1
|
Kim HM, Koo JS. Programmed death-ligand 1 expression in carcinoma of unknown primary. BMC Cancer 2024; 24:689. [PMID: 38844907 PMCID: PMC11155179 DOI: 10.1186/s12885-024-12437-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024] Open
Abstract
We examined the expression of programmed death-ligand 1 (PD-L1) in carcinoma of unknown primary (CUP) and its potential implications. Tissue microarrays were constructed for 72 CUP cases (histologic subtypes: 22 adenocarcinoma, 15 poorly differentiated carcinoma, 19 squamous cell carcinoma, and 14 undifferentiated carcinoma; clinical subtype: favorable type 17 [23.6%], unfavorable type 55 [76.4%]), with immunohistochemical staining performed for PD-L1 (22C3, SP142, SP263, and 28 - 8), CK7, and CK20 to determine the association between staining results and clinicopathological parameters. In CUP, the PD-L1 positivity rate was 5.6-48.6% (tumor cells [TC] or tumor proportion score [TPS]: 5.6-36.1%, immune cell score [IC]: 8.3-48.6%, combined positive score [CPS]: 16.7%) using different cutoff values for 22C3 (TPS ≥ 1%, CPS ≥ 10), SP142 (TC ≥ 50%, IC ≥ 10%), SP263, and 28 - 8 (TC and IC ≥ 1%). PD-L1 SP142 TC and PD-L1 SP263 IC showed the lowest (5.6%) and highest (48.6%) positivity rates, respectively. The PD-L1 positivity rate did not significantly differ based on the histologic subtype, clinical subtype, or CK7/CK20 across clones. Considering TC κ ≥ 1%, TC κ ≥ 50%, IC κ ≥ 1%, and IC κ ≥ 10%, the PD-L1 positivity rate was TC = 4.2-36.1% and IC = 9.7-48.6%; the overall agreement between antibodies ranged from 69.4 to 93.1%, showing fair or better agreement (κ ≥ 0.21). In CUP, PD-L1 positivity varied depending on antibodies and scoring systems, with no difference observed according to histologic or clinical subtypes.
Collapse
Affiliation(s)
- Hye Min Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| | - Ja Seung Koo
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
2
|
Yan F, Da Q, Yi H, Deng S, Zhu L, Zhou M, Liu Y, Feng M, Wang J, Wang X, Zhang Y, Zhang W, Zhang X, Lin J, Zhang S, Wang C. Artificial intelligence-based assessment of PD-L1 expression in diffuse large B cell lymphoma. NPJ Precis Oncol 2024; 8:76. [PMID: 38538739 PMCID: PMC10973523 DOI: 10.1038/s41698-024-00577-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/13/2024] [Indexed: 11/12/2024] Open
Abstract
Diffuse large B cell lymphoma (DLBCL) is an aggressive blood cancer known for its rapid progression and high incidence. The growing use of immunohistochemistry (IHC) has significantly contributed to the detailed cell characterization, thereby playing a crucial role in guiding treatment strategies for DLBCL. In this study, we developed an AI-based image analysis approach for assessing PD-L1 expression in DLBCL patients. PD-L1 expression represents as a major biomarker for screening patients who can benefit from targeted immunotherapy interventions. In particular, we performed large-scale cell annotations in IHC slides, encompassing over 5101 tissue regions and 146,439 live cells. Extensive experiments in primary and validation cohorts demonstrated the defined quantitative rule helped overcome the difficulty of identifying specific cell types. In assessing data obtained from fine needle biopsies, experiments revealed that there was a higher level of agreement in the quantitative results between Artificial Intelligence (AI) algorithms and pathologists, as well as among pathologists themselves, in comparison to the data obtained from surgical specimens. We highlight that the AI-enabled analytics enhance the objectivity and interpretability of PD-L1 quantification to improve the targeted immunotherapy development in DLBCL patients.
Collapse
Affiliation(s)
- Fang Yan
- Shanghai Artificial Intelligence Laboratory, Shanghai, China
| | - Qian Da
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongmei Yi
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shijie Deng
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lifeng Zhu
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mu Zhou
- Department of Computer Science, Rutgers University, New Brunswick, NJ, USA
| | - Yingting Liu
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Feng
- College of Electronic and Information Engineering, Tongji University, Shanghai, China
| | - Jing Wang
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuan Wang
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuxiu Zhang
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjing Zhang
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofan Zhang
- Shanghai Artificial Intelligence Laboratory, Shanghai, China.
| | - Jingsheng Lin
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Shaoting Zhang
- Shanghai Artificial Intelligence Laboratory, Shanghai, China.
- Centre for Perceptual and Interactive Intelligence (CPII) Ltd. under InnoHK, HongKong, China.
- SenseTime Research, Shanghai, China.
| | - Chaofu Wang
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Meng H, Li S, Li Q, Wang Y, Wang G, Qu Y. Chemokine-like factor-like MARVEL transmembrane domain containing 6: Bioinformatics and experiments in vitro analyze in glioblastoma multiforme. Front Mol Neurosci 2023; 15:1026927. [PMID: 36698778 PMCID: PMC9869805 DOI: 10.3389/fnmol.2022.1026927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction Chemokine-like factor (CKLF)-like MARVEL transmembrane domain containing 6 (CMTM6) is a protein localized to the cell membrane and is known for its ability to co-localize with PD-L1 on the plasma membrane, prevent PD-L1 degradation, and maintain PD-L1 expression on the cell membrane. CMTM6 is highly expressed and plays an important role in various tumors such as oral squamous cell carcinoma (OSCC) and colorectal cancer (CRC), however, its role in Glioblastoma multiforme (GBM) is unclear. Methods In this paper, to investigate the role of CMTM6 in GBM, we analyzed the expression of CMTM6 in GBM, the interaction with CMTM6 and the associated genes by bioinformatics. Importantly, we analyzed the expression of CMTM6 in GBM in relation to tumor-infiltrating lymphocytes (TILs), immunoinhibitors, immunostimulators, chemokines and chemokine receptors. We further analyzed the function of CMTM6 and performed in vitro experiments to verify it. Finally, the sensitivity of CMTM6 to drugs was also analyzed and the relationship between CMTM6 and the anticancer drug Piperlonguminine (PL) was verified in vitro. Results The results showed that CMTM6 was highly expressed in GBM and correlated with multiple genes. Furthermore, CMTM6 is closely related to the immune microenvironment and inflammatory response in GBM. Bioinformatic analysis of CMTM6 correlated with the function of GBM, and our experiments demonstrated that CMTM6 significantly promoted the migration of GBM cells and epithelial-mesenchymal transition (EMT), but had no significant effect on other functions. Interestingly, we found that in GBM, PL promotes the expression of CMTM6. Discussion In this paper, we have performed a detailed analysis and validation of the role of CMTM6 in GBM using bioinformatics analysis and in vitro experiments to demonstrate that CMTM6 may be a potential target for glioma therapy.
Collapse
Affiliation(s)
- Haining Meng
- Department of Emergency Medicine, Medical College of Qingdao University, Qingdao, Shandong, China,Department of Intensive Care Unit, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shaohua Li
- Department of Laboratory Medicine, The Third People’s Hospital of Qingdao, Qingdao, Shandong, China
| | - Qingshu Li
- Department of Intensive Care Unit, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Yuqin Wang
- Department of Emergency, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Guoan Wang
- Qingdao Municipal Hospital, Qingdao, Shandong, China,*Correspondence: Guoan Wang, ✉
| | - Yan Qu
- Department of Intensive Care Unit, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong, China,Yan Qu, ✉
| |
Collapse
|
4
|
Jabir NR, Khan MS, Alafaleq NO, Naz H, Ahmed BA. Anticancer potential of yohimbine in drug-resistant oral cancer KB-ChR-8-5 cells. Mol Biol Rep 2022; 49:9565-9573. [PMID: 35970968 DOI: 10.1007/s11033-022-07847-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/05/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND The demand for environmentally friendly and cost-effective plant-based products for the development of cancer therapeutics has been increasing. Yohimbine (α2-adrenergic receptor antagonist) is a stimulant and aphrodisiac used to improve erectile dysfunction. In this study, we aimed to evaluate the anticancer potential of yohimbine in drug-resistant oral cancer KB-ChR-8-5 cells using different biomolecular techniques. METHODS We estimated the anticancer efficacy of yohimbine using different assays, such as MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) cell cytotoxicity, cell morphology, cell apoptosis, reactive oxygen species (ROS) formation, and modulation in the mitochondrial membrane potential (MMP). RESULTS Yohimbine showed a dose-dependent increase in cytotoxicity with a 50% inhibitory concentration (IC50) of 44 µM against KB-ChR-8-5 cancer cell lines. Yohimbine treatment at 40 µM and 50 µM resulted in a considerable change in cell morphology, including shrinkage, detachment, membrane blebbing, and deformed shape. Moreover, at the dose of IC50 and above, a significant induction was observed in the generation of ROS and depolarization of MMP. The possible mechanisms of action of yohimbine underlying the dose-dependent increase in cytotoxicity may be due to the induction of apoptosis, ROS generation, and modulation of MMP. CONCLUSION Overall, yohimbine showed a significant anticancer potential against drug-resistant oral cancer KB-ChR-8-5 cells. Our study suggests that besides being an aphrodisiac, yohimbine can be used as a drug repurposing agent. However, more research is required in different in vitro and in vivo models to confirm the feasibility of yohimbine in clinics.
Collapse
Affiliation(s)
- Nasimudeen R Jabir
- Department of Biochemistry, Centre for Research and Development, PRIST University, Vallam, Thanjavur, Tamil Nadu, 613403, India
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Nouf Omar Alafaleq
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Huma Naz
- Department of Medicine, University of Missouri, Columbia, MO, 65201, USA
| | - Bakrudeen Ali Ahmed
- Department of Biochemistry, Centre for Research and Development, PRIST University, Vallam, Thanjavur, Tamil Nadu, 613403, India.
| |
Collapse
|
5
|
Gompelmann D, Sinn K, Brugger J, Bernitzky D, Mosleh B, Prosch H, Geleff S, Blessing A, Tiefenbacher A, Hoetzenecker K, Idzko M, Hoda MA. Correlation of PD-L1 expression on tumour cells between diagnostic biopsies and surgical specimens of lung cancer in real life with respect to biopsy techniques and neoadjuvant treatment. J Cancer Res Clin Oncol 2022; 149:1747-1754. [PMID: 35708777 PMCID: PMC10097774 DOI: 10.1007/s00432-022-04080-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/19/2022] [Indexed: 12/25/2022]
Abstract
PURPOSES Programmed death-ligand 1 (PD-L1) testing is performed mainly on biopsy specimens in patients with advanced lung cancer. It is questionable whether the small amount of tissue analysed in biopsies may represent the true PD-L1 expression of a tumour. METHODS In this retrospective study, PD-L1 expression on tumour cells derived from bronchoscopy brush cytology, endobronchial ultrasound guided transbronchial needle aspiration (EBUS-TBNA), endobronchial biopsy, transbronchial biopsy (TBB) and computed tomography (CT)-guided transthoracic biopsy was compared to the PD-L1 expression of the corresponding surgical resection in lung cancer patients with regard to neoadjuvant treatment in-between. RESULTS A quantitative comparison between the diagnostic biopsy of the primary tumour with corresponding resected surgical specimens in a total of 113 lung cancer patients (60% male, mean age 65 ± 9 years) revealed a statistically significant correlation of PD-L1 expression on tumour cells (r = 0.58, p< 0.001), for patients without neoadjuvant treatment in-between and for patients who underwent neoadjuvant treatment (both p < 0.001). Using a cut-off value of ≥ 50% PD-L1 TPS for comparing the biopsy samples and resected specimens, the concordance rate was 78% with a Cohen's Kappa of 0.45. CONCLUSION A statistically significant concordance for PD-L1 expression on tumour cells between biopsies from primary lung tumour and resected specimen was found, but of uncertain clinical accuracy. The use of a cut-off value of ≥ 50% PD-L1 TPS resulted only in a moderate agreement. Therefore, the interpretation of the PD-L1 determined form biopsy specimens status should only be considered with caution for treatment decisionsQuery.
Collapse
Affiliation(s)
- D Gompelmann
- Division of Pulmonology, Department of Internal Medicine II, Medical University Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | - K Sinn
- Department of Thoracic Surgery, Medical University Vienna, Vienna, Austria
| | - J Brugger
- Department for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - D Bernitzky
- Division of Pulmonology, Department of Internal Medicine II, Medical University Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - B Mosleh
- Department of Thoracic Surgery, Medical University Vienna, Vienna, Austria
| | - H Prosch
- Department for Biomedical Imaging and Image-Guided Therapy, Medical University Vienna, Vienna, Austria
| | - S Geleff
- Department of Pathology, Medical University Vienna, Vienna, Austria
| | - A Blessing
- Department of Pathology, Medical University Vienna, Vienna, Austria
| | - A Tiefenbacher
- Department of Pathology, Medical University Vienna, Vienna, Austria
| | - K Hoetzenecker
- Department of Thoracic Surgery, Medical University Vienna, Vienna, Austria
| | - M Idzko
- Division of Pulmonology, Department of Internal Medicine II, Medical University Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - M A Hoda
- Department of Thoracic Surgery, Medical University Vienna, Vienna, Austria
| |
Collapse
|