1
|
Li Y, Li X, Cournoyer P, Choudhuri S, Guo L, Chen S. Comparing the cannabidiol-induced transcriptomic profiles in human and mouse Sertoli cells. Toxicology 2025; 512:154068. [PMID: 39894194 DOI: 10.1016/j.tox.2025.154068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/15/2025] [Accepted: 01/25/2025] [Indexed: 02/04/2025]
Abstract
Cannabidiol (CBD), a major cannabinoid found in Cannabis sativa L., has been used in the treatment of seizures associated with Lennox-Gastaut syndrome, Dravet syndrome, and tuberous sclerosis complex. Recently, concerns have been raised regarding the male reproductive toxicity of CBD in animal models, such as monkeys, rats, and mice. In our previous studies, we reported that CBD inhibited cell proliferation in both primary human Sertoli cells and mouse Sertoli TM4 cells. Transcriptomic analysis revealed that in primary human Sertoli cells CBD disrupted DNA replication, cell cycle, and DNA repair, ultimately causing cellular senescence. In this study, we further investigated the molecular changes induced by CBD in mouse Sertoli TM4 cells using RNA-sequencing analyses and compared the transcriptomic profile with that of primary human Sertoli cells. Our findings demonstrated that, unlike in primary human Sertoli cells, CBD did not induce cellular senescence but caused apoptosis in mouse Sertoli TM4 cells. Through transcriptomic data analysis in mouse Sertoli TM4 cells, immune and cellular stress responses were identified. Moreover, transcriptomic comparisons revealed major differences in molecular changes induced by CBD between mouse Sertoli TM4 and primary human Sertoli cells. This suggests that primary human Sertoli cells and mouse Sertoli cells may respond differently to CBD.
Collapse
Affiliation(s)
- Yuxi Li
- Division of Biochemical Toxicology, National Center for Toxicological Research, U S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Xilin Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Patrick Cournoyer
- Office of the Commissioner, U S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Supratim Choudhuri
- Division of Food Ingredients, Office of Premarket Additive Safety, Office of Food Chemical Safety, Dietary Supplements, and Innovation, Human Foods Program, U S. Food and Drug Administration, College Park, MD 20740, USA
| | - Lei Guo
- Division of Biochemical Toxicology, National Center for Toxicological Research, U S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research, U S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA.
| |
Collapse
|
2
|
Kamal R, Awasthi A, Paul P, Mir MS, Singh SK, Dua K. Novel drug delivery systems in colorectal cancer: Advances and future prospects. Pathol Res Pract 2024; 262:155546. [PMID: 39191194 DOI: 10.1016/j.prp.2024.155546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
Colorectal cancer (CRC) is an abnormal proliferation of cells within the colon and rectum, leading to the formation of polyps and disruption of mucosal functions. The disease development is influenced by a combination of factors, including inflammation, exposure to environmental mutagens, genetic alterations, and impairment in signaling pathways. Traditional treatments such as surgery, radiation, and chemotherapy are often used but have limitations, including poor solubility and permeability, treatment resistance, side effects, and post-surgery issues. Novel Drug Delivery Systems (NDDS) have emerged as a superior alternative, offering enhanced drug solubility, precision in targeting cancer cells, and regulated drug release. Thereby addressing the shortcomings of conventional therapies and showing promise for more effective CRC management. The present review sheds light on the pathogenesis, signaling pathways, biomarkers, conventional treatments, need for NDDS, and application of NDDS against CRC. Additionally, clinical trials, ongoing clinical trials, marketed formulations, and patents on CRC are also covered in the present review.
Collapse
Affiliation(s)
- Raj Kamal
- Department of Quality Assurance, ISF College of Pharmacy, Moga, Punjab 142001, India; School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh, Punjab 147301, India
| | - Ankit Awasthi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab 142001, India; Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Priyanka Paul
- Department of Pharmaceutical Science, PCTE Group of Institute, Ludhiana, Punjab, India
| | - Mohammad Shabab Mir
- School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh, Punjab 147301, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
3
|
Doherty N, Cardwell C, Murchie P, Hill C, Azoulay L, Hicks B. Use of 5-alpha reductase inhibitors and risk of gastrointestinal cancers in men with benign prostatic hyperplasia: A population-based cohort study. Int J Cancer 2024; 155:666-674. [PMID: 38554127 DOI: 10.1002/ijc.34937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/01/2024]
Abstract
Pre-clinical evidence suggests that 5-alpha reductase inhibitors (5ARi's), prescribed in the treatment of benign prostatic hyperplasia, reduce colorectal and gastro-oesophageal cancer incidence via action on the male hormonal pathway. However, few studies to date have investigated this association at the population level. Our study aimed to investigate the risk of colorectal and gastro-oesophageal cancers with the use of 5ARi's. We conducted a retrospective cohort study of new users of 5ARi's and alpha-blockers among patients with benign prostatic hyperplasia in the UK Clinical Practice Research Datalink. Patients were followed until a first ever diagnosis of colorectal or gastro-oesophageal cancer, death from any cause or end of registration with the general practice or 31st of December 2017. Cox proportional hazards models with inverse probability of treatment weights were used to calculate weighted hazard ratios (HR) and 95% confidence intervals (CIs) of incident colorectal cancer or gastro-oesophageal cancer associated with the use of 5ARi's compared to alpha-blockers. During a mean follow-up of 6.6 years, we found no association between the use of 5ARi's and colorectal (HR: 1.13, 95% CI 0.91-1.41) or gastro-oesophageal (HR 1.14, 95% CI 0.76-1.63) cancer risk compared to alpha-blockers. Sensitivity analysis showed largely consistent results when varying lag periods, using multiple imputations, and accounting for competing risk of death. Our study found no association between the use of 5ARi's and risk of colorectal or gastro-oesophageal cancer in men with benign prostatic hyperplasia.
Collapse
Affiliation(s)
- Niamh Doherty
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Chris Cardwell
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Peter Murchie
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | | | - Laurent Azoulay
- Centre for Clinical Epidemiology Lady Davis Institute, Jewish General Hospital, Montreal, Qubec, Canada
- Department of Epidemiology, Biostatistics, and Occupational Health and Gerald Bronfman Department of Oncology, McGill University, Montreal, Qubec, Canada
| | - Blánaid Hicks
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| |
Collapse
|
4
|
Rodríguez-Santiago Y, Garay-Canales CA, Nava-Castro KE, Morales-Montor J. Sexual dimorphism in colorectal cancer: molecular mechanisms and treatment strategies. Biol Sex Differ 2024; 15:48. [PMID: 38867310 PMCID: PMC11170921 DOI: 10.1186/s13293-024-00623-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/26/2024] [Indexed: 06/14/2024] Open
Abstract
INTRODUCTION Sexual dimorphism significantly influences cancer incidence and prognosis. Notably, females exhibit a lower risk and favorable prognosis for non-reproductive cancers compared to males, a pattern observable beyond the scope of risk behaviors such as alcohol consumption and smoking. Colorectal cancer, ranking third in global prevalence and second in mortality, disproportionately affects men. Sex steroid hormones, particularly estrogens and androgens, play crucial roles in cancer progression, considering epidemiological in vivo and in vitro, in general estrogens imparting a protective effect in females and androgens correlating with an increasing risk of colorectal cancer development. MAIN BODY The hormonal impact on immune response is mediated by receptor interactions, resulting in heightened inflammation, modulation of NF-kB, and fostering an environment conducive to cancer progression and metastasis. These molecules also influence the enteric nervous system, that is a pivotal in neuromodulator release and intestinal neuron stimulation, also contributes to cancer development, as evidenced by nerve infiltration into tumors. Microbiota diversity further intersects with immune, hormonal, and neural mechanisms, influencing colorectal cancer dynamics. A comprehensive understanding of hormonal influences on colorectal cancer progression, coupled with the complex interplay between immune responses, microbiota diversity and neurotransmitter imbalances, underpins the development of more targeted and effective therapies. CONCLUSIONS Estrogens mitigate colorectal cancer risk by modulating anti-tumor immune responses, enhancing microbial diversity, and curbing the pro-tumor actions of the sympathetic and enteric nervous systems. Conversely, androgens escalate tumor growth by dampening anti-tumor immune activity, reducing microbial diversity, and facilitating the release of tumor-promoting factors by the nervous system. These findings hold significant potential for the strategic purposing of drugs to fine-tune the extensive impacts of sex hormones within the tumor microenvironment, promising advancements in colorectal cancer therapies.
Collapse
Affiliation(s)
- Yair Rodríguez-Santiago
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Coyoacán, Mexico City, 04510, México
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Edificio D, 1er piso, Circuito de Posgrados, Ciudad Universitaria, Ciudad de México, 04510, México
| | - Claudia Angelica Garay-Canales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Coyoacán, Mexico City, 04510, México
| | - Karen Elizabeth Nava-Castro
- Grupo de Biología y Química Atmosféricas, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX, 04510, México
| | - Jorge Morales-Montor
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Coyoacán, Mexico City, 04510, México.
| |
Collapse
|
5
|
Rajarajan S, Snijesh VP, Anupama CE, Nair MG, Mavatkar AD, Naidu CM, Patil S, Nimbalkar VP, Alexander A, Pillai M, Jolly MK, Sabarinathan R, Ramesh RS, Bs S, Prabhu JS. An androgen receptor regulated gene score is associated with epithelial to mesenchymal transition features in triple negative breast cancers. Transl Oncol 2023; 37:101761. [PMID: 37603927 PMCID: PMC10465938 DOI: 10.1016/j.tranon.2023.101761] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/13/2023] [Accepted: 08/07/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Androgen receptor (AR) is considered a marker of better prognosis in hormone receptor positive breast cancers (BC), however, its role in triple negative breast cancer (TNBC) is controversial. This may be attributed to intrinsic molecular differences or scoring methods for AR positivity. We derived AR regulated gene score and examined its utility in BC subtypes. METHODS AR regulated genes were derived by applying a bioinformatic pipeline on publicly available microarray data sets of AR+ BC cell lines and gene score was calculated as average expression of six AR regulated genes. Tumors were divided into AR high and low based on gene score and associations with clinical parameters, circulating androgens, survival and epithelial to mesenchymal transition (EMT) markers were examined, further evaluated in invitro models and public datasets. RESULTS 53% (133/249) tumors were classified as AR gene score high and were associated with significantly better clinical parameters, disease-free survival (86.13 vs 72.69 months, log rank p = 0.032) when compared to AR low tumors. 36% of TNBC (N = 66) were AR gene score high with higher expression of EMT markers (p = 0.024) and had high intratumoral levels of 5α-reductase, enzyme involved in intracrine androgen metabolism. In MDA-MB-453 treated with dihydrotestosterone, SLUG expression increased, E-cadherin decreased with increase in migration and these changes were reversed with bicalutamide. Similar results were obtained in public datasets. CONCLUSION Deciphering the role of AR in BC is difficult based on AR protein levels alone. Our results support the context dependent function of AR in driving better prognosis in ER positive tumors and EMT features in TNBC tumors.
Collapse
Affiliation(s)
- Savitha Rajarajan
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bengaluru, India; Centre for Doctoral Studies, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - V P Snijesh
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bengaluru, India; Centre for Doctoral Studies, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - C E Anupama
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bengaluru, India
| | - Madhumathy G Nair
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bengaluru, India
| | - Apoorva D Mavatkar
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bengaluru, India
| | - Chandrakala M Naidu
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bengaluru, India
| | - Sharada Patil
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bengaluru, India
| | - Vidya P Nimbalkar
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bengaluru, India
| | - Annie Alexander
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bengaluru, India
| | - Maalavika Pillai
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | | | - Rakesh S Ramesh
- Department of Surgical Oncology, St. John's Medical College, Bengaluru, India
| | - Srinath Bs
- Department of Surgery, Sri Shankara Cancer Hospital and Research Centre, Bangalore, India
| | - Jyothi S Prabhu
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bengaluru, India.
| |
Collapse
|
6
|
Zamora-Sánchez CJ, Camacho-Arroyo I. Allopregnanolone: Metabolism, Mechanisms of Action, and Its Role in Cancer. Int J Mol Sci 2022; 24:ijms24010560. [PMID: 36614002 PMCID: PMC9820109 DOI: 10.3390/ijms24010560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/17/2022] [Accepted: 12/17/2022] [Indexed: 12/30/2022] Open
Abstract
Allopregnanolone (3α-THP) has been one of the most studied progesterone metabolites for decades. 3α-THP and its synthetic analogs have been evaluated as therapeutic agents for pathologies such as anxiety and depression. Enzymes involved in the metabolism of 3α-THP are expressed in classical and nonclassical steroidogenic tissues. Additionally, due to its chemical structure, 3α-THP presents high affinity and agonist activity for nuclear and membrane receptors of neuroactive steroids and neurotransmitters, such as the Pregnane X Receptor (PXR), membrane progesterone receptors (mPR) and the ionotropic GABAA receptor, among others. 3α-THP has immunomodulator and antiapoptotic properties. It also induces cell proliferation and migration, all of which are critical processes involved in cancer progression. Recently the study of 3α-THP has indicated that low physiological concentrations of this metabolite induce the progression of several types of cancer, such as breast, ovarian, and glioblastoma, while high concentrations inhibit it. In this review, we explore current knowledge on the metabolism and mechanisms of action of 3α-THP in normal and tumor cells.
Collapse
|
7
|
Lawrence BM, O’Donnell L, Smith LB, Rebourcet D. New Insights into Testosterone Biosynthesis: Novel Observations from HSD17B3 Deficient Mice. Int J Mol Sci 2022; 23:ijms232415555. [PMID: 36555196 PMCID: PMC9779265 DOI: 10.3390/ijms232415555] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Androgens such as testosterone and dihydrotestosterone (DHT) are essential for male sexual development, masculinisation, and fertility. Testosterone is produced via the canonical androgen production pathway and is essential for normal masculinisation and testis function. Disruption to androgen production can result in disorders of sexual development (DSD). In the canonical pathway, 17β-hydroxysteroid dehydrogenase type 3 (HSD17B3) is viewed as a critical enzyme in the production of testosterone, performing the final conversion required. HSD17B3 deficiency in humans is associated with DSD due to low testosterone concentration during development. Individuals with HSD17B3 mutations have poorly masculinised external genitalia that can appear as ambiguous or female, whilst having internal Wolffian structures and testes. Recent studies in mice deficient in HSD17B3 have made the surprising finding that testosterone production is maintained, male mice are masculinised and remain fertile, suggesting differences between mice and human testosterone production exist. We discuss the phenotypic differences observed and the possible other pathways and enzymes that could be contributing to testosterone production and male development. The identification of alternative testosterone synthesising enzymes could inform the development of novel therapies to endogenously regulate testosterone production in individuals with testosterone deficiency.
Collapse
Affiliation(s)
- Ben M. Lawrence
- College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
- Correspondence: (B.M.L.); (D.R.)
| | - Liza O’Donnell
- College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Lee B. Smith
- College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
- Office for Research, Griffith University, Southport, QLD 4222, Australia
- MRC Centre for Reproductive Health, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Diane Rebourcet
- College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
- Correspondence: (B.M.L.); (D.R.)
| |
Collapse
|
8
|
Wei R, Zhu Y, Zhang Y, Zhao W, Yu X, Wang L, Gu C, Gu X, Yang Y. AIMP1 promotes multiple myeloma malignancy through interacting with ANP32A to mediate histone H3 acetylation. CANCER COMMUNICATIONS (LONDON, ENGLAND) 2022; 42:1185-1206. [PMID: 36042007 DOI: 10.1002/cac2.12356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/23/2022] [Accepted: 08/16/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Multiple myeloma (MM) is the second most common hematological malignancy. An overwhelming majority of patients with MM progress to serious osteolytic bone disease. Aminoacyl-tRNA synthetase-interacting multifunctional protein 1 (AIMP1) participates in several steps during cancer development and osteoclast differentiation. This study aimed to explore its role in MM. METHODS The gene expression profiling cohorts of MM were applied to determine the expression of AIMP1 and its association with MM patient prognosis. Enzyme-linked immunosorbent assay, immunohistochemistry, and Western blotting were used to detect AIMP1 expression. Protein chip analysis, RNA-sequencing, and chromatin immunoprecipitation and next-generation sequencing were employed to screen the interacting proteins and key downstream targets of AIMP1. The impact of AIMP1 on cellular proliferation was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in vitro and a xenograft model in vivo. Bone lesions were evaluated using tartrate-resistant acid phosphatase staining in vitro. A NOD/SCID-TIBIA mouse model was used to evaluate the effect of siAIMP1-loaded exosomes on bone lesion formation in vivo. RESULTS AIMP1 expression was increased in MM patients and strongly associated with unfavorable outcomes. Increased AIMP1 expression promoted MM cell proliferation in vitro and in vivo via activation of the mitogen-activated protein kinase (MAPK) signaling pathway. Protein chip assays and subsequent experiments revealed that AIMP1 interacted with acidic leucine-rich nuclear phosphoprotein 32 family member A (ANP32A) to regulate histone H3 acetylation. In addition, AIMP1 increased histone H3 acetylation enrichment function of GRB2-associated and regulator of MAPK protein 2 (GAREM2) to increase the phosphorylation of extracellular-regulated kinase 1/2 (p-ERK1/2). Furthermore, AIMP1 promoted osteoclast differentiation by activating nuclear factor of activated T cells c1 (NFATc1) in vitro. In contrast, exosome-coated small interfering RNA of AIMP1 effectively suppressed MM progression and osteoclast differentiation in vitro and in vivo. CONCLUSIONS Our data demonstrate that AIMP1 is a novel regulator of histone H3 acetylation interacting with ANP32A in MM, which accelerates MM malignancy via activation of the MAPK signaling pathway.
Collapse
Affiliation(s)
- Rongfang Wei
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210001, P. R. China.,School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Yan Zhu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Yuanjiao Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Wene Zhao
- Department of Analytical and Testing Center, Nanjing Medical University, Nanjing, Jiangsu, 211112, P. R. China
| | - Xichao Yu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Ling Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Chunyan Gu
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210001, P. R. China.,School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Xiaosong Gu
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210001, P. R. China.,School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Ye Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| |
Collapse
|
9
|
Zhang Y, Deng Z, Sun S, Xie S, Jiang M, Chen B, Gu C, Yang Y. NAT10 acetylates BCL-XL mRNA to promote the proliferation of multiple myeloma cells through PI3K-AKT pathway. Front Oncol 2022; 12:967811. [PMID: 35978804 PMCID: PMC9376478 DOI: 10.3389/fonc.2022.967811] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple myeloma (MM) is a clinically distinctive plasma cell malignancy in the bone marrow (BM), in which epigenetic abnormalities are featured prominently. Epigenetic modifications including acetylation have been deemed to contribute to tumorigenesis. N-acetyltransferase 10 (NAT10) is an important regulator of mRNA acetylation in many cancers, however its function in MM is poorly studied. We first analyzed MM clinical databases and found that elevated NAT10 expression conferred a poor prognosis in MM patients. Furthermore, overexpression of NAT10 promoted MM cell proliferation. The correlation analysis of acRIP-seq screened BCL-XL (BCL2L1) as a significant downstream target of NAT10. Further RNA decay assay showed that increased NAT10 improved the stability of BCL-XL mRNA and promoted protein translation to suppress cell apoptosis. NAT10 activated PI3K-AKT pathway and upregulated CDK4/CDK6 to accelerate cellular proliferation. Importantly, inhibition of NAT10 by Remodelin suppressed MM cell growth and induced cell apoptosis. Our findings show the important role of NAT10/BCL-XL axis in promoting MM cell proliferation. Further explorations are needed to fully define the potential of targeting NAT10 therapy in MM treatment.
Collapse
Affiliation(s)
- Yuanjiao Zhang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhendong Deng
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shanliang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Siyuan Xie
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mingmei Jiang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bing Chen
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunyan Gu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ye Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
10
|
Zhang Y, Yu X, Sun R, Min J, Tang X, Lin Z, Xie S, Li X, Lu S, Tian Z, Gu C, Teng L, Yang Y. Splicing factor arginine/serine-rich 8 promotes multiple myeloma malignancy and bone lesion through alternative splicing of CACYBP and exosome-based cellular communication. Clin Transl Med 2022; 12:e684. [PMID: 35184390 PMCID: PMC8858635 DOI: 10.1002/ctm2.684] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Multiple myeloma (MM) is a distinctive malignancy of plasma cell within the bone marrow (BM), of which alternative splicing factors play vital roles in the progression. Splicing factor arginine/serine-rich 8 (SFRS8) is the exclusive factor associated with MM prognosis, however its role in MM remains undefined. METHODS The analyses of 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide (MTT) assay, immunohistochemistry, flow cytometry and xenograft model were performed to examine cell proliferation, cell cycle and apoptosis in SFRS8 overexpression or knockdown MM cells in vitro and in vivo. The SFRS8-regulated alternative splicing events were identified by RNA immunoprecipitation sequencing (RIP-seq) and validated by RIP-qPCR and Co-IP methods. Exosomes were extracted from the supernatant of myeloma cells by ultracentrifugation. Bone lesion was evaluated by TRAP staining in vitro and SCID/NOD-TIBIA mouse model. A neon electroporation system was utilised to deliver siRNA through exosomes. The effect of siRNA-loaded exosomes in vivo was evaluated by using a patient-derived tumor xenograft (PDX) model and SCID/NOD-TIBIA mouse model. RESULTS SFRS8 was significantly upregulated in MM samples and positively associated with poor overall survival (OS) in MM patients. SFRS8 promoted MM cell proliferation in vitro and in vivo. Furthermore, calcyclin binding protein (CACYBP) was identified as the downstream target of SFRS8. Particularly, SFRS8 could reduce CACYBP isoform1 (NM_014412.3) and increase CACYBP isoform2 (NM_001007214.1) by mediating the alternative splicing of CACYBP, thereby altering the ubiquitination degradation of β-catenin to promote MM progression. In addition, SFRS8 promoted osteoclast differentiation through exosomes in vitro and in vivo. More importantly, exosomal siRNA targeting CACYBP isoform2 inhibited tumour growth in PDX and SCID/NOD-TIBIA mouse models. CONCLUSION Our findings demonstrate that targeting the SFRS8/CACYBP/β-catenin axis may be a promising strategy for MM diagnosis and treatment.
Collapse
Affiliation(s)
- Yuanjiao Zhang
- Nanjing Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- School of Medicine & Holistic Integrative MedicineNanjing University of Chinese MedicineNanjingChina
| | - Xichao Yu
- School of Medicine & Holistic Integrative MedicineNanjing University of Chinese MedicineNanjingChina
| | - Rongze Sun
- School of Life ScienceJilin UniversityChangchunChina
| | - Jie Min
- School of Medicine & Holistic Integrative MedicineNanjing University of Chinese MedicineNanjingChina
| | - Xiaozhu Tang
- School of Medicine & Holistic Integrative MedicineNanjing University of Chinese MedicineNanjingChina
| | - Zigen Lin
- School of Medicine & Holistic Integrative MedicineNanjing University of Chinese MedicineNanjingChina
| | - Siyuan Xie
- School of Medicine & Holistic Integrative MedicineNanjing University of Chinese MedicineNanjingChina
| | - Xinying Li
- School of Medicine & Holistic Integrative MedicineNanjing University of Chinese MedicineNanjingChina
| | - Shengfeng Lu
- Key Laboratory of A cupuncture and Medicine Research of Ministry of EducationNanjing University of Chinese MedicineNanjingChina
| | - Zhidan Tian
- Department of Pathology, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Chunyan Gu
- Nanjing Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- School of Medicine & Holistic Integrative MedicineNanjing University of Chinese MedicineNanjingChina
| | - Lesheng Teng
- School of Life ScienceJilin UniversityChangchunChina
| | - Ye Yang
- School of Medicine & Holistic Integrative MedicineNanjing University of Chinese MedicineNanjingChina
- Key Laboratory of A cupuncture and Medicine Research of Ministry of EducationNanjing University of Chinese MedicineNanjingChina
| |
Collapse
|
11
|
YTHDF2 promotes multiple myeloma cell proliferation via STAT5A/MAP2K2/p-ERK axis. Oncogene 2022; 41:1482-1491. [PMID: 35075244 DOI: 10.1038/s41388-022-02191-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 12/21/2021] [Accepted: 01/12/2022] [Indexed: 12/27/2022]
Abstract
Multiple myeloma (MM) is still incurable partially due to lacking effective therapeutic targets. Aberrant N6-methyladenosine (m6A) RNA modification plays a vital role in many cancers, however few researches are executed in MM. We first screened the m6A-related genes in MM patient cohorts and correlated these genes with patient outcomes. We found that YTHDF2, a well-recognized m6A reader, was increased in MM patients and associated with poor outcomes. Decreased YTHDF2 expression hampered MM cell proliferation in vitro and in vivo, while enforced YTHDF2 expression reversed those effects. The analyses of m6A-RIP-seq and RIP-PCR indicated that STAT5A was the downstream target of YTHDF2, which was binding to the m6A modification site of STAT5A to promote its mRNA degradation. ChIP-seq and PCR assays revealed that STAT5A suppressed MM cell proliferation by occupying the transcription site of MAP2K2 to decrease ERK phosphorylation. In addition, we confirmed that YTHDF2 mediated the unphosphorylated form of STAT5A to inhibit the expression of MAP2K2/p-ERK. In conclusion, our study highlights that YTHDF2/STAT5A/MAP2K2/p-ERK axis plays a key role in MM proliferation and targeting YTHDF2 may be a promising therapeutic strategy.
Collapse
|
12
|
Corti M, Lorenzetti S, Ubaldi A, Zilli R, Marcoccia D. Endocrine Disruptors and Prostate Cancer. Int J Mol Sci 2022; 23:1216. [PMID: 35163140 PMCID: PMC8835300 DOI: 10.3390/ijms23031216] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 01/22/2023] Open
Abstract
The role of endocrine disruptors (EDs) in the human prostate gland is an overlooked issue even though the prostate is essential for male fertility. From experimental models, it is known that EDs can influence several molecular mechanisms involved in prostate homeostasis and diseases, including prostate cancer (PCa), one of the most common cancers in the male, whose onset and progression is characterized by the deregulation of several cellular pathways including androgen receptor (AR) signaling. The prostate gland essentiality relies on its function to produce and secrete the prostatic fluid, a component of the seminal fluid, needed to keep alive and functional sperms upon ejaculation. In physiological condition, in the prostate epithelium the more-active androgen, the 5α-dihydrotestosterone (DHT), formed from testosterone (T) by the 5α-reductase enzyme (SRD5A), binds to AR and, upon homodimerization and nuclear translocation, recognizes the promoter of target genes modulating them. In pathological conditions, AR mutations and/or less specific AR binding by ligands modulate differently targeted genes leading to an altered regulation of cell proliferation and triggering PCa onset and development. EDs acting on the AR-dependent signaling within the prostate gland can contribute to the PCa onset and to exacerbating its development.
Collapse
Affiliation(s)
- Margherita Corti
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana, Via Appia Nuova 1411, 00178 Rome, Italy; (M.C.); (A.U.); (R.Z.)
| | - Stefano Lorenzetti
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità (ISS), 00161 Rome, Italy;
| | - Alessandro Ubaldi
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana, Via Appia Nuova 1411, 00178 Rome, Italy; (M.C.); (A.U.); (R.Z.)
| | - Romano Zilli
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana, Via Appia Nuova 1411, 00178 Rome, Italy; (M.C.); (A.U.); (R.Z.)
| | - Daniele Marcoccia
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana, Via Appia Nuova 1411, 00178 Rome, Italy; (M.C.); (A.U.); (R.Z.)
| |
Collapse
|
13
|
NAT10 promotes cell proliferation by acetylating CEP170 mRNA to enhance translation efficiency in multiple myeloma. Acta Pharm Sin B 2022; 12:3313-3325. [PMID: 35967285 PMCID: PMC9366180 DOI: 10.1016/j.apsb.2022.01.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/01/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022] Open
|