1
|
Wang J, Shi X, Wang J, Zheng Q, Shao P, Liu S. Discovery of new covalent inhibitors of monoacylglycerol lipase with the nitrile warhead via SCARdock. Bioorg Chem 2025; 159:108378. [PMID: 40107037 DOI: 10.1016/j.bioorg.2025.108378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/03/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
Monoacylglycerol lipase (MAGL) is an important enzyme for endocannabinoid metabolism by converting 2-arachidonoylglycerol (2-AG) into glycerol and free fatty acids. Modulation of the endocannabinoid system by inhibiting MAGL provides a promising therapeutic strategy for various diseases. In this work, we identified five new MAGL inhibitors with the nitrile group by high-throughput screening using SCARdock, a protocol presented by us for covalent drug discovery. Compounds ZQ-4, ZQ-5, ZQ-6, and ZQ-7 inhibit MAGL activity in a time-dependent and concentration-dependent manner. Furthermore, ZQ-7 was confirmed to covalently bind with the residue Ser132 of MAGL. The nitrile group is a new covalent warhead that has never been used in previous covalent MAGL inhibitors. At last, the efficacy of the new MAGL inhibitors on inhibiting breast cancer cells was investigated. Significantly increased 2-AG levels were detected in MDA-MB-231 cells treated with MAGL inhibitor ZQ-5, ZQ-6, ZQ-7, ZQ-19, and KML29, a previously identified MAGL covalent inhibitor. Moreover, these MAGL inhibitors inhibited the proliferation and migration of MDA-MB-231 cells. This work expands the application of SCARdock and provides meaningful clues for developing better MAGL inhibitors.
Collapse
Affiliation(s)
- Juanping Wang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Wuhan 430068, China; Key Laboratory of Fermentation Engineering (Ministry of Education), Wuhan 430068, China, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Xiaoyu Shi
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Wuhan 430068, China; Key Laboratory of Fermentation Engineering (Ministry of Education), Wuhan 430068, China, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Junlai Wang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Wuhan 430068, China; Key Laboratory of Fermentation Engineering (Ministry of Education), Wuhan 430068, China, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Qiang Zheng
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Wuhan 430068, China; Key Laboratory of Fermentation Engineering (Ministry of Education), Wuhan 430068, China, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Peipei Shao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Wuhan 430068, China; Key Laboratory of Fermentation Engineering (Ministry of Education), Wuhan 430068, China, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Sen Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Wuhan 430068, China; Key Laboratory of Fermentation Engineering (Ministry of Education), Wuhan 430068, China, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
2
|
Ozdemır C, Celık OI, Zeybek A, Suzek T, Aftabı Y, Karakas Celık S, Edgunlu T. Downregulation of MGLL and microRNAs (miR-302b-5p, miR-190a-3p, miR-450a-2-3p) in non-small cell lung cancer: potential roles in pathogenesis. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-17. [PMID: 39673541 DOI: 10.1080/15257770.2024.2439904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/28/2024] [Accepted: 12/01/2024] [Indexed: 12/16/2024]
Abstract
Genes involved in lipid metabolism have been considered potential therapeutic targets in lung cancer because lipid metabolism is severely disrupted in this cancer. Monoglyceride lipase (MGLL) is a lipolytic enzyme that converts monoacylglycerides to fatty acids and glycerol. MicroRNAs (miRNA), one of the most important epigenetic regulators of gene expression, are also considered potential biomarkers in diagnosing, treating, and prognosis lung cancer. This study aimed to investigate the potential effects of MGLL and related miRNAs (miR-302b-5p, miR-190a-3p, miR-450a-2-3p) in the pathogenesis of non-small cell lung cancer (NSCLC) by examining their expression levels and regulatory mechanisms. We analysed the expression levels of MGLL and miRNAs in 30 NSCLC and 20 non-cancerous tissues by qPCR. We performed in silico analyses to determine the biological functions of MGLL and miRNAs in NSCLC. A protein-protein interaction (PPI) network was constructed for MGLL, and gene ontology (GO) analysis, and the interacting genes were analysed using the TCGAnalyzer tool. Our study showed that the expression levels of MGLL, miR-302b-5p, miR-190a-3p and miR-450a-2-3p were significantly decreased in NSCLC tissues (p < 0.05). Also, according to TCGAnalyzer, MSRB3, HTR4, and FCER1G genes were downregulated genes for NSCLC. We showed that miR-302b-5p, miR-190a-3p, and miR-450a-2-3p significantly regulate the TGF-β signalling pathway. In conclusion, this study provides evidence for the potential role of MGLL and microRNAs (miR-302b-5p, miR-190a-3p, miR-450a-2-3p) in NSCLC. In subsequent studies, it was determined that MSRB3, FCER1G and LTB4R2 genes, especially the HTR4 gene, could be potential target genes for lung cancer.
Collapse
Affiliation(s)
- Cilem Ozdemır
- Graduate School of Natural and Applied Sciences, Department of Bioinformatics, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Ozgur Ilhan Celık
- Faculty of Medicine, Department of Pathology, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Arife Zeybek
- Faculty of Medicine, Department of Thoracic Surgery, Muğla Sıtkı Koçman University, Mugla, Turkey
| | - Tugba Suzek
- Faculty of Engineering, Department of Computer Engineering, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Younes Aftabı
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Sevim Karakas Celık
- Faculty of Medicine, Department of Medical Genetics, Bülent Ecevit University, Zonguldak, Turkey
| | - Tuba Edgunlu
- Faculty of Medicine, Department of Medical Biology, Muğla Sıtkı Koçman University, Muğla, Turkey
| |
Collapse
|
3
|
Balakrishnan K, Xiao Y, Chen Y, Dong J. Elevated Expression of Cell Adhesion, Metabolic, and Mucus Secretion Gene Clusters Associated with Tumorigenesis, Metastasis, and Poor Survival in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2024; 16:4049. [PMID: 39682235 DOI: 10.3390/cancers16234049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
OBJECTIVES Technological advances in identifying gene expression profiles are being applied to study an array of cancers. The goal of this study was to identify differentially expressed genes in pancreatic ductal adenocarcinoma (PDAC) and examine their potential role in tumorigenesis and metastasis. METHODS The transcriptomic profiles of PDAC and non-tumorous tissue samples were derived from the gene expression omnibus (GEO), which is a public repository. The GEO2R tool was used to further derive differentially expressed genes from those profiles. RESULTS In this study, a total of 68 genes were derived from upregulated PDAC genes in three or more transcriptomic profiles and were considered PDAC gene sets. The identified PDAC gene sets were examined in the molecular signatures database (MSigDB) for ontological investigation, which revealed that these genes were involved in the extracellular matrix and associated with the cell adhesion process in PDAC tumorigenesis. The gene set enrichment analysis showed greater enrichment scores for the gene sets. Moreover, the identified gene sets were examined for protein-protein interaction using the STRING database. Based on functional k-means clustering, the following three functional cluster groups were identified in this study: extracellular matrix/cell adhesion, metabolic, and mucus secretion-related protein groups. The receiver operating characteristic (ROC) curve revealed greater specificity and sensitivity for these cluster genes in predicting PDAC tumorigenesis and metastases. In addition, the expression of the cluster genes affects the overall survival rate of PDAC patients. Using the cancer genome atlas (TCGA) database, the associations between expression levels and clinicopathological features were validated. CONCLUSIONS Overall, the genes identified in this study appear to be critical in PDAC development and can serve as potential diagnostic and prognostic targets for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Karthik Balakrishnan
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yi Xiao
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yuanhong Chen
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jixin Dong
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
4
|
Shen C, Zhu X, Chang H, Li C, Hou M, Chen L, Lu Chen, Zhou Z, Ji M, Xu Z. The rebalancing of the immune system at the maternal-fetal interface ameliorates autism-like behavior in adult offspring. Cell Rep 2024; 43:114787. [PMID: 39321022 DOI: 10.1016/j.celrep.2024.114787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/04/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024] Open
Abstract
Maternal immune activation (MIA) is critical for imparting neuropathology and altered behaviors in offspring; however, maternal-fetal immune cell populations have not been thoroughly investigated in MIA-induced autism spectrum disorders (ASDs). Here, we report the single-cell transcriptional landscape of placental cells in both PBS- and poly(I:C)-induced MIA dams. We observed a decrease in regulatory T (Treg) cells but an increase in the M1 macrophage population at the maternal-fetal interface in MIA dams. Based on the Treg-targeting approach, we investigate an immunoregulatory protein, the helminth-derived heat shock protein 90α (Sjp90α), that induces maternal Treg cells and subsequently rescues the autism-like behaviors in adult offspring. Furthermore, in vivo depletion of maternal macrophages attenuates placental inflammatory reaction and reverses behavioral abnormalities in adult offspring. Notably, Sjp90α induces CD4+ T cell differentiation via scavenger receptor A (SR-A) on the macrophage in vitro. Our findings suggest a maternal Treg-targeted approach to alleviate MIA-induced autism-like behavior in adult offspring.
Collapse
Affiliation(s)
- Chunxiang Shen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Xinyi Zhu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Hao Chang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Chen Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Min Hou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China; Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing, Jiangsu 211166, P.R. China
| | - Lin Chen
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing, Jiangsu 211166, P.R. China
| | - Lu Chen
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing, Jiangsu 211166, P.R. China
| | - Zikai Zhou
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong 528400, P.R. China.
| | - Minjun Ji
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China; Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing, Jiangsu 211166, P.R. China; NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China.
| | - Zhipeng Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China; Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing, Jiangsu 211166, P.R. China; NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China.
| |
Collapse
|
5
|
Ma Y, Nenkov M, Chen Y, Gaßler N. The Role of Adipocytes Recruited as Part of Tumor Microenvironment in Promoting Colorectal Cancer Metastases. Int J Mol Sci 2024; 25:8352. [PMID: 39125923 PMCID: PMC11313311 DOI: 10.3390/ijms25158352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Adipose tissue dysfunction, which is associated with an increased risk of colorectal cancer (CRC), is a significant factor in the pathophysiology of obesity. Obesity-related inflammation and extracellular matrix (ECM) remodeling promote colorectal cancer metastasis (CRCM) by shaping the tumor microenvironment (TME). When CRC occurs, the metabolic symbiosis of tumor cells recruits adjacent adipocytes into the TME to supply energy. Meanwhile, abundant immune cells, from adipose tissue and blood, are recruited into the TME, which is stimulated by pro-inflammatory factors and triggers a chronic local pro-inflammatory TME. Dysregulated ECM proteins and cell surface adhesion molecules enhance ECM remodeling and further increase contractibility between tumor and stromal cells, which promotes epithelial-mesenchymal transition (EMT). EMT increases tumor migration and invasion into surrounding tissues or vessels and accelerates CRCM. Colorectal symbiotic microbiota also plays an important role in the promotion of CRCM. In this review, we provide adipose tissue and its contributions to CRC, with a special emphasis on the role of adipocytes, macrophages, neutrophils, T cells, ECM, and symbiotic gut microbiota in the progression of CRC and their contributions to the CRC microenvironment. We highlight the interactions between adipocytes and tumor cells, and potential therapeutic approaches to target these interactions.
Collapse
Affiliation(s)
| | | | | | - Nikolaus Gaßler
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany (M.N.)
| |
Collapse
|
6
|
Scheurlen KM, Snook DL, Littlefield AB, George JB, Parks MA, Beal RJ, MacLeod A, Riggs DW, Gaskins JT, Chariker J, Rouchka EC, Galandiuk S. Anti-inflammatory mechanisms in cancer research: Characterization of a distinct M2-like macrophage model derived from the THP-1 cell line. Cancer Med 2023; 12:21172-21187. [PMID: 38037545 PMCID: PMC10726891 DOI: 10.1002/cam4.6681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/12/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
AIMS Macrophages play an essential role in cancer development. Tumor-associated macrophages (TAMs) have predominantly M2-like attributes that are associated with tumor progression and poor patient survival. Numerous methods have been reported for differentiating and polarizing macrophages in vitro, but there is no standardized and validated model for creating TAMs. Primary cells show varying cytokine responses depending on their origin and functional studies utilizing these cells may lack generalization and validity. A distinct cell line-derived TAM-like M2 subtype is required to investigate the mechanisms mediated by anti-inflammatory TAMs in vitro. Our previous work demonstrated a standardized protocol for creating an M2 subtype derived from a human THP-1 cell line. The cell expression profile, however, has not been validated. The aim of this study was to characterize and validate the TAM-like M2 subtype macrophage created based on our protocol to introduce them as a standardized model for cancer research. METHODS AND RESULTS Using qRT-PCR and ELISA, we demonstrated that proinflammatory, anti-inflammatory, and tumor-associated marker expression changed during THP-1-derived marcrophage development in vitro, mimicking a TAM-related profile (e.g., TNFα, IL-1β). The anti-inflammatory marker IL-8/CXCL8, however, is most highly expressed in young M0 macrophages. Flow cytometry showed increased expression of CD206 in the final TAM-like M2 macrophage. Single-cell RNA-sequencing analysis of primary human monocytes and colon cancer tissue macrophages demonstrated that cell line-derived M2 macrophages resembled a TAM-related gene profile. CONCLUSIONS The THP-1-derived M2 macrophage based on a standardized cell line model represents a distinct anti-inflammatory TAM-like phenotype with an M2a subtype profile. This model may provide a basis for in vitro investigation of functional mechanisms in a variety of anti-inflammatory settings, particularly colon cancer development.
Collapse
Affiliation(s)
- Katharina M Scheurlen
- Digestive Surgery Research Laboratory, Price Institute of Surgical Research, The Hiram C. Polk, Jr, MD Department of Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Dylan L Snook
- Digestive Surgery Research Laboratory, Price Institute of Surgical Research, The Hiram C. Polk, Jr, MD Department of Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Andrew B Littlefield
- Digestive Surgery Research Laboratory, Price Institute of Surgical Research, The Hiram C. Polk, Jr, MD Department of Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Joan B George
- Digestive Surgery Research Laboratory, Price Institute of Surgical Research, The Hiram C. Polk, Jr, MD Department of Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Mary A Parks
- Digestive Surgery Research Laboratory, Price Institute of Surgical Research, The Hiram C. Polk, Jr, MD Department of Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Robert J Beal
- Digestive Surgery Research Laboratory, Price Institute of Surgical Research, The Hiram C. Polk, Jr, MD Department of Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Anne MacLeod
- Digestive Surgery Research Laboratory, Price Institute of Surgical Research, The Hiram C. Polk, Jr, MD Department of Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Daniel W Riggs
- Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Jeremy T Gaskins
- Department of Bioinformatics & Biostatistics, University of Louisville, Louisville, Kentucky, USA
| | - Julia Chariker
- Kentucky IDeA Networks of Biomedical Research Excellence (KY INBRE), Bioinformatics Core, University of Louisville, Louisville, Kentucky, USA
| | - Eric C Rouchka
- Kentucky IDeA Networks of Biomedical Research Excellence (KY INBRE), Bioinformatics Core, University of Louisville, Louisville, Kentucky, USA
| | - Susan Galandiuk
- Digestive Surgery Research Laboratory, Price Institute of Surgical Research, The Hiram C. Polk, Jr, MD Department of Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
7
|
Gruden E, Kienzl M, Hasenoehrl C, Sarsembayeva A, Ristic D, Schmid ST, Maitz K, Taschler U, Hahnefeld L, Gurke R, Thomas D, Kargl J, Schicho R. Tumor microenvironment-derived monoacylglycerol lipase provokes tumor-specific immune responses and lipid profiles. Prostaglandins Leukot Essent Fatty Acids 2023; 196:102585. [PMID: 37573716 DOI: 10.1016/j.plefa.2023.102585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
We recently described that monoacylglycerol lipase (MGL) is present in the tumor microenvironment (TME), increasing tumor growth. In this study we compare the implications of MGL deficiency in the TME in different tumor types. We show that subcutaneous injection of KP (KrasLSL-G12D/p53fl/fl, mouse lung adenocarcinoma) or B16-F10 cells (mouse melanoma) induced tumor growth in MGL wild type (WT) and knockout (KO) mice. MGL deficiency in the TME attenuated the growth of KP cell tumors whereas tumors from B16-F10 cells increased in size. Opposite immune cell profiles were detected between the two tumor types in MGL KO mice. In line with their anti-tumorigenic function, the number of CD8+ effector T cells and eosinophils increased in KP cell tumors of MGL KO vs. WT mice whereas their presence was reduced in B16-F10 cell tumors of MGL KO mice. Differences were seen in lipid profiles between the investigated tumor types. 2-arachidonoylglycerol (2-AG) content significantly increased in KP, but not B16-F10 cell tumors of MGL KO vs. WT mice while other endocannabinoid-related lipids remained unchanged. However, profiles of phospho- and lysophospholipids, sphingomyelins and fatty acids in KP cell tumors were clearly distinct to those measured in B16-F10 cell tumors. Our data indicate that TME-localized MGL impacts tumor growth, as well as levels of 2-AG and other lipids in a tumor specific manner.
Collapse
Affiliation(s)
- Eva Gruden
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria
| | - Melanie Kienzl
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria.
| | - Carina Hasenoehrl
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria
| | - Arailym Sarsembayeva
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria
| | - Dusica Ristic
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria
| | - Sophie Theresa Schmid
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria
| | - Kathrin Maitz
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria
| | - Ulrike Taschler
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Lisa Hahnefeld
- Institute of Clinical Pharmacology, Goethe University, 60590 Frankfurt/Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Robert Gurke
- Institute of Clinical Pharmacology, Goethe University, 60590 Frankfurt/Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Goethe University, 60590 Frankfurt/Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Julia Kargl
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria
| | - Rudolf Schicho
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria
| |
Collapse
|
8
|
Wittig F, Henkel L, Prüser JL, Merkord J, Ramer R, Hinz B. Inhibition of Monoacylglycerol Lipase Decreases Angiogenic Features of Endothelial Cells via Release of Tissue Inhibitor of Metalloproteinase-1 from Lung Cancer Cells. Cells 2023; 12:1757. [PMID: 37443791 PMCID: PMC10340590 DOI: 10.3390/cells12131757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Despite the well-described anticarcinogenic effects of endocannabinoids, the influence of the endocannabinoid system on tumor angiogenesis is still debated. In the present study, conditioned medium (CM) from A549 and H358 lung cancer cells treated with ascending concentrations of the monoacylglycerol lipase (MAGL) inhibitor JZL184 and 2-arachidonoylglycerol (2-AG), a prominent MAGL substrate, caused a concentration-dependent reduction in human umbilical vein endothelial cell (HUVEC) migration and tube formation compared with CM from vehicle-treated cancer cells. Comparative experiments with MAGL inhibitors JW651 and MJN110 showed the same results. On the other hand, the angiogenic properties of HUVECs were not significantly altered by direct stimulation with JZL184 or 2-AG or by exposure to CM of JZL184- or 2-AG-treated non-cancerous bronchial epithelial cells (BEAS-2B). Inhibition of HUVEC migration and tube formation by CM of JZL184- and 2-AG-treated A549 cells was abolished in the presence of the CB1 antagonist AM-251. Increased release of tissue inhibitor of metalloproteinase-1 (TIMP-1) from JZL184- or 2-AG-stimulated A549 or H358 cells was shown to exert an antiangiogenic effect on HUVECs, as confirmed by siRNA experiments. In addition, JZL184 caused a dose-dependent regression of A549 tumor xenografts in athymic nude mice, which was associated with a decreased number of CD31-positive cells and upregulation of TIMP-1-positive cells in xenograft tissue. In conclusion, our data suggest that elevation of 2-AG by MAGL inhibition leads to increased release of TIMP-1 from lung cancer cells, which mediates an antiangiogenic effect on endothelial cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Schillingallee 70, 18057 Rostock, Germany; (F.W.); (L.H.); (J.L.P.); (J.M.); (R.R.)
| |
Collapse
|
9
|
Chatterjee D, Rahman MM, Saha AK, Siam MKS, Sharif Shohan MU. Transcriptomic analysis of esophageal cancer reveals hub genes and networks involved in cancer progression. Comput Biol Med 2023; 159:106944. [PMID: 37075603 DOI: 10.1016/j.compbiomed.2023.106944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/09/2023] [Accepted: 04/14/2023] [Indexed: 04/21/2023]
Abstract
Esophageal carcinoma (ESCA) has a 5-year survival rate of fewer than 20%. The study aimed to identify new predictive biomarkers for ESCA through transcriptomics meta-analysis to address the problems of ineffective cancer therapy, lack of efficient diagnostic tools, and costly screening and contribute to developing more efficient cancer screening and treatments by identifying new marker genes. Nine GEO datasets of three kinds of esophageal carcinoma were analyzed, and 20 differentially expressed genes were detected in carcinogenic pathways. Network analysis revealed four hub genes, namely RAR Related Orphan Receptor A (RORA), lysine acetyltransferase 2B (KAT2B), Cell Division Cycle 25B (CDC25B), and Epithelial Cell Transforming 2 (ECT2). Overexpression of RORA, KAT2B, and ECT2 was identified with a bad prognosis. These hub genes modulate immune cell infiltration. These hub genes modulate immune cell infiltration. Although this research needs lab confirmation, we found interesting biomarkers in ESCA that may aid in diagnosis and treatment.
Collapse
Affiliation(s)
- Dipankor Chatterjee
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Md Mostafijur Rahman
- Department of Microbiology, Jashore University of Science and Technology, Bangladesh
| | - Anik Kumar Saha
- Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research, Dhaka, Bangladesh
| | | | | |
Collapse
|
10
|
Tan Y, Pan J, Deng Z, Chen T, Xia J, Liu Z, Zou C, Qin B. Monoacylglycerol lipase regulates macrophage polarization and cancer progression in uveal melanoma and pan-cancer. Front Immunol 2023; 14:1161960. [PMID: 37033945 PMCID: PMC10076602 DOI: 10.3389/fimmu.2023.1161960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Background Although lipid metabolism has been proven to play a key role in the development of cancer, its significance in uveal melanoma (UM) has not yet been elucidated in the available literature. Methods To identify the expression patterns of lipid metabolism in 80 UM patients from the TCGA database, 47 genes involved in lipid metabolism were analyzed. Consensus clustering revealed two distinct molecular groups. ESTIMATE, TIMER, and ssGSEA analyses were done to identify the differences between the two subgroups in tumor microenvironment (TME) and immune state. Using Cox regression and Lasso regression analysis, a risk model based on differentially expressed genes (DEGs) was developed. To validate the expression of monoacylglycerol lipase (MGLL) and immune infiltration in diverse malignancies, a pan-cancer cohort from the UCSC database was utilized. Next, a single-cell sequencing analysis on UM patients from the GEO data was used to characterize the lipid metabolism in TME and the role of MGLL in UM. Finally, in vitro investigations were utilized to study the involvement of MGLL in UM. Results Two molecular subgroups of UM patients have considerably varied survival rates. The majority of DEGs between the two subgroups were associated with immune-related pathways. Low immune scores, high tumor purity, a low number of immune infiltrating cells, and a comparatively low immunological state were associated with a more favorable prognosis. An examination of GO and KEGG data demonstrated that the risk model based on genes involved with lipid metabolism can accurately predict survival in patients with UM. It has been demonstrated that MGLL, a crucial gene in this paradigm, promotes the proliferation, invasion, and migration of UM cells. In addition, we discovered that MGLL is strongly expressed in macrophages, specifically M2 macrophages, which may play a function in the M2 polarization of macrophages and M2 macrophage activation in cancer cells. Conclusion This study demonstrates that the risk model based on lipid metabolism may be useful for predicting the prognosis of patients with UM. By promoting macrophage M2 polarization, MGLL contributes to the evolution of malignancy in UM, suggesting that it may be a therapeutic target for UM.
Collapse
Affiliation(s)
- Yao Tan
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
| | - Juan Pan
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, China
- Department of Clinical Medical Research Center, The Second Clinical Medical College, The First Affiliated Hospital of Southern University of Science and Technology, Jinan University (Shenzhen People’s Hospital), Shenzhen, Guangdong, China
| | - Zhenjun Deng
- Department of Dermatology, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, China
- The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Tao Chen
- School of Medicine, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Jinquan Xia
- Department of Clinical Medical Research Center, The Second Clinical Medical College, The First Affiliated Hospital of Southern University of Science and Technology, Jinan University (Shenzhen People’s Hospital), Shenzhen, Guangdong, China
| | - Ziling Liu
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Chang Zou
- School of Life and Health Sciences, The Chinese University of Kong Hong, Shenzhen, China
| | - Bo Qin
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
- Shenzhen Aier Ophthalmic Technology Institute, Shenzhen, China
| |
Collapse
|
11
|
Yuan J, Lan H, Huang D, Guo X, Liu C, Liu S, Zhang P, Cheng Y, Xiao S. Multi-Omics Analysis of MCM2 as a Promising Biomarker in Pan-Cancer. Front Cell Dev Biol 2022; 10:852135. [PMID: 35693940 PMCID: PMC9174984 DOI: 10.3389/fcell.2022.852135] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/29/2022] [Indexed: 11/30/2022] Open
Abstract
Minichromosome maintenance 2 (MCM2) is a member of the minichromosomal maintenance family of proteins that mainly regulates DNA replication and the cell cycle and is involved in regulating cancer cell proliferation in various cancers. Previous studies have reported that MCM2 plays a pivotal role in cell proliferation and cancer development. However, few articles have systematically reported the pathogenic roles of MCM2 across cancers. Therefore, the present pan-cancer study was conducted. Various computational tools were used to investigate the MCM2 expression level, genetic mutation rate, and regulating mechanism, immune infiltration, tumor diagnosis and prognosis, therapeutic response and drug sensitivity of various cancers. The expression and function of MCM2 were examined by Western blotting and CCK-8 assays. MCM2 was significantly upregulated in almost all cancers and cancer subtypes in The Cancer Genome Atlas and was closely associated with tumor mutation burden, tumor stage, and immune therapy response. Upregulation of MCM2 expression may be correlated with a high level of alterations rate. MCM2 expression was associated with the infiltration of various immune cells and molecules and markedly associated with a poor prognosis. Western blotting and CCK-8 assays revealed that MCM2 expression was significantly upregulated in melanoma cell lines. Our results also suggested that MCM2 promotes cell proliferation in vitro by activating cell proliferation pathways such as the Akt signaling pathways. This study explored the oncogenic role of MCM2 across cancers, provided data on the underlying mechanisms of these cancers for further research and demonstrated that MCM2 may be a promising target for cancer immunotherapy.
Collapse
Affiliation(s)
- Jing Yuan
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, China
| | - Hua Lan
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, China
| | - Dongqing Huang
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, China
- Department of Gynecology, The Second Hospital of Zhuzhou, Zhuzhou, China
| | - Xiaohui Guo
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, China
| | - Chu Liu
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, China
| | - Shuping Liu
- Department of Rehabilitation, Changsha Central Hospital of University of South China, Changsha, China
| | - Peng Zhang
- Graduate Collaborative Training Base of the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yan Cheng
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yan Cheng, ; Songshu Xiao,
| | - Songshu Xiao
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yan Cheng, ; Songshu Xiao,
| |
Collapse
|
12
|
Yang L, Xiong H, Li X, Li Y, Zhou H, Lin X, Chan TF, Li R, Lai KP, Chen X. Network Pharmacology and Comparative Transcriptome Reveals Biotargets and Mechanisms of Curcumol Treating Lung Adenocarcinoma Patients With COVID-19. Front Nutr 2022; 9:870370. [PMID: 35520289 PMCID: PMC9063984 DOI: 10.3389/fnut.2022.870370] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/16/2022] [Indexed: 12/31/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has led to 4,255,892 deaths worldwide. Although COVID-19 vaccines are available, mutant forms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have reduced the effectiveness of vaccines. Patients with cancer are more vulnerable to COVID-19 than patients without cancer. Identification of new drugs to treat COVID-19 could reduce mortality rate, and traditional Chinese Medicine(TCM) has shown potential in COVID-19 treatment. In this study, we focused on lung adenocarcinoma (LUAD) patients with COVID-19. We aimed to investigate the use of curcumol, a TCM, to treat LUAD patients with COVID-19, using network pharmacology and systematic bioinformatics analysis. The results showed that LUAD and patients with COVID-19 share a cluster of common deregulated targets. The network pharmacology analysis identified seven core targets (namely, AURKA, CDK1, CCNB1, CCNB2, CCNE1, CCNE2, and TTK) of curcumol in patients with COVID-19 and LUAD. Clinicopathological analysis of these targets demonstrated that the expression of these targets is associated with poor patient survival rates. The bioinformatics analysis further highlighted the involvement of this target cluster in DNA damage response, chromosome stability, and pathogenesis of LUAD. More importantly, these targets influence cell-signaling associated with the Warburg effect, which supports SARS-CoV-2 replication and inflammatory response. Comparative transcriptomic analysis on in vitro LUAD cell further validated the effect of curcumol for treating LUAD through the control of cell cycle and DNA damage response. This study supports the earlier findings that curcumol is a potential treatment for patients with LUAD and COVID-19.
Collapse
Affiliation(s)
- Lu Yang
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, China
| | - Hao Xiong
- Guilin Center for Disease Control and Prevention, Guilin, China
| | - Xin Li
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| | - Yu Li
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, China
| | - Huanhuan Zhou
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, China
| | - Xiao Lin
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ting Fung Chan
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Rong Li
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, China
- *Correspondence: Rong Li
| | - Keng Po Lai
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, China
- Keng Po Lai
| | - Xu Chen
- Department of Pharmacy, Guilin Medical University, Guilin, China
- Xu Chen ;
| |
Collapse
|
13
|
Benchama O, Tyukhtenko S, Malamas MS, Williams MK, Makriyannis A, Avraham HK. Inhibition of triple negative breast cancer-associated inflammation, tumor growth and brain colonization by targeting monoacylglycerol lipase. Sci Rep 2022; 12:5328. [PMID: 35351947 PMCID: PMC8964799 DOI: 10.1038/s41598-022-09358-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/22/2022] [Indexed: 12/15/2022] Open
Abstract
While the prevalence of breast cancer metastasis in the brain is significantly higher in triple negative breast cancers (TNBCs), there is a lack of novel and/or improved therapies for these patients. Monoacylglycerol lipase (MAGL) is a hydrolase involved in lipid metabolism that catalyzes the degradation of 2-arachidonoylglycerol (2-AG) linked to generation of pro- and anti-inflammatory molecules. Here, we targeted MAGL in TNBCs, using a potent carbamate-based inhibitor AM9928 (hMAGL IC50 = 9 nM) with prolonged pharmacodynamic effects (46 h of target residence time). AM9928 blocked TNBC cell adhesion and transmigration across human brain microvascular endothelial cells (HBMECs) in 3D co-cultures. In addition, AM9928 inhibited the secretion of IL-6, IL-8, and VEGF-A from TNBC cells. TNBC-derived exosomes activated HBMECs resulting in secretion of elevated levels of IL-8 and VEGF, which were inhibited by AM9928. Using in vivo studies of syngeneic GFP-4T1-BrM5 mammary tumor cells, AM9928 inhibited tumor growth in the mammary fat pads and attenuated blood brain barrier (BBB) permeability changes, resulting in reduced TNBC colonization in brain. Together, these results support the potential clinical application of MAGL inhibitors as novel treatments for TNBC.
Collapse
Affiliation(s)
- Othman Benchama
- The Center for Drug Discovery, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA
| | - Sergiy Tyukhtenko
- The Center for Drug Discovery, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA
| | - Michael S Malamas
- The Center for Drug Discovery, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA
| | | | - Alexandros Makriyannis
- The Center for Drug Discovery, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA
| | - Hava Karsenty Avraham
- The Center for Drug Discovery, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
14
|
Jiang A, Chen X, Zheng H, Liu N, Ding Q, Li Y, Fan C, Fu X, Liang X, Tian T, Ruan Z, Yao Y. Lipid metabolism-related gene prognostic index (LMRGPI) reveals distinct prognosis and treatment patterns for patients with early-stage pulmonary adenocarcinoma. Int J Med Sci 2022; 19:711-728. [PMID: 35582412 PMCID: PMC9108406 DOI: 10.7150/ijms.71267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/14/2022] [Indexed: 11/05/2022] Open
Abstract
Background: Lipid metabolism plays a pivotal role in cancer progression and metastasis. This study aimed to investigate the prognostic value of lipid metabolism-related genes (LMRGs) in early-stage lung adenocarcinoma (LUAD) and develop a lipid metabolism-related gene prognostic index (LMRGPI) to predict their overall survival (OS) and treatment response. Methods: A total of 774 early-stage LUAD patients were identified from The Cancer Genome Atlas (TCGA, 403 patients) database and Gene Expression Omnibus (GEO, 371 patients) database. The non-negative Matrix Factorization (NMF) algorithm was used to identify different population subtypes based on LMRGs. The Least Absolute Shrinkage and Selection Operator (LASSO) and multivariate Cox regression analyses were used to develop the LMRGPI, with receiver operating characteristic (ROC) curves and concordance index being used to evaluate its performance. The characteristics of mutation landscape, enriched pathways, tumor microenvironment (TME), and treatment response between different LMRGPI groups were also investigated. Results: We identified two population subtypes based on LMRGs in the TCGA-LUAD cohort, with distinct prognosis, TME, and immune status being observed. LMRGPI was developed based on the expression levels of six LMRGs, including ANGPTL4, NPAS2, SLCO1B3, ACOXL, ALOX15, and B3GALNT1. Higher LMRGPI was correlated with poor OS both in TCGA and GSE68465 cohorts. Two nomograms were established to predict the survival probability of early-stage LUAD, with higher consistencies being observed between the predicted and actual OS. Higher LMRGPI was significantly correlated with more frequent TP53 mutation, higher tumor mutation burden (TMB), and up-regulation of CD274. Besides, patients with higher LMRGPI presented unremarkable responses for gefitinib, erlotinib, cisplatin, and vinorelbine, while they tend to have a favorable response for immune checkpoint inhibitors (ICIs). The opposite results were observed in the low-LMRGPI group. Conclusions: We comprehensively investigated the prognostic value of LMRGs in early-stage LUAD. Given its good prognostic ability, LMRGPI could serve as a promising biomarker to predict the OS and treatment response of these patients.
Collapse
Affiliation(s)
- Aimin Jiang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Xue Chen
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Haoran Zheng
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Na Liu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Qianqian Ding
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Yimeng Li
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Chaoxin Fan
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Xiao Fu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Xuan Liang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Tao Tian
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Zhiping Ruan
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Yu Yao
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
15
|
Zou W, Chen L, Mao W, Hu S, Liu Y, Hu C. Identification of Inflammatory Response-Related Gene Signature Associated With Immune Status and Prognosis of Lung Adenocarcinoma. Front Bioeng Biotechnol 2021; 9:772206. [PMID: 34881236 PMCID: PMC8647082 DOI: 10.3389/fbioe.2021.772206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/29/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Lung adenocarcinoma (LUAD) is an exceedingly diverse disease, making prognostication difficult. Inflammatory responses in the tumor or the tumor microenvironment can alter prognosis in the process of the ongoing cross-talk between the host and the tumor. Nonetheless, Inflammatory response-related genes’ prognostic significance in LUAD, on the other hand, has yet to be determined. Materials and Methods: The clinical data as well as the mRNA expression patterns of LUAD patients were obtained from a public dataset for this investigation. In the TCGA group, a multigene prognostic signature was built utilizing LASSO Cox analysis. Validation was executed on LUAD patients from the GEO cohort. The overall survival (OS) of low- and high-risk cohorts was compared utilizing the Kaplan-Meier analysis. The assessment of independent predictors of OS was carried out utilizing multivariate and univariate Cox analyses. The immune-associated pathway activity and immune cell infiltration score were computed utilizing single-sample gene set enrichment analysis. GO keywords and KEGG pathways were explored utilizing gene set enrichment analysis. Results: LASSO Cox regression analysis was employed to create an inflammatory response-related gene signature model. The high-risk cohort patients exhibited a considerably shorter OS as opposed to those in the low-risk cohort. The prognostic gene signature’s predictive ability was demonstrated using receiver operating characteristic curve analysis. The risk score was found to be an independent predictor of OS using multivariate Cox analysis. The functional analysis illustrated that the immune status and cancer-related pathways for the two-risk cohorts were clearly different. The tumor stage and kind of immune infiltrate were found to be substantially linked with the risk score. Furthermore, the cancer cells’ susceptibility to anti-tumor medication was substantially associated with the prognostic genes expression levels. Conclusion: In LUAD, a new signature made up of 8 inflammatory response-related genes may be utilized to forecast prognosis and influence immunological state. Inhibition of these genes could also be used as a treatment option.
Collapse
Affiliation(s)
- Weijie Zou
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Medical Imaging of Soochow University, Suzhou, China
| | - Li Chen
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenwen Mao
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Medical Imaging of Soochow University, Suzhou, China
| | - Su Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Medical Imaging of Soochow University, Suzhou, China
| | - Yuanqing Liu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Medical Imaging of Soochow University, Suzhou, China
| | - Chunhong Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Medical Imaging of Soochow University, Suzhou, China
| |
Collapse
|
16
|
Ramer R, Wittig F, Hinz B. The Endocannabinoid System as a Pharmacological Target for New Cancer Therapies. Cancers (Basel) 2021; 13:cancers13225701. [PMID: 34830856 PMCID: PMC8616499 DOI: 10.3390/cancers13225701] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Cannabinoids have been shown to suppress tumour cell proliferation, tumour invasion, metastasis, angiogenesis, chemoresistance and epithelial-mesenchymal transition and to induce tumour cell apoptosis, autophagy and immune response. This review focuses on the current status of investigations on the impact of inhibitors of endocannabinoid-degrading enzymes on tumour growth and spread in preclinical oncology research. Abstract Despite the long history of cannabinoid use for medicinal and ritual purposes, an endogenous system of cannabinoid-controlled receptors, as well as their ligands and the enzymes that synthesise and degrade them, was only discovered in the 1990s. Since then, the endocannabinoid system has attracted widespread scientific interest regarding new pharmacological targets in cancer treatment among other reasons. Meanwhile, extensive preclinical studies have shown that cannabinoids have an inhibitory effect on tumour cell proliferation, tumour invasion, metastasis, angiogenesis, chemoresistance and epithelial-mesenchymal transition (EMT) and induce tumour cell apoptosis and autophagy as well as immune response. Appropriate cannabinoid compounds could moreover be useful for cancer patients as potential combination partners with other chemotherapeutic agents to increase their efficacy while reducing unwanted side effects. In addition to the direct activation of cannabinoid receptors through the exogenous application of corresponding agonists, another strategy is to activate these receptors by increasing the endocannabinoid levels at the corresponding pathological hotspots. Indeed, a number of studies accordingly showed an inhibitory effect of blockers of the endocannabinoid-degrading enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) on tumour development and spread. This review summarises the relevant preclinical studies with FAAH and MAGL inhibitors compared to studies with cannabinoids and provides an overview of the regulation of the endocannabinoid system in cancer.
Collapse
|
17
|
Kienzl M, Hasenoehrl C, Maitz K, Sarsembayeva A, Taschler U, Valadez-Cosmes P, Kindler O, Ristic D, Raftopoulou S, Santiso A, Bärnthaler T, Brcic L, Hahnefeld L, Gurke R, Thomas D, Geisslinger G, Kargl J, Schicho R. Monoacylglycerol lipase deficiency in the tumor microenvironment slows tumor growth in non-small cell lung cancer. Oncoimmunology 2021; 10:1965319. [PMID: 34527428 PMCID: PMC8437460 DOI: 10.1080/2162402x.2021.1965319] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Monoacylglycerol lipase (MGL) expressed in cancer cells influences cancer pathogenesis but the role of MGL in the tumor microenvironment (TME) is less known. Using a syngeneic tumor model with KP cells (KrasLSL-G12D/p53fl/fl; from mouse lung adenocarcinoma), we investigated whether TME-expressed MGL plays a role in tumor growth of non-small cell lung cancer (NSCLC). In sections of human and experimental NSCLC, MGL was found in tumor cells and various cells of the TME including macrophages and stromal cells. Mice treated with the MGL inhibitor JZL184 as well as MGL knock-out (KO) mice exhibited a lower tumor burden than the controls. The reduction in tumor growth was accompanied by an increased number of CD8+ T cells and eosinophils. Naïve CD8+ T cells showed a shift toward more effector cells in MGL KOs and an increased expression of granzyme-B and interferon-γ, indicative of enhanced tumoricidal activity. 2-arachidonoyl glycerol (2-AG) was increased in tumors of MGL KO mice, and dose-dependently induced differentiation and migration of CD8+ T cells as well as migration and activation of eosinophils in vitro. Our results suggest that next to cancer cell-derived MGL, TME cells expressing MGL are responsible for maintaining a pro-tumorigenic environment in tumors of NSCLC.
Collapse
Affiliation(s)
- Melanie Kienzl
- Division Of Pharmacology, Otto Loewi Research Center, Medical University Of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| | - Carina Hasenoehrl
- Division Of Pharmacology, Otto Loewi Research Center, Medical University Of Graz, Graz, Austria
| | - Kathrin Maitz
- Division Of Pharmacology, Otto Loewi Research Center, Medical University Of Graz, Graz, Austria
| | - Arailym Sarsembayeva
- Division Of Pharmacology, Otto Loewi Research Center, Medical University Of Graz, Graz, Austria
| | - Ulrike Taschler
- Institute Of Molecular Biosciences, University Of Graz, Graz, Austria
| | - Paulina Valadez-Cosmes
- Division Of Pharmacology, Otto Loewi Research Center, Medical University Of Graz, Graz, Austria
| | - Oliver Kindler
- Division Of Pharmacology, Otto Loewi Research Center, Medical University Of Graz, Graz, Austria
| | - Dusica Ristic
- Division Of Pharmacology, Otto Loewi Research Center, Medical University Of Graz, Graz, Austria
| | - Sofia Raftopoulou
- Division Of Pharmacology, Otto Loewi Research Center, Medical University Of Graz, Graz, Austria
| | - Ana Santiso
- Division Of Pharmacology, Otto Loewi Research Center, Medical University Of Graz, Graz, Austria
| | - Thomas Bärnthaler
- Division Of Pharmacology, Otto Loewi Research Center, Medical University Of Graz, Graz, Austria
| | - Luka Brcic
- Diagnostic And Research Institute Of Pathology, Medical University Of Graz, Graz, Austria
| | - Lisa Hahnefeld
- Institute Of Clinical Pharmacology, Goethe University, Frankfurt, Germany
| | - Robert Gurke
- Institute Of Clinical Pharmacology, Goethe University, Frankfurt, Germany
- Fraunhofer Institute For Translational Medicine And Pharmacology ITMP, Frankfurt, Germany
| | - Dominique Thomas
- Institute Of Clinical Pharmacology, Goethe University, Frankfurt, Germany
| | - Gerd Geisslinger
- Institute Of Clinical Pharmacology, Goethe University, Frankfurt, Germany
- Fraunhofer Institute For Translational Medicine And Pharmacology ITMP, Frankfurt, Germany
| | - Julia Kargl
- Division Of Pharmacology, Otto Loewi Research Center, Medical University Of Graz, Graz, Austria
| | - Rudolf Schicho
- Division Of Pharmacology, Otto Loewi Research Center, Medical University Of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| |
Collapse
|