University Health Science Center, College of Medicine, Temple, TX 76508, USA.,Oden Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, Austin, TX 78712, USA.,Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
9
|
Shandell MA, Capatina AL, Lawrence SM, Brackenbury WJ, Lagos D. Inhibition of the Na +/K +-ATPase by cardiac glycosides suppresses expression of the IDO1 immune checkpoint in cancer cells by reducing STAT1 activation. J Biol Chem 2022; 298:101707. [PMID: 35150740 PMCID: PMC8902613 DOI: 10.1016/j.jbc.2022.101707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/18/2022] Open
Abstract
Despite extensive basic and clinical research on immune checkpoint regulatory pathways, little is known about the effects of the ionic tumor microenvironment on immune checkpoint expression and function. Here we describe a mechanistic link between Na+/K+-ATPase (NKA) inhibition and activity of the immune checkpoint protein indoleamine-pyrrole 2',3'-dioxygenase 1 (IDO1). We found that IDO1 was necessary and sufficient for production of kynurenine, a downstream tryptophan metabolite, in cancer cells. We developed a spectrophotometric assay to screen a library of 31 model ion transport-targeting compounds for potential effects on IDO1 function in A549 lung and MDA-MB-231 breast cancer cells. This revealed that the cardiac glycosides ouabain and digoxin inhibited kynurenine production at concentrations that did not affect cell survival. NKA inhibition by ouabain and digoxin resulted in increased intracellular Na+ levels and downregulation of IDO1 mRNA and protein levels, which was consistent with the reduction in kynurenine levels. Knockdown of ATP1A1, the ɑ1 subunit of the NKA and target of cardiac glycosides, increased Na+ levels to a lesser extent than cardiac glycoside treatment and did not affect IDO1 expression. However, ATP1A1 knockdown significantly enhanced the effect of cardiac glycosides on IDO1 expression and kynurenine production. Mechanistically, we show that cardiac glycoside treatment resulted in curtailing the length of phosphorylation-mediated stabilization of STAT1, a transcriptional regulator of IDO1 expression, an effect enhanced by ATP1A1 knockdown. Our findings reveal cross talk between ionic modulation via cardiac glycosides and immune checkpoint protein expression in cancer cells with broad mechanistic and clinical implications.
Collapse
Affiliation(s)
- Mia A Shandell
- Department of Biology, University of York, York, United Kingdom; Hull York Medical School, University of York, York, United Kingdom; York Biomedical Research Institute, University of York, York, United Kingdom
| | - Alina L Capatina
- Department of Biology, University of York, York, United Kingdom; York Biomedical Research Institute, University of York, York, United Kingdom
| | | | - William J Brackenbury
- Department of Biology, University of York, York, United Kingdom; York Biomedical Research Institute, University of York, York, United Kingdom
| | - Dimitris Lagos
- Hull York Medical School, University of York, York, United Kingdom; York Biomedical Research Institute, University of York, York, United Kingdom.
| |
Collapse
|
10
|
Feng XY, Zhao W, Yao Z, Wei NY, Shi AH, Chen WH. Downregulation of ATP1A1 Expression by Panax notoginseng (Burk.) F.H. Chen Saponins: A Potential Mechanism of Antitumor Effects in HepG2 Cells and In Vivo. Front Pharmacol 2021; 12:720368. [PMID: 34690763 PMCID: PMC8529207 DOI: 10.3389/fphar.2021.720368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/24/2021] [Indexed: 11/13/2022] Open
Abstract
The Na+/K+-ATPase α1 subunit (ATP1A1) is a potential target for hepatic carcinoma (HCC) treatment, which plays a key role in Na+/K+ exchange, metabolism, signal transduction, etc. In vivo, we found that Panax notoginseng saponins (PNS) could inhibit tumor growth and significantly downregulate the expression and phosphorylation of ATP1A1/AKT/ERK in tumor-bearing mice. Our study aims to explore the potential effects of PNS on the regulation of ATP1A1 and the possible mechanisms of antitumor activity. The effects of PNS on HepG2 cell viability, migration, and apoptosis were examined in vitro. Fluorescence, Western blot, and RT-PCR analyses were used to examine the protein and gene expression. Further analysis was assessed with a Na+/K+-ATPase inhibitor (digitonin) and sorafenib in vitro. We found that the ATP1A1 expression was markedly higher in HepG2 cells than in L02 cells and PNS exhibited a dose-dependent effect on the expression of ATP1A and the regulation of AKT/ERK signaling pathways. Digitonin did not affect the expression of ATP1A1 but attenuated the effects of PNS on the regulation of ATP1A1/AKT/ERK signaling pathways and enhanced the antitumor effect of PNS by promoting nuclear fragmentation. Taken together, PNS inhibited the proliferation of HepG2 cells via downregulation of ATP1A1 and signal transduction. Our findings will aid a data basis for the clinical use of PNS.
Collapse
Affiliation(s)
- Xiao-Yi Feng
- Faculty of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Wei Zhao
- Faculty of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Zheng Yao
- Faculty of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Ning-Yi Wei
- Faculty of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - An-Hua Shi
- Faculty of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Wen-Hui Chen
- Faculty of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
11
|
Selvakumar M, Palanichamy P, Arumugam V, Venkatesan M, Aathmanathan S, Krishnamoorthy H, Pugazhendhi A. In silico potential of nutraceutical plant of Pithecellobium dulce against GRP78 target protein for breast cancer. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01840-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|