1
|
Liu C. Mechanistic insights into CDCA gene family-mediated glioblastoma progression: implications for diagnosis, prognosis, and therapeutic targeting. Hereditas 2025; 162:43. [PMID: 40114265 PMCID: PMC11924692 DOI: 10.1186/s41065-025-00415-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Glioblastoma (GBM) is a highly aggressive brain tumor characterized by poor prognosis and limited therapeutic options. Understanding the molecular mechanisms driving GBM progression is essential for developing more effective diagnostic and therapeutic approaches. Specifically, investigating Cell Division Cycle-Associated (CDCA) genes offers new perspectives on cell cycle regulation and the proliferation of GBM cells, which are key factors in tumor growth and resistance to treatment. These genes have not been extensively studied in GBM, making them a promising area for targeted research and potential therapeutic interventions. This project was launched to elucidate the pathogenic, diagnostic, and therapeutic roles of CDCA genes in GBM. METHODOLOGY Total RNA was extracted from GBM cell lines followed by RT-qPCR to analyze the expression of CDCA genes. The expression validation, prognostic significance, and mutational analysis of CDCA genes were performed using various databases. Functional assays, including gene knockdown, colony formation, proliferation, and wound healing, were conducted in U87MG cells to assess the role of CDCA7 and CDCA8 in GBM. RESULTS The expression analysis of CDCA genes in 12 GBM cell lines and 6 normal brain cell lines revealed significant overexpression of these genes in GBM. ROC curve analysis demonstrated excellent diagnostic potential, with AUC values of 1 for most genes. This indicates that CDCA gene expression effectively distinguishes GBM cells from normal brain cells. Validation using additional TCGA data confirmed the upregulation of these genes in GBM tumors, with significant association to key cancer-related pathways. Survival analysis showed that higher expression of CDCA genes correlated with poor prognosis in GBM patients. Mutation, CNV, and methylation analyses revealed alterations in these genes, further supporting their role in GBM. Additionally, CDCA gene expression was linked to immune modulation and cell cycle-related functions, suggesting their involvement in immune evasion and tumor proliferation. Knockdown experiments of CDCA7 and CDCA8 in U87MG cells demonstrated a reduction in cell proliferation, colony formation, and migration, highlighting their potential as therapeutic targets. CONCLUSION Overall, our findings suggest that CDCA genes could serve as both diagnostic biomarkers and therapeutic targets for GBM.
Collapse
Affiliation(s)
- Chang Liu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518116, China.
| |
Collapse
|
2
|
Zhao Z, Feng X, Chen B, Wu Y, Wang X, Tang Z, Huang M, Guo X. CDCA genes as prognostic and therapeutic targets in Colon adenocarcinoma. Hereditas 2025; 162:19. [PMID: 39924497 PMCID: PMC11809055 DOI: 10.1186/s41065-025-00368-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/13/2025] [Indexed: 02/11/2025] Open
Abstract
OBJECTIVES The study investigates the role of Cell Division Cycle Associated (CDCA) genes in colorectal cancer (COAD) by analyzing their differential expression, epigenetic alterations, prognostic significance, and functional associations. METHODOLOGY This study employed a detailed in silico and in vitro experiments-based methodology. RESULTS RT-qPCR assays reveal significantly elevated mRNA levels of CDCA2, CDCA3, CDCA4, CDCA5, CDCA7, and CDCA8 genes in COAD cell lines compared to controls. Bisulfite sequencing indicates reduced promoter methylation of CDCA gene promoters in COAD cell lines, suggesting an epigenetic regulatory mechanism. Analysis of large TCGA datasets confirms increased CDCA gene expression in COAD tissues. Survival analysis using cSurvival database demonstrates negative correlations between CDCA gene expression and patient overall survival. Additionally, Lasso regression-based models of CDCA genes predict survival outcomes in COAD patients. Investigating immune modulation, CDCA gene expression inversely correlates with immune cell infiltration and immune modulators. miRNA-mRNA network analysis identifies regulatory miRNAs targeting CDCA genes, validated by RT-qPCR showing up-regulation of has-mir-10a-5p and has-mir-20a-5p in COAD cell lines and tissues. Drug sensitivity analysis suggests resistance to specific drugs in COAD patients with elevated CDCA gene expression. Furthermore, CDCA gene expression correlates with crucial functional states in COAD, including "angiogenesis, apoptosis, differentiation, hypoxia, inflammation, and metastasis." Additional in vitro experiments revealed that CDCA2 and CDCA3 knockdown in SW480 and SW629 cells significantly reduced cell proliferation and colony formation while enhancing cell migration. CONCLUSION Overall, the study elucidates the multifaceted role of CDCA genes in COAD progression, providing insights into potential diagnostic, prognostic, and therapeutic implications.
Collapse
Affiliation(s)
- Zongquan Zhao
- Department of General Practice, Pingjiang New Town Community Health Service Center Sujin Street Gusu District, Suzho, 215000, Jiangsu, China
| | - Xinwei Feng
- Department of Digestive Internal Medicine, Shanghai Changzheng Hospital, Shanghai, 200003, China
| | - Bo Chen
- Department of Oncology, Chengdu First People's Hospital, Chengdu Sichuan, 610041, China
| | - Yihong Wu
- Department of General Practice, Runda Community Health Service Center, Wumenqiao Street, Gusu District, Suzhou, 215000, Jiangsu, China
| | - Xiaohong Wang
- Department of General Practice, Pingjiang New Town Community Health Service Center Sujin Street Gusu District, Suzho, 215000, Jiangsu, China
| | - Zhenyuan Tang
- Department of General Practice, Community Health Management Center of Suzhou Municipal Hospital, Suzhou, 215000, Jiangsu, China
| | - Min Huang
- Department of General Practice, Suzhou Municipal Hospital, Suzhou, 215000, Jiangsu, China
| | - Xiaohua Guo
- Department of Digestive Surgery, Xi'an Jiaotong University School of Medicine Affiliated Honghui Hospital, Xi'an, Shaanxi, 700054, China.
| |
Collapse
|
3
|
Alzahrani MS, Almutairy B, Althobaiti YS, Alsaab HO. Recent Advances in RNA Interference-Based Therapy for Hepatocellular Carcinoma: Emphasis on siRNA. Cell Biochem Biophys 2024; 82:1947-1964. [PMID: 38987439 DOI: 10.1007/s12013-024-01395-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2024] [Indexed: 07/12/2024]
Abstract
Even though RNA treatments were first proposed as a way to change aberrant signaling in cancer, research in this field is currently ongoing. The term "RNAi" refers to the use of several RNAi technologies, including ribozymes, riboswitches, Aptamers, small interfering RNA (siRNA), antisense oligonucleotides (ASOs), and CRISPR/Cas9 technology. The siRNA therapy has already achieved a remarkable feat by revolutionizing the treatment arena of cancers. Unlike small molecules and antibodies, which need administration every three months or even every two years, RNAi may be given every quarter to attain therapeutic results. In order to overcome complex challenges, delivering siRNAs to the targeted tissues and cells effectively and safely and improving the effectiveness of siRNAs in terms of their action, stability, specificity, and potential adverse consequences are required. In this context, the three primary techniques of siRNA therapies for hepatocellular carcinoma (HCC) are accomplished for inhibiting angiogenesis, decreasing cell proliferation, and promoting apoptosis, are discussed in this review. We also deliberate targeting issues, immunogenic reactions to siRNA therapy, and the difficulties with their intrinsic chemistry and transportation.
Collapse
Affiliation(s)
- Mohammad S Alzahrani
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia
| | - Bandar Almutairy
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Yusuf S Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia
- Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia.
| |
Collapse
|
4
|
Xu C, Sun D, Wei C, Chang H. Bioinformatic analysis and experimental validation identified DNA methylation–Related biomarkers and immune-cell infiltration of atherosclerosis. Front Genet 2022; 13:989459. [PMID: 36159969 PMCID: PMC9493181 DOI: 10.3389/fgene.2022.989459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background: DNA methylation is an important form of epigenetic regulation and is closely related to atherosclerosis (AS). The purpose of this study was to identify DNA methylation–related biomarkers and explore the immune-infiltrate characteristics of AS based on methylation data.Methods: DNA methylation data of 15 atherosclerotic and paired healthy tissues were obtained from Gene Expression Omnibus database. Differential methylation positions (DMPs) and differential methylation regions (DMRs) were screened by the ChAMP R package. The methylation levels of DMPs located on CpG islands of gene promoter regions were averaged. The limma R package was used to screen differentially methylated genes in the CpG islands of the promoter regions. The diagnostic values of the methylation levels were evaluated using the pROC R package. The EpiDISH algorithm was applied to quantify the infiltration levels of seven types of immune cells. Subsequently, three pairs of clinical specimens of coronary atherosclerosis with Stary’s pathological stage III were collected, and the methylation levels were detected by the methylation-specific PCR (MS-PCR) assay. Western blot was performed to detect the protein expression levels of monocyte markers.Results: A total of 110, 695 DMPs, and 918 DMRs were screened in the whole genome. Also, six genes with significant methylation differences in the CpG islands of the promoter regions were identified, including 49 DMPs. In total, three genes (GRIK2, HOXA2, and HOXA3) had delta beta greater than 0.2. The infiltration level of monocytes was significantly upregulated in AS tissues. MS-PCR assay confirmed the methylation status of the aforementioned three genes in AS samples. The Western blot results showed that the expression levels of the monocyte marker CD14 and M1-type macrophage marker CD86 were significantly increased in AS while M2-type macrophage marker protein CD206 was significantly decreased.Conclusion: This study identified potential DNA methylation–related biomarkers and revealed the role of monocytes in early AS.
Collapse
Affiliation(s)
- Congjian Xu
- Department of Cardiology, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Di Sun
- Department of Cardiology, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Changmin Wei
- Department of Cardiology, Shengli Oilfield Central Hospital, Dongying, Shandong, China
- *Correspondence: Changmin Wei, ; Hao Chang,
| | - Hao Chang
- Hanyu Biomed Center Beijing, Beijing, China
- *Correspondence: Changmin Wei, ; Hao Chang,
| |
Collapse
|
5
|
Sartorius K, Antwi SO, Chuturgoon A, Roberts LR, Kramvis A. RNA Therapeutic Options to Manage Aberrant Signaling Pathways in Hepatocellular Carcinoma: Dream or Reality? Front Oncol 2022; 12:891812. [PMID: 35600358 PMCID: PMC9115561 DOI: 10.3389/fonc.2022.891812] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/04/2022] [Indexed: 11/24/2022] Open
Abstract
Despite the early promise of RNA therapeutics as a magic bullet to modulate aberrant signaling in cancer, this field remains a work-in-progress. Nevertheless, RNA therapeutics is now a reality for the treatment of viral diseases (COVID-19) and offers great promise for cancer. This review paper specifically investigates RNAi as a therapeutic option for HCC and discusses a range of RNAi technology including anti-sense oligonucleotides (ASOs), Aptamers, small interfering RNA (siRNA), ribozymes, riboswitches and CRISPR/Cas9 technology. The use of these RNAi based interventions is specifically outlined in three primary strategies, namely, repressing angiogenesis, the suppression of cell proliferation and the promotion of apoptosis. We also discuss some of the inherent chemical and delivery problems, as well as targeting issues and immunogenic reaction to RNAi interventions.
Collapse
Affiliation(s)
- Kurt Sartorius
- Hepatitis Virus Diversity Research Unit, School of Internal Medicine, University of the Witwatersrand, Johannesburg, South Africa
- The Africa Hepatopancreatobiliary Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, FL, United States
- Department of Surgery, KZN Kwazulu-Natal (UKZN) Gastrointestinal Cancer Research Centre, Durban, South Africa
| | - Samuel O. Antwi
- The Africa Hepatopancreatobiliary Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, FL, United States
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, United States
| | - Anil Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, Durban, South Africa
| | - Lewis R. Roberts
- The Africa Hepatopancreatobiliary Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, FL, United States
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Anna Kramvis
- Hepatitis Virus Diversity Research Unit, School of Internal Medicine, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
6
|
Tang M, Liao M, Ai X, He G. Increased CDCA2 Level Was Related to Poor Prognosis in Hepatocellular Carcinoma and Associated With Up-Regulation of Immune Checkpoints. Front Med (Lausanne) 2022; 8:773724. [PMID: 35372372 PMCID: PMC8964461 DOI: 10.3389/fmed.2021.773724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Background Cell division cycle-associated protein 2 (CDCA2) is a member of cell cycle-related proteins. CDCA2 plays a role in the regulation of protein phosphatase 1(PP1) γ-dependent DNA damage response (DDR) and H3 phosphorylation. CDCA2 promotes the tumorigenesis and development of several types of cancers by promoting the proliferation of tumor cells. However, the relationship between CDCA2 expression and the clinicopathological characteristics of hepatocellular carcinoma (HCC) is unknown. Methods Gene expression information and clinical data were downloaded from The Cancer Genome Atlas (TCGA) database. The expression of CDCA2 and its correlation to clinical characteristics in HCC were analyzed. The expression level of CDCA2 was validated in HCC cell lines. The relationship between CDCA2 expression and the survival of patients with HCC was analyzed by using Kaplan–Meier method. The prognostic value of CDCA2 in HCC was estimated by Cox regression analysis. The expression difference of CDCA2 between HCC and normal tissues and its correlation to survival were verified in independent datasets. Gene set enrichment analysis (GSEA) was used to screen the CDCA2-related signaling pathways. Results Cell division cycle-associated protein 2 expression was upregulated in HCC tissues (p < 0.001) and increased CDCA2 was correlated to increased T stage, pathologic stage, histologic grade, and alpha-fetoprotein (AFP) level (p < 0.001). In addition, CDCA2 was overexpressed in HCC cell lines HepG2 and LM3. High CDCA2 expression level was associated with poor overall survival [hazard ratio (HR) = 1.69; 95% CI, 1.20–1.40, p = 0.003], disease specific survival (HR = 1.73; 95% CI, 1.11–2.71, p = 0.016), and progress free interval (HR = 1.74; 95% CI, 1.30–2.34, p < 0.001). Overexpression of CDCA2 and its correlation to poor survival in HCC were verified in Gene Expression Omnibus (GEO) datasets and Kaplan–Meier plotter database. Increased CDCA2 expression was associated with upregulation of PD-L1 (Spearman's coefficient = 0.207, p < 0.001), PD-L2 (Spearman coefficient's = 0.118, p < 0.05), and CTLA4 (Spearman's coefficient = 0.355, p < 0.001). GSEA showed that homologous recombination pathway, insulin signaling pathway, mitogen-activated protein kinase (MAPK) pathway, mismatch repair pathway, mechanistic target of rapamycin (mTOR) pathway, Notch pathway, T cell receptor pathway, toll like receptor pathway, and WNT pathway were enriched in CDCA2 high expression phenotype. Conclusion Cell division cycle-associated protein 2 may serve as an independent biomarker for poor prognosis in HCC and increased CDCA2 expression was associated with upregulation of immune checkpoints.
Collapse
Affiliation(s)
- Mengying Tang
- Department of Infectious Disease, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Mingchu Liao
- Department of Medical Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiaohong Ai
- Department of Radiation Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Guicheng He
- Department of Medical Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
7
|
Braghini MR, Lo Re O, Romito I, Fernandez-Barrena MG, Barbaro B, Pomella S, Rota R, Vinciguerra M, Avila MA, Alisi A. Epigenetic remodelling in human hepatocellular carcinoma. J Exp Clin Cancer Res 2022; 41:107. [PMID: 35331312 PMCID: PMC8943959 DOI: 10.1186/s13046-022-02297-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/19/2022] [Indexed: 04/13/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequent primary liver cancer, being the sixth most commonly diagnosed cancer and the fourth leading cause of cancer-related death. As other heterogeneous solid tumours, HCC results from a unique synergistic combination of genetic alterations mixed with epigenetic modifications.In HCC the patterns and frequencies of somatic variations change depending on the nearby chromatin. On the other hand, epigenetic alterations often induce genomic instability prone to mutations. Epigenetics refers to heritable states of gene expression without alteration to the DNA sequence itself and, unlike genetic changes, the epigenetic modifications are reversible and affect gene expression more extensively than genetic changes. Thus, studies of epigenetic regulation and the involved molecular machinery are greatly contributing to the understanding of the mechanisms that underline HCC onset and heterogeneity. Moreover, this knowledge may help to identify biomarkers for HCC diagnosis and prognosis, as well as future new targets for more efficacious therapeutic approaches.In this comprehensive review we will discuss the state-of-the-art knowledge about the epigenetic landscape in hepatocarcinogenesis, including evidence on the diagnostic and prognostic role of non-coding RNAs, modifications occurring at the chromatin level, and their role in the era of precision medicine.Apart from other better-known risk factors that predispose to the development of HCC, characterization of the epigenetic remodelling that occurs during hepatocarcinogenesis could open the way to the identification of personalized biomarkers. It may also enable a more accurate diagnosis and stratification of patients, and the discovery of new targets for more efficient therapeutic approaches.
Collapse
Affiliation(s)
- Maria Rita Braghini
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Viale S. Paolo, 15, 00146, Rome, Italy
| | - Oriana Lo Re
- Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna, Varna, Bulgaria
| | - Ilaria Romito
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Viale S. Paolo, 15, 00146, Rome, Italy
| | - Maite G Fernandez-Barrena
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Barbara Barbaro
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Viale S. Paolo, 15, 00146, Rome, Italy
| | - Silvia Pomella
- Department of Paediatric Haematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rossella Rota
- Department of Paediatric Haematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Manlio Vinciguerra
- Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna, Varna, Bulgaria
| | - Matias A Avila
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Anna Alisi
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Viale S. Paolo, 15, 00146, Rome, Italy.
| |
Collapse
|
8
|
Jiang D, Li Y, Cao J, Sheng L, Zhu X, Xu M. Cell Division Cycle-Associated Genes Are Potential Immune Regulators in Nasopharyngeal Carcinoma. Front Oncol 2022; 12:779175. [PMID: 35237510 PMCID: PMC8882974 DOI: 10.3389/fonc.2022.779175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/06/2022] [Indexed: 12/12/2022] Open
Abstract
Background Cell division cycle-associated (CDCA) gene family is essential to cell cycle regulation. Numerous studies have illuminated that dysfunction of CDCA genes may not only lead to uncontrolled cell proliferation resulting in tumorigenesis but also influence immune cell infiltration in tumors. However, the role of the CDCA gene family on the prognosis and immune infiltration in nasopharyngeal carcinoma (NPC) remains to be unclear. Methods SBC human ceRNA array V1.0 was used to measure mRNA expression in three pairs of NPC tissues and nasopharyngitis tissues. The expression of CDCA8 was confirmed in an IHC microarray containing 130 NPC patients. Two external GEO cohorts were enrolled for further analysis. Prognosis analysis was performed using the Kaplan–Meier method. Gene set enrichment analysis (GSEA) was applied to explore the potential mechanism of CDCA genes in NPC. The relationship between CDCA gene family and immune infiltration in NPC was evaluated using the Xcell tool. Results CDCA genes were broadly upregulated in NPC tissues compared to nasopharyngitis tissues, and high expression of CDCA3/5/8 indicated worse prognosis in NPC. Besides cell cycle pathways, we found that CDCA3/5/8 were involved in multiple immune-related pathways. Overexpression of CDCA8 was strongly associated with less infiltration of CD8+ T cells and more infiltration of CD4+ Th1 cells and was negatively correlated with immune checkpoint blockade (ICB)-related genes. Conclusion CDCA gene family was upregulated in NPC, and their expressions were associated with adverse prognosis. High expression of CDCA8 was associated not only with poor prognosis, but also with less immune infiltration and downregulation of ICB-related genes in NPC.
Collapse
Affiliation(s)
- Danxian Jiang
- Department of Oncology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Department of Head and Neck Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yin Li
- Department of Oncology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Jinxin Cao
- Department of Head and Neck Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lianghe Sheng
- Department of Oncology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Xinhai Zhu
- Department of Oncology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Meng Xu
- Department of Oncology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- *Correspondence: Meng Xu,
| |
Collapse
|
9
|
He Y, Lu M, Che J, Chu Q, Zhang P, Chen Y. Biomarkers and Future Perspectives for Hepatocellular Carcinoma Immunotherapy. Front Oncol 2021; 11:716844. [PMID: 34552872 PMCID: PMC8450565 DOI: 10.3389/fonc.2021.716844] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular cancer is the sixth most frequently diagnosed malignant disease worldwide, and was responsible for tens of millions of deaths in 2020; however, treatment options for patients with advanced hepatocellular carcinoma remain limited. Immunotherapy has undergone rapid development over recent years, especially in the field of immune checkpoint inhibitors (ICIs). These drugs aim to activate and enhance antitumor immunity and represent a new prospect for the treatment of patients with advanced cancer. Nevertheless, only a small proportion of liver cancer patients currently benefit from ICI-based treatment, highlighting the need to better understand how ICIs and tumors interact, as well as identify predictive biomarkers for immunotherapeutic responses. In this review, we highlight clinical trials and basic research in hepatocellular carcinoma, with a particular focus on predictive biomarkers for the therapeutic efficacy of ICIs. Predictive biomarkers for immune-related adverse events are also discussed.
Collapse
Affiliation(s)
- Yuqing He
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengyao Lu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Che
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|