1
|
Jian B, Zhang H, Fan L, Li Y, Wu N, Wang N, Li L, Li X, Ge P, Niu Y, Liu J. RAD51 expression and prognostic impact in patients with stomach adenocarcinoma. PeerJ 2025; 13:e19179. [PMID: 40231067 PMCID: PMC11995892 DOI: 10.7717/peerj.19179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 02/25/2025] [Indexed: 04/16/2025] Open
Abstract
Background Stomach adenocarcinoma (STAD) is the most common gastrointestinal cancer. A clear diagnosis and molecular targeted therapy have important implications for prolonging survival of patients. RAD51 is the central catalyst of homologous recombination that plays important role in maintaining genomic integrity. However, the clinical significance of RAD51 expression in STAD patients remains unclear. This study aimed to assess the association of RAD51 expression with clinicopathological characteristics and patient outcomes. Methods In this study, RAD51 mRNA expression in STAD patients was assessed using the UALCAN and GEPIA databases. The diagnostic value of RAD51 was evaluated by analyzing the ROC curve (data from the The Cancer Genome Atlas (TCGA) database). The protein expression level of RAD51 in STAD patients and its relationship with clinicopathological characteristics and prognosis were evaluated by immunohistochemistry. Co-expression analysis of RAD51 in STAD was performed by Coexpedia and Gene Expression Profiling Interactive Analysis (GEPIA) databases. The associations of RAD51 and its co-expression genes with immune infiltrates were analyzed in TIMER database. Results Our bioinformatic analysis revealed that RAD51 demonstrates elevated expression in STAD. The ROC curve analysis yielded an AUC value of 0.9366 (95% CI [0.9075-0.9658]), confirming its potential as a biomarker for STAD. Immunohistochemical assessments validated the up-regulation of RAD51 in STAD, highlighting its significant correlation with TNM stage and T stage, but not with age, sex, grade, N stage, M stage, or P53 expression. Patients exhibiting high RAD51 expression exhibited significantly reduced overall survival. Multivariate analysis identified RAD51 expression may serve as an independent prognostic biomarker of poor prognosis in patients with STAD. Additionally, our bioinformatic analysis identified eight RAD51 co-expression genes (AURKA, CKS1B, NUSAP1, PFDN4, CCNE1, CDCA4, KIF4A, and MCM10) in STAD. Moreover, we discovered that RAD51 and its main co-expressed genes were significantly negatively associated with most or all immune cell infiltration. Conclusions RAD51 overexpression was related to disease progression and poor prognosis, as well as infiltration of immune cells in gastric cancer.
Collapse
Affiliation(s)
- Baiyu Jian
- Qiqihar Medical University, Qiqihar, China
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hao Zhang
- Qiqihar Medical University, Qiqihar, China
| | - Li Fan
- Qiqihar Medical University, Qiqihar, China
| | - Yang Li
- Qiqihar Medical University, Qiqihar, China
| | - Nan Wu
- Qiqihar Medical University, Qiqihar, China
| | | | - Lingmin Li
- Qiqihar Medical University, Qiqihar, China
| | - Xueyan Li
- Qiqihar Medical University, Qiqihar, China
| | - Pengling Ge
- Heilongjiang University of Chinese Medicine, Harbin, China
| | | | | |
Collapse
|
2
|
Zhang S, Zhang X, Huang W, Jiang G, Mo Y, Wei L, Fan P, Chen M, Jiang W. NUSAP1 is Upregulated by Estrogen to Promote Lung Adenocarcinoma Growth and Serves as a Therapeutic Target. Int J Biol Sci 2024; 20:5375-5395. [PMID: 39430250 PMCID: PMC11489181 DOI: 10.7150/ijbs.100188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/17/2024] [Indexed: 10/22/2024] Open
Abstract
Nucleolar and spindle-associated protein 1 (NUSAP1), a microtubule-associated protein, has been recently identified to exhibit aberrant expression patterns that correlate with malignant tumorigenesis and progression across various cancer types. However, the specific regulatory mechanisms and potential targeting therapies of NUSAP1 in lung adenocarcinoma (LUAD) remain largely elusive. In this study, by conducting bioinformatics analyses as well as in vitro and in vivo experiments, we identified that NUSAP1 was significantly upregulated in LUAD, with a notable correlation with poorer overall survival, higher scores for immunogenicity and immune infiltration, as well as increased sensitivity to conventional chemotherapeutic drugs such as paclitaxel, docetaxel and vinorelbine in LUAD. Functionally, NUSAP1 overexpression significantly promoted LUAD cell proliferation, while its knockdown markedly suppressed this process. Interestingly, our results revealed that NUSAP1 upregulation was mediated by estrogen via ERβ activation. Furthermore, we identified entinostat as a novel inhibitor of NUSAP1. Pharmacological targeting ERβ/NUSAP1 axis with fulvestrant (ERβ antagonist) or entinostat (novel NUSAP1 inhibitor) significantly reduced LUAD growth both in vitro and in vivo, which may represent effective alternative therapeutic strategies for patients with LUAD.
Collapse
Affiliation(s)
- Shaoping Zhang
- Department of Respiratory Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Xiaozhen Zhang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Wenjian Huang
- Department of Breast Surgery, the Sixth Affiliated Hospital of South China University of Technology, the Sixth Clinical College of South China University of Technology, Foshan 528225, China
| | - Ganling Jiang
- Department of pharmacy, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510145, China
| | - Yuanxin Mo
- Department of Respiratory Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Liuxia Wei
- Department of Medical Oncology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Pingming Fan
- Department of Breast Surgery, the First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan, China
| | - Maojian Chen
- Department of Respiratory Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Wei Jiang
- Department of Respiratory Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| |
Collapse
|
3
|
John Hamilton A, Lane S, Werry EL, Suri A, Bailey AW, Mercé C, Kadolsky U, Payne AD, Kassiou M, Treiger Sredni S, Saxena A, Gunosewoyo H. Synthesis and Antitumour Evaluation of Tricyclic Indole-2-Carboxamides against Paediatric Brain Cancer Cells. ChemMedChem 2024; 19:e202400098. [PMID: 38923350 DOI: 10.1002/cmdc.202400098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Antitumour properties of some cannabinoids (CB) have been reported in the literature as early as 1970s, however there is no clear consensus to date on the exact mechanisms leading to cancer cell death. The indole-based WIN 55,212-2 and SDB-001 are both known as potent agonists at both CB1 and CB2 receptors, yet we demonstrate herein that only the former can exert in vitro antitumour effects when tested against a paediatric brain cancer cell line KNS42. In this report, we describe the synthesis of novel 3,4-fused tricyclic indoles and evaluate their functional potencies at both cannabinoid receptors, as well as their abilities to inhibit the growth or proliferation of KNS42 cells. Compared to our previously reported indole-2-carboxamides, these 3,4-fused tricyclic indoles had either completely lost activities, or, showed moderate-to-weak antagonism at both CB1 and CB2 receptors. Compound 23 displayed the most potent antitumour properties among the series. Our results further support the involvement of non-CB pathways for the observed antitumour activities of amidoalkylindole-based cannabinoids, in line with our previous findings. Transcriptomic analysis comparing cells treated or non-treated with compound 23 suggested the observed antitumour effects of 23 are likely to result mainly from disruption of the FOXM1-regulated cell cycle pathways.
Collapse
Affiliation(s)
| | - Samuel Lane
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Eryn L Werry
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney NSW, 2006, Australia
| | - Amreena Suri
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
| | - Anders W Bailey
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
| | | | | | - Alan D Payne
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Simone Treiger Sredni
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
- Department of Surgery, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Alka Saxena
- Genomics WA, QEII Campus, Nedlands, WA, 6009, Australia
| | - Hendra Gunosewoyo
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, WA, 6102, Australia
| |
Collapse
|
4
|
Ge Y, Wang B, Xiao J, Wu H, Shao Q. NUSAP1 promotes gastric cancer radioresistance by inhibiting ubiquitination of ANXA2 and is suppressed by miR-129-5p. J Cancer Res Clin Oncol 2024; 150:406. [PMID: 39212774 PMCID: PMC11364566 DOI: 10.1007/s00432-024-05927-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Radiotherapy is an important strategy for the treatment of advanced gastric cancer (GC), while the radioresistance limits its effectiveness. Nucleolar and spindle associated protein 1 (NUSAP1) was implicated in cancer progression and chemoresistance. However, the underlying mechanisms of NUSAP1 influencing GC radioresistance remain largely unknown. METHODS Meta-analysis was conducted to systematically evaluate the prognostic value of NUSAP1 in human cancers. Gene set enrichment analysis (GSEA) was conducted using The Cancer Genome Atlas (TCGA) and gene expression omnibus (GEO) datasets. MRNA and protein expressions were detected by qRT-PCR and western blot, respectively. The radiosensitivity of GC cells was observed by colony formation, flow cytometry, comet, immunofluorescence, and animal assays. Immunoprecipitation assay and mass spectrometry were utilized to identify protein associations. MiRNAs binding with NUSAP1 were determined by starbase prediction, luciferase reporter, and RNA immunoprecipitation (RIP) assays. RESULTS NUSAP1 high expression predicted worse overall survival (OS) and disease-free survival (DFS) with no statistical heterogeneity through the meta-analysis. Downregulation of NUSAP1 significantly increased GC radiosensitivity by inhibiting colony formation, DNA damage repair, and promoting apoptosis following irradiation. Additionally, NUSAP1 silencing combined with radiation resulted in a synergistic anti-tumor effect in xenograft mouse model. Mechanistically, NUSAP1 interacted with ANXA2, protecting it against protein degradation via impeding its ubiquitination process. NUSAP1 was confirmed as a target of miR-129-5p and negatively regulated by it. CONCLUSION Our results suggested that NUSAP1 enhanced the radioresistance of GC cells. NUSAP1 could be a promising target to increase GC radiosensitivity.
Collapse
Affiliation(s)
- Yugang Ge
- Department of General Surgery, Jiangyin People's Hospital, The Affiliated Jiangyin Clinical College of Xuzhou Medical University, Jiangyin, Jiangsu Province, China
| | - Biao Wang
- Department of Oncology, First People's Hospital of Yancheng, Fourth Affiliated Hospital of Nantong University, Yancheng, China
| | - Jian Xiao
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hongshuai Wu
- Wuxi Key Laboratory of Biomaterials for Clinical Application, Department of Central Laboratory, Jiangyin Clinical College of Xuzhou Medical University, Wuxi, China
| | - Qing Shao
- Department of General Surgery, Jiangyin People's Hospital, The Affiliated Jiangyin Clinical College of Xuzhou Medical University, Jiangyin, Jiangsu Province, China.
| |
Collapse
|
5
|
Karthikeyan MC, Srinivasan C, Prabhakar K, Manogar P, Jayaprakash A, Arockiam AJV. Doxorubicin downregulates cell cycle regulatory hub genes in breast cancer cells. Med Oncol 2024; 41:220. [PMID: 39115587 DOI: 10.1007/s12032-024-02468-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 09/03/2024]
Abstract
Breast cancer (BC) is the leading commonly diagnosed cancer in the world, with complex mechanisms underlying its development. There is an urgent need to enlighten key genes as potential therapeutic targets crucial to advancing BC treatment. This study sought to investigate the influence of doxorubicin (DOX) on identified key genes consistent across numerous BC datasets obtained through bioinformatic analysis. To date, a meta-analysis of publicly available coding datasets for expression profiling by array from the Gene Expression Omnibus (GEO) has been carried out. Differentially Expressed Genes (DEGs) identified using GEO2R revealed a total of 23 common DEGs, including nine upregulated genes and 14 downregulated genes among the datasets of three platforms (GPL570, GPL6244, and GPL17586), and the commonly upregulated DEGs, showed significant enrichment in the cell cycle in KEGG analysis. The top nine genes, NUSAP1, CENPF, TPX2, PRC1, ANLN, BUB1B, AURKA, CCNB2, and CDK-1, with higher degree values and MCODE scores in the cytoscape program, were regarded as hub genes. The hub genes were activated in disease states commonly across all the subclasses of BC and correlated with the unfavorable overall survival of BC patients, as verified by the GEPIA and UALCAN databases. qRT-PCR confirmed that DOX treatment resulted in reduced expression of these genes in BC cell lines, which reinforces the evidence that DOX remains an effective drug for BC and suggests that developing modified formulations of doxorubicin to reduce toxicity and resistance, could enhance its efficacy as an effective therapeutic option for BC.
Collapse
Affiliation(s)
- Mano Chitra Karthikeyan
- Molecular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Chandhru Srinivasan
- Molecular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Kowsika Prabhakar
- Molecular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Priyadharshini Manogar
- Molecular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Abirami Jayaprakash
- Molecular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Antony Joseph Velanganni Arockiam
- Molecular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India.
| |
Collapse
|
6
|
El-Hussieny M, Thabet DM, Tawfik HM, Gayyed MF, Toni ND. The Overexpression of NUSAP1 and GTSE1 Could Predict An Unfavourable Prognosis and Shorter Disease Free Survival in ccRenal Cell Carcinoma. Asian Pac J Cancer Prev 2024; 25:2551-2559. [PMID: 39068590 PMCID: PMC11480612 DOI: 10.31557/apjcp.2024.25.7.2551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Although it has been reported that NUSAP1 and GTSE1 are highly expressed in different types of tumors and associated with malignant progression and poor clinical prognosis, their significances with clinicopathological data and correlations with patients' survival in ccRCC are still poorly understood. Therefore, in our study we attempted to evaluate the link between NUSAP1 and GTSE1 in ccRCC and to correlate their immunoexpression with clinico-pathological parameters and the patients' survival to identify their significance as potential therapeutic targets, indicators for tumor progression, and patients' prognosis. METHOD NUSAP1 and GTSE1 were examined in 100 ccRCC patients by immunohistochemistry. The association between NUSAP1 and GTSE1 immunoreactivity and clinicopathological variables were evaluated. The disease free survival (DFS) was examined by the Kaplan-Meier method. The multivariate Cox regressions was estimated to detect the prognostic role of both proteins. RESULTS We detected high NUSAP1 and GTSE1 expression in 60% and 62% of the cases, respectively. A significant association was detected between NUSAP1 and GTSE1 immunoexpression and size (p=0.007 and p=0.026, respectively), Fuhrman grade (p=0.022 and p=0.004, respectively), tumor stage (p=0.003 and p=0.019, respectively), TILs (p=0.026 and p=0.04 respectively), capsular invasion (p=0.002 and p=0.009, respectively), Distant metastasis (p=0.007 and p=0.009, respectively), and DFS (p=0.007 and 0.009, respectively). Multivariate Cox regression showed that high NUSAP1 and GTSE1 expression levels were independently associated with an unfavourable poor prognosis of ccRCC cases. CONCLUSION We demonstrated that NUSAP1 and GTSE1 overexpression was closely related to the poor prognostic clinicopathological features of ccRCC and predicted an unfavorable prognosis. Therefore, NUSAP1 and GTSE1 might act together as potential futuristic prognostic indicators and therapeutic targets for ccRCC patients. However, further analysis in molecular studies on larger scale are mandatory to highlight the interactive crosstalk regulatory mechanisms between both markers and their combined effect on ccRCC.
Collapse
Affiliation(s)
| | - Dalia M. Thabet
- Department of Pathology, Faculty of Medicine, Minia University 61511, El-Minia, Egypt.
| | | | | | | |
Collapse
|
7
|
Wu Y, Yao M, Wu Z, Ma L, Liu C. A new prognostic model based on gamma-delta T cells for predicting the risk and aiding in the treatment of clear cell renal cell carcinoma. Discov Oncol 2024; 15:185. [PMID: 38795225 PMCID: PMC11127908 DOI: 10.1007/s12672-024-01057-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/23/2024] [Indexed: 05/27/2024] Open
Abstract
BACKGROUND ccRCC is the prevailing form of RCC, accounting for the majority of cases. The formation of cancer and the body's ability to fight against tumors are strongly connected to Gamma delta (γδ) T cells. METHODS We examined and analyzed the gene expression patterns of 535 individuals diagnosed with ccRCC and 72 individuals serving as controls, all sourced from the TCGA-KIRC dataset, which were subsequently validated through molecular biology experiments. RESULTS In ccRCC, we discovered 304 module genes (DEGRGs) that were ex-pressed differentially and linked to γδ T cells. A risk model for ccRCC was constructed using 13 differentially DEGRGs identified through univariate Cox and LASSO regression analyses, which were found to be associated with prognosis. The risk model exhibited outstanding performance in both the training and validation datasets. The comparison of immune checkpoint inhibitors and the tumor immune microenvironment between the high- and low-risk groups indicates that immunotherapy could lead to positive results for low-risk patients. Moreover, the inhibition of ccRCC cell proliferation, migration, and invasion was observed in cell culture upon knocking down TMSB10, a gene associated with different types of cancers. CONCLUSIONS In summary, we have created a precise predictive biomarker using a risk model centered on γδ T cells, which can anticipate clinical results and provide direction for the advancement of innovative targeted therapies.
Collapse
Affiliation(s)
- Yaqian Wu
- Department of Urology, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Mengfei Yao
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Zonglong Wu
- Department of Urology, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Lulin Ma
- Department of Urology, Peking University Third Hospital, Beijing, 100191, People's Republic of China.
| | - Cheng Liu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China.
| |
Collapse
|
8
|
Wen X, Hou J, Chu Y, Liao G, Wu G, Fang S, Xiao S, Qiu L, Xiong L. Immunotherapeutic value of NUSAP1 associated with bladder cancer through a comprehensive analysis of 33 human cancer cases. Am J Cancer Res 2024; 14:959-978. [PMID: 38590423 PMCID: PMC10998758 DOI: 10.62347/bgae1505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/04/2024] [Indexed: 04/10/2024] Open
Abstract
To investigate the correlation between nucleolar spindle-associated protein 1 (NUSAP1) and cancer immunotherapy across 33 different types of human cancers. We conducted an analysis of The Cancer Genome Atlas (TCGA) database to retrieve gene expression data and clinical characteristics for 33 different cancer types. The immunotherapy cohorts encompassed GSE67501, GSE78220, and IMvigor210. Relevant information was extracted from the gene expression repository. We assessed the prognostic significance of NUSAP1 by examining various clinical parameters. The single-sample gene-set enrichment analysis (ssGSEA) method was utilized to gauge NUSAP1 activity and to contrast NUSAP1 transcriptome and protein levels. We delved into the correlation between NUSAP1 and various immune processes and components to gain insights into NUSAP1's role. We also discussed coherent pathways associated with NUSAP1 signal transduction and its impact on immunotherapy biomarkers. To authenticate and validate the differential expression patterns of NUSAP1 in bladder tumor tissues versus normal bladder counterparts, we utilized Western blotting (WB), real-time quantitative polymerase chain reaction (RT-qPCR), and immunohistochemistry (IHC) techniques. NUSAP1 exhibits overexpression across a spectrum of malignancies, and its expression levels correlate with overall survival (OS), disease-specific survival, and tumor stage in specific cancer types. Furthermore, NUSAP1 expression is linked to mutations, methylation patterns, and immunotherapy responses in human cancers. Meanwhile, our experiments, involving WB, RT-qPCR, and IHC, consistently demonstrated significantly higher NUSAP1 expression in bladder tumor tissues compared to normal controls. Our study underscores the potential of NUSAP1 as a promising prognostic indicator and immunotherapeutic target for a range of malignant tumors.
Collapse
Affiliation(s)
- Xiangyang Wen
- Division of Urology, Department of Surgery, The Second People’s Hospital of Longgang DistrictShenzhen 518112, Guangdong, China
| | - Jian Hou
- Department of Urology, The First Affiliated Hospital of Kunming Medical UniversityKunming 650500, Yunnan, China
| | - Yuanqi Chu
- Department of Pathology, Fourth Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang, China
| | - Guoqiang Liao
- Division of Urology, Department of Surgery, The Second People’s Hospital of Longgang DistrictShenzhen 518112, Guangdong, China
| | - Guoqing Wu
- Division of Urology, Department of Surgery, The University of Hongkong-Shenzhen HospitalShenzhen 518000, Guangdong, China
| | - Shaohong Fang
- Division of Urology, Department of Surgery, The Second People’s Hospital of Longgang DistrictShenzhen 518112, Guangdong, China
| | - Song Xiao
- Division of Urology, Department of Surgery, The Second People’s Hospital of Longgang DistrictShenzhen 518112, Guangdong, China
| | - Longlong Qiu
- Division of Urology, Department of Surgery, The Second People’s Hospital of Longgang DistrictShenzhen 518112, Guangdong, China
| | - Lin Xiong
- Division of Urology, Department of Surgery, The University of Hongkong-Shenzhen HospitalShenzhen 518000, Guangdong, China
| |
Collapse
|
9
|
Liu Y, Tang R, Meng QC, Shi S, Xu J, Yu XJ, Zhang B, Wang W. NUSAP1 promotes pancreatic ductal adenocarcinoma progression by drives the epithelial-mesenchymal transition and reduces AMPK phosphorylation. BMC Cancer 2024; 24:87. [PMID: 38229038 PMCID: PMC10790387 DOI: 10.1186/s12885-024-11842-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis, and its molecular mechanisms are unclear. Nucleolar and spindle-associated protein 1 (NUSAP1), an indispensable mitotic regulator, has been reported to be involved in the development of several types of tumors. The biological function and molecular mechanism of NUSAP1 in PDAC remain controversial. This study explored the effects and mechanism of NUSAP1 in PDAC. METHODS Differentially expressed genes (DEGs) were screened. A protein‒protein interaction (PPI) network was constructed to identify hub genes. Experimental studies and tissue microarray (TMA) analysis were performed to investigate the effects of NUSAP1 in PDAC and explore its mechanism. RESULTS Network analysis revealed that NUSAP1 is an essential hub gene in the PDAC transcriptome. Genome heterogeneity analysis revealed that NUSAP1 is related to tumor mutation burden (TMB), loss of heterozygosity (LOH) and homologous recombination deficiency (HRD) in PDAC. NUSAP1 is correlated with the levels of infiltrating immune cells, such as B cells and CD8 T cells. High NUSAP1 expression was found in PDAC tissues and was associated with a poor patient prognosis. NUSAP1 promoted cancer cell proliferation, migration and invasion, drives the epithelial-mesenchymal transition and reduces AMPK phosphorylation. CONCLUSIONS NUSAP1 is an essential hub gene that promotes PDAC progression and leads to a dismal prognosis by drives the epithelial-mesenchymal transition and reduces AMPK phosphorylation.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Endoscopy, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, No.270 Dong'An Road, Shanghai, 200032, China
| | - Rong Tang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, No.270 Dong'An Road, Shanghai, 200032, China
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qing-Cai Meng
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, No.270 Dong'An Road, Shanghai, 200032, China
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Si Shi
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, No.270 Dong'An Road, Shanghai, 200032, China
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jin Xu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, No.270 Dong'An Road, Shanghai, 200032, China
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xian-Jun Yu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, No.270 Dong'An Road, Shanghai, 200032, China
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Bo Zhang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, No.270 Dong'An Road, Shanghai, 200032, China.
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
| | - Wei Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, No.270 Dong'An Road, Shanghai, 200032, China.
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
| |
Collapse
|
10
|
Zhou L, Guo H, Liao Q, Zou J, Le Y, Fang Z, Xiong J, Huang S, Deng J, Xiang X. miR-3133 inhibits gastrointestinal cancer progression through activation of Hippo and p53 signalling pathways via multi-targets. J Cell Mol Med 2023; 27:3090-3106. [PMID: 37555915 PMCID: PMC10568676 DOI: 10.1111/jcmm.17880] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/09/2023] [Accepted: 07/19/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Malignant cell growth and chemoresistance, the main obstacles in treating gastrointestinal cancer (GIC), rely on the Hippo and p53 signalling pathways. However, the upstream regulatory mechanisms of these pathways remain complex and poorly understood. METHODS Immunohistochemistry (IHC), western blot and RT-qPCR were used to analyse the expression of RNF146, miR-3133 and key components of Hippo and p53 pathway. CCK-8, colony formation, drug sensitivity assays and murine xenograft models were used to investigate the effect of RNF146 and miR-3133 in GIC. Further exploration of the upstream regulatory mechanism was performed using bioinformatics analysis, dual-luciferase reporter gene, immunoprecipitation assays and bisulfite sequencing PCR (BSP). RESULTS Clinical samples, in vitro and in vivo experiments demonstrated that RNF146 exerts oncogenic effects in GIC by regulating the Hippo pathway. Bioinformatics analysis identified a novel miRNA, miR-3133, as an upstream regulatory factor of RNF146. fluorescence in situ hybridization and RT-qPCR assays revealed that miR-3133 was less expressed in gastrointestinal tumour tissues and was associated with adverse pathological features. Functional assays and animal models showed that miR-3133 promoted the proliferation and chemotherapy sensitivity of GIC cells. miR-3133 affected YAP1 protein expression by targeting RNF146, AGK and CUL4A, thus activating the Hippo pathway. miR-3133 inhibited p53 protein degradation and extended p53's half-life by targeting USP15, SPIN1. BSP experiments confirmed that miR-3133 promoter methylation is an important reason for its low expression. CONCLUSION miR-3133 inhibits GIC progression by activating the Hippo and p53 signalling pathways via multi-targets, including RNF146, thereby providing prognostic factors and valuable potential therapeutic targets for GIC.
Collapse
Affiliation(s)
- Ling Zhou
- Department of OncologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Jiangxi Key Laboratory for Individualized Cancer TherapyNanchangChina
| | - Hui Guo
- Department of OncologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Jiangxi Key Laboratory for Individualized Cancer TherapyNanchangChina
| | - Quan Liao
- Department of OncologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Jiangxi Key Laboratory for Individualized Cancer TherapyNanchangChina
| | - Jianping Zou
- Department of OncologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Jiangxi Key Laboratory for Individualized Cancer TherapyNanchangChina
| | - Yi Le
- Department of OncologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Jiangxi Key Laboratory for Individualized Cancer TherapyNanchangChina
| | - Ziling Fang
- Department of OncologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Jiangxi Key Laboratory for Individualized Cancer TherapyNanchangChina
| | - Jianping Xiong
- Department of OncologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Jiangxi Key Laboratory for Individualized Cancer TherapyNanchangChina
| | - Shanshan Huang
- Department of OncologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Jiangxi Key Laboratory for Individualized Cancer TherapyNanchangChina
| | - Jun Deng
- Department of OncologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Jiangxi Key Laboratory for Individualized Cancer TherapyNanchangChina
| | - Xiaojun Xiang
- Department of OncologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Jiangxi Key Laboratory for Individualized Cancer TherapyNanchangChina
| |
Collapse
|
11
|
Zheng H, Wang M, Zhang S, Hu D, Yang Q, Chen M, Zhang X, Zhang Y, Dai J, Liou YC. Comprehensive pan-cancer analysis reveals NUSAP1 is a novel predictive biomarker for prognosis and immunotherapy response. Int J Biol Sci 2023; 19:4689-4708. [PMID: 37781040 PMCID: PMC10535697 DOI: 10.7150/ijbs.80017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 06/15/2023] [Indexed: 10/03/2023] Open
Abstract
Nucleolar and spindle-associated protein 1 (NUSAP1) is a microtubule-associated protein that plays a crucial role in mitosis. Despite initial reports suggesting a potential involvement of NUSAP1 in tumor progression and malignant cell regulation, there has been no systematic analysis of its role in the tumor immune microenvironment, nor its predictive value for prognosis and immunotherapy response across different cancer types. In this study, we analyze NUSAP1 mRNA and protein expression levels in various human normal and tumor tissues, using data from TCGA, GTEx, CPTAC, HPA databases, and clinical samples. Our findings reveal that NUSAP1 is highly expressed in multiple tumor tissues across most cancer types and is primarily expressed in malignant and immune cells, according to single-cell sequencing data from the TISCH database. Prognostic analysis based on curated survival data from the TCGA database indicates that NUSAP1 expression levels can predict clinical outcomes for 26 cancer types. Furthermore, Gene Set Enrichment Analysis (GSEA) suggests that NUSAP1 promotes cell proliferation, tumor cell invasion, and regulation of anti-tumor response. Analysis of immune score, immune cell infiltration, and anti-cancer immunity cycle using ESTIMATE, TIMER, and TIP databases show that high NUSAP1 levels are associated with low CD4+T and NKT cell infiltration but high Th2 and MDSC infiltration, inversely correlated with antigen-presenting molecules and positively correlated with a variety of immune negative regulatory molecules. Notably, patients with melanoma, lung, and kidney cancer with high NUSAP1 expression levels have shorter survival times and lower immunotherapy response rates. Using Cmap analysis, we identify Entinostat and AACOCF3 as potential inhibitors of NUSAP1-mediated pro-oncogenic effects. In vitro and in vivo experiments further confirm that NUSAP1 knockdown significantly reduces the proliferation ability of A549 and MCF-7 cells. Overall, our study highlights the potential of NUSAP1 expression as a novel biomarker for predicting prognosis and immuno-therapeutic efficacy across different human cancers and suggests its potential for developing novel antitumor drugs or improving immunotherapy.
Collapse
Affiliation(s)
- Hong Zheng
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Minghao Wang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Shiyu Zhang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Dongxue Hu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Qiaoyun Yang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Ming Chen
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xia Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Yi Zhang
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Jigang Dai
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yih-Cherng Liou
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| |
Collapse
|
12
|
Kong J, Xu S, Zhang P, Wang Y. Transcription Factor E2F8 Promotes Cisplatin Resistance in Hepatocellular Carcinoma by Regulating DNA Damage via NUSAP1. Int J Toxicol 2023; 42:420-429. [PMID: 37331996 DOI: 10.1177/10915818231182114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
DNA damage repair has been the key mechanism of cisplatin resistance in hepatocellular carcinoma (HCC). The present study elucidated the molecular mechanism by which nucleolar and spindle-associated protein 1 (NUSAP1) influenced cisplatin tolerance in HCC by regulating DNA damage. First, high mRNA expression of E2F8 and NUSAP1 in HCC was detected by real-time quantitative PCR in cells and tumor tissue. The interaction between E2F8 and NUSAP1 was confirmed by chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays that E2F8 bound to the promoter region of NUSAP1 and regulated its transcriptional activity. The effects of the E2F8/NUSAP1 axis on cell viability, cell cycle, DNA damage protein γ-H2AX, and cisplatin resistance were investigated by CCK-8, flow cytometry, comet detection, and western blot. The results showed that NUSAP1 knockdown blocked the cell cycle in G0/G1 phase, promoted cisplatin-induced DNA damage, and enhanced cisplatin sensitivity in HCC. Overexpressed E2F8 promoted cell cycle arrest by silencing NUSAP1 in HCC, and promoting DNA damage as well as cisplatin sensitivity. In conclusion, our results suggested that E2F8 enhanced the chemoresistance of HCC cells to cisplatin by activating NUSAP1 to inhibit DNA damage, which provides a basis for describing new therapeutic targets that effectively exacerbate DNA damage and improve the chemical sensitivity of HCC to cisplatin.
Collapse
Affiliation(s)
- Jianqiao Kong
- Department of General Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Song Xu
- Department of General Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Peng Zhang
- Department of General Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Yi Wang
- Department of General Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| |
Collapse
|
13
|
Cao B, Sun H, Fan Z, Khawar MB, Cai L, Yu S, Liang Z, Lv D, Wang N, Bi C, Sun H. Integrative analyses of bulk microarray data to discover genes, pathways, and immune infiltration characteristics associated with targeting of Ewing sarcoma. J Cancer Res Clin Oncol 2023; 149:6967-6977. [PMID: 36849756 PMCID: PMC10374716 DOI: 10.1007/s00432-023-04642-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/07/2023] [Indexed: 03/01/2023]
Abstract
PURPOSE To explore transcriptome and immunological features of patients with Ewing sarcoma (ES) using all publicly available microarray data. METHODS Data of 479 ES tissues were integrated and normalized. Gene expression, immune infiltration, and cancer-specific pathways were analyzed. Genes of interest were knocked down, followed by cell proliferation and colony formation assays. RESULTS Consistent with the previous reports of differential expressed genes (DEGs) in ES, our analysis identified CCND1, HMCN1, and NKX2-2 were among the most highly expressed, while TWNC1, MYBPC1, and CKM were among the lowest expressed genes. GO, KEGG, and GSEA enrichment analysis identified that the DEGs related to bone and muscle functioning, those that contributed to crucial cellular, and metabolism pathways such as actin binding, apoptosis, TCA cycle, and cell cycle were also significantly enriched. Immune infiltration analysis discovered that many T cell subsets including CD4T, CD8 T, and Gamma delta T cells were highly infiltrated, while monocytes and B cells were less infiltrated in tumors. A total of 138 genes were both significantly up-regulated in tumors and associated with decreased survival, while 38 significantly down-regulated genes were associated with increased survival, many of which were previously reported as oncogenes and tumor suppressors in ES and other cancers. Silencing of four newly identified top ranked up-regulated genes with decreased survivals in ES inhibited proliferation and colony formation of ES cells. CONCLUSION This study may provide a clear representative transcriptome profile of ES, providing diagnostic biomarkers, pathways, and immune infiltrative characteristics targets for ES.
Collapse
Affiliation(s)
- Binjie Cao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental and, Translational Non-Coding RNA Research, Yangzhou, China
| | - Haijian Sun
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhehao Fan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental and, Translational Non-Coding RNA Research, Yangzhou, China
| | - Muhammad Babar Khawar
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental and, Translational Non-Coding RNA Research, Yangzhou, China
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan
| | - Liangliang Cai
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental and, Translational Non-Coding RNA Research, Yangzhou, China
| | - Shiyi Yu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental and, Translational Non-Coding RNA Research, Yangzhou, China
| | - Zhengyan Liang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental and, Translational Non-Coding RNA Research, Yangzhou, China
| | - Dan Lv
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental and, Translational Non-Coding RNA Research, Yangzhou, China
| | - Ning Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental and, Translational Non-Coding RNA Research, Yangzhou, China
| | - Caili Bi
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental and, Translational Non-Coding RNA Research, Yangzhou, China
| | - Haibo Sun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.
- Jiangsu Key Laboratory of Experimental and, Translational Non-Coding RNA Research, Yangzhou, China.
| |
Collapse
|
14
|
Chiu CL, Li CG, Verschueren E, Wen RM, Zhang D, Gordon CA, Zhao H, Giaccia AJ, Brooks JD. NUSAP1 Binds ILF2 to Modulate R-Loop Accumulation and DNA Damage in Prostate Cancer. Int J Mol Sci 2023; 24:6258. [PMID: 37047232 PMCID: PMC10093842 DOI: 10.3390/ijms24076258] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Increased expression of NUSAP1 has been identified as a robust prognostic biomarker in prostate cancer and other malignancies. We have previously shown that NUSAP1 is positively regulated by E2F1 and promotes cancer invasion and metastasis. To further understand the biological function of NUSAP1, we used affinity purification and mass spectrometry proteomic analysis to identify NUSAP1 interactors. We identified 85 unique proteins in the NUSAP1 interactome, including ILF2, DHX9, and other RNA-binding proteins. Using proteomic approaches, we uncovered a function for NUSAP1 in maintaining R-loops and in DNA damage response through its interaction with ILF2. Co-immunoprecipitation and colocalization using confocal microscopy verified the interactions of NUSAP1 with ILF2 and DHX9, and RNA/DNA hybrids. We showed that the microtubule and charged helical domains of NUSAP1 were necessary for the protein-protein interactions. Depletion of ILF2 alone further increased camptothecin-induced R-loop accumulation and DNA damage, and NUSAP1 depletion abolished this effect. In human prostate adenocarcinoma, NUSAP1 and ILF2 mRNA expression levels are positively correlated, elevated, and associated with poor clinical outcomes. Our study identifies a novel role for NUSAP1 in regulating R-loop formation and accumulation in response to DNA damage through its interactions with ILF2 and hence provides a potential therapeutic target.
Collapse
Affiliation(s)
- Chun-Lung Chiu
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Caiyun G. Li
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Erik Verschueren
- ULUA Besloten Vennootschap, Arendstraat 29, 2018 Antwerpen, Belgium
| | - Ru M. Wen
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dalin Zhang
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Catherine A. Gordon
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hongjuan Zhao
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amato J. Giaccia
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Medical Research Council/Cancer Research United Kingdom Oxford Institute for Radiation Oncology and Gray Laboratory, University of Oxford, Oxford OX3 7DQ, UK
| | - James D. Brooks
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Cancer Research Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
15
|
Li D, Hu J, Li S, Zhou C, Feng M, Li L, Gao Y, Chen X, Wu X, Cao Y, Hao B, Chen L. LINC01393, a Novel Long Non-Coding RNA, Promotes the Cell Proliferation, Migration and Invasion through MiR-128-3p/NUSAP1 Axis in Glioblastoma. Int J Mol Sci 2023; 24:ijms24065878. [PMID: 36982952 PMCID: PMC10056594 DOI: 10.3390/ijms24065878] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/04/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Nucleolar and spindle-associated protein 1 (NUSAP1) is a potential molecular marker and intervention target for glioblastoma (GBM). In this study, we aim to investigate upstream regulatory lncRNAs and miRNAs of NUSAP1 through both experimental and bioinformatic methods. We screened upstream lncRNAs and miRNAs of NUSAP1 through multiple databases based on ceRNA theory. Then, in vitro and in vivo experiments were performed to elucidate the relevant biological significance and regulatory mechanism among them. Finally, the potential downstream mechanism was discussed. LINC01393 and miR-128-3p were screened as upstream regulatory molecules of NUSAP1 by TCGA and ENCORI databases. The negative correlations among them were confirmed in clinical specimens. Biochemical studies revealed that overexpression or knockdown of LINC01393 respectively enhanced or inhibited malignant phenotype of GBM cells. MiR-128-3p inhibitor reversed LINC01393 knockdown-mediated impacts on GBM cells. Then, dual-luciferase reporter assay and RNA immunoprecipitation assay were conducted to validate LINC01393/miR-128-3p/NUSAP1 interactions. In vivo, LINC01393-knockdown decreased tumor growth and improved mice survival, while restoration of NUSAP1 partially reversed these effects. Additionally, enrichment analysis and western blot revealed that the roles of LINC01393 and NUSAP1 in GBM progression were associated with NF-κB activation. Our findings showed that LINC01393 sponged miR-128-3p to upregulate NUSAP1, thereby promoting GBM development and progression via activating NF-κB pathway. This work deepens understanding of GBM mechanisms and provides potential novel therapeutic targets for GBM.
Collapse
Affiliation(s)
- Deheng Li
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Junda Hu
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Sen Li
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Changshuai Zhou
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Mingtao Feng
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Liangdong Li
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yang Gao
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Xin Chen
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Xiaojun Wu
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yiqun Cao
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Bin Hao
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Lei Chen
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| |
Collapse
|
16
|
Zou J, Zhou L, Le Y, Fang Z, Zhong M, Nie F, Wei X, Zhang X, Chen Z, Cai L, Wang H, Xiong J, Fang Z, Xiang X. WWP2 drives the progression of gastric cancer by facilitating the ubiquitination and degradation of LATS1 protein. Cell Commun Signal 2023; 21:38. [PMID: 36803368 PMCID: PMC9938551 DOI: 10.1186/s12964-023-01050-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/15/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Large tumor suppressor kinase 1 (LATS1), one of the predominant components of the Hippo pathway, has been characterized as a key player controlling the proliferation and invasion of cancer cells, including gastric cancer (GC) cells. However, the mechanism by which the functional stability of LATS1 is modulated has yet to be elucidated. METHODS Online prediction tools, immunohistochemistry and western blotting assays were used to explore the expression of WW domain-containing E3 ubiquitin ligase 2 (WWP2) in GC cells and tissues. Gain- and loss-of-function assays, as well as rescue experiments were performed to determine the role of the WWP2-LATS1 axis in cell proliferation and invasion. Additionally, the mechanisms involving WWP2 and LATS1 were assessed by coimmunoprecipitation (Co-IP), immunofluorescence, cycloheximide and in vivo ubiquitination assays. RESULTS Our results demonstrate a specific interaction between LATS1 and WWP2. WWP2 was markedly upregulated and correlated with disease progression and a poor prognosis in GC patients. Moreover, ectopic WWP2 expression facilitated the proliferation, migration and invasion of GC cells. Mechanistically, WWP2 interacts with LATS1, resulting in its ubiquitination and subsequent degradation, leading to increased transcriptional activity of YAP1. Importantly, LATS1 depletion abolished the suppressive effects of WWP2 knockdown on GC cells. Furthermore, WWP2 silencing attenuated tumor growth by regulating the Hippo-YAP1 pathway in vivo. CONCLUSIONS Our results define the WWP2-LATS1 axis as a critical regulatory mechanism of the Hippo-YAP1 pathway that promotes GC development and progression. Video Abstract.
Collapse
Affiliation(s)
- Jianping Zou
- Department of Oncology, the First Affiliated Hospital of Nanchang University, 1519 Dongyue Avenue, Nanchang, Jiangxi, People's Republic of China.,Department of Jiangxi Key Laboratory for Individualized Cancer Therapy, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China
| | - Ling Zhou
- Department of Oncology, the First Affiliated Hospital of Nanchang University, 1519 Dongyue Avenue, Nanchang, Jiangxi, People's Republic of China.,Department of Jiangxi Key Laboratory for Individualized Cancer Therapy, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China
| | - Yi Le
- Department of Oncology, the First Affiliated Hospital of Nanchang University, 1519 Dongyue Avenue, Nanchang, Jiangxi, People's Republic of China.,Department of Jiangxi Key Laboratory for Individualized Cancer Therapy, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China
| | - Zhi Fang
- Department of Oncology, the First Affiliated Hospital of Nanchang University, 1519 Dongyue Avenue, Nanchang, Jiangxi, People's Republic of China.,Department of Jiangxi Key Laboratory for Individualized Cancer Therapy, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China
| | - Min Zhong
- Department of Oncology, the First Affiliated Hospital of Nanchang University, 1519 Dongyue Avenue, Nanchang, Jiangxi, People's Republic of China.,Department of Jiangxi Key Laboratory for Individualized Cancer Therapy, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China
| | - Fengting Nie
- Department of Oncology, the First Affiliated Hospital of Nanchang University, 1519 Dongyue Avenue, Nanchang, Jiangxi, People's Republic of China
| | - Xianpin Wei
- Department of Oncology, the First Affiliated Hospital of Nanchang University, 1519 Dongyue Avenue, Nanchang, Jiangxi, People's Republic of China
| | - Xiaomei Zhang
- Department of Oncology, the First Affiliated Hospital of Nanchang University, 1519 Dongyue Avenue, Nanchang, Jiangxi, People's Republic of China
| | - Zhen Chen
- Department of Oncology, the First Affiliated Hospital of Nanchang University, 1519 Dongyue Avenue, Nanchang, Jiangxi, People's Republic of China
| | - Lingling Cai
- Department of Oncology, the First Affiliated Hospital of Nanchang University, 1519 Dongyue Avenue, Nanchang, Jiangxi, People's Republic of China
| | - Heng Wang
- Department of Orthopedics, the First Affiliated Hospital of Nanchang University, 1519 Dongyue Avenue, Nanchang, Jiangxi, People's Republic of China
| | - Jianping Xiong
- Department of Oncology, the First Affiliated Hospital of Nanchang University, 1519 Dongyue Avenue, Nanchang, Jiangxi, People's Republic of China.,Department of Jiangxi Key Laboratory for Individualized Cancer Therapy, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China
| | - Ziling Fang
- Department of Oncology, the First Affiliated Hospital of Nanchang University, 1519 Dongyue Avenue, Nanchang, Jiangxi, People's Republic of China. .,Department of Jiangxi Key Laboratory for Individualized Cancer Therapy, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China.
| | - Xiaojun Xiang
- Department of Oncology, the First Affiliated Hospital of Nanchang University, 1519 Dongyue Avenue, Nanchang, Jiangxi, People's Republic of China. .,Department of Jiangxi Key Laboratory for Individualized Cancer Therapy, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
17
|
Messina B, Lo Sardo F, Scalera S, Memeo L, Colarossi C, Mare M, Blandino G, Ciliberto G, Maugeri-Saccà M, Bon G. Hippo pathway dysregulation in gastric cancer: from Helicobacter pylori infection to tumor promotion and progression. Cell Death Dis 2023; 14:21. [PMID: 36635265 PMCID: PMC9837097 DOI: 10.1038/s41419-023-05568-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/27/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
The Hippo pathway plays a critical role for balancing proliferation and differentiation, thus regulating tissue homeostasis. The pathway acts through a kinase cascade whose final effectors are the Yes-associated protein (YAP) and its paralog transcriptional co‑activator with PDZ‑binding motif (TAZ). In response to a variety of upstream signals, YAP and TAZ activate a transcriptional program that modulates cellular proliferation, tissue repair after injury, stem cell fate decision, and cytoskeletal reorganization. Hippo pathway signaling is often dysregulated in gastric cancer and in Helicobacter pylori-induced infection, suggesting a putative role of its deregulation since the early stages of the disease. In this review, we summarize the architecture and regulation of the Hippo pathway and discuss how its dysregulation fuels the onset and progression of gastric cancer. In this setting, we also focus on the crosstalk between Hippo and other established oncogenic signaling pathways. Lastly, we provide insights into the therapeutic approaches targeting aberrant YAP/TAZ activation and discuss the related clinical perspectives and challenges.
Collapse
Affiliation(s)
- Beatrice Messina
- Clinical Trial Center, Biostatistics and Bioinformatics Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Federica Lo Sardo
- Oncogenomic and Epigenetic Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Stefano Scalera
- SAFU Laboratory, Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Lorenzo Memeo
- Pathology Unit, Mediterranean Institute of Oncology, Viagrande, Italy
| | | | - Marzia Mare
- Medical Oncology Unit, Mediterranean Institute of Oncology, Viagrande, Italy
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina, Italy
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Gennaro Ciliberto
- Scientific Directorate, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Marcello Maugeri-Saccà
- Clinical Trial Center, Biostatistics and Bioinformatics Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giulia Bon
- Cellular Network and Molecular Therapeutic Target Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
18
|
Shi J, Li G, Yuan X, Wang Y, Gong M, Li C, Ge X, Lu S. Exploration and verification of COVID-19-related hub genes in liver physiological and pathological regeneration. Front Bioeng Biotechnol 2023; 11:1135997. [PMID: 36911196 PMCID: PMC9997844 DOI: 10.3389/fbioe.2023.1135997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Objectives An acute injury is often accompanied by tissue regeneration. In this process, epithelial cells show a tendency of cell proliferation under the induction of injury stress, inflammatory factors, and other factors, accompanied by a temporary decline of cellular function. Regulating this regenerative process and avoiding chronic injury is a concern of regenerative medicine. The severe coronavirus disease 2019 (COVID-19) has posed a significant threat to people's health caused by the coronavirus. Acute liver failure (ALF) is a clinical syndrome resulting from rapid liver dysfunction with a fatal outcome. We hope to analyze the two diseases together to find a way for acute failure treatment. Methods COVID-19 dataset (GSE180226) and ALF dataset (GSE38941) were downloaded from the Gene Expression Omnibus (GEO) database, and the "Deseq2" package and "limma" package were used to identify differentially expressed genes (DEGs). Common DEGs were used for hub genes exploration, Protein-Protein Interaction (PPI) network construction, Gene Ontology (GO) functional enrichment, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. The real-time reverse transcriptase-polymerase chain reaction (RT-qPCR) was used to verify the role of hub genes in liver regeneration during in vitro expansion of liver cells and a CCl4-induced ALF mice model. Results: The common gene analysis of the COVID-19 and ALF databases revealed 15 hub genes from 418 common DEGs. These hub genes, including CDC20, were related to cell proliferation and mitosis regulation, reflecting the consistent tissue regeneration change after the injury. Furthermore, hub genes were verified in vitro expansion of liver cells and in vivo ALF model. On this basis, the potential therapeutic small molecule of ALF was found by targeting the hub gene CDC20. Conclusion We have identified hub genes for epithelial cell regeneration under acute injury conditions and explored a new small molecule Apcin for liver function maintenance and ALF treatment. These findings may provide new approaches and ideas for treating COVID-19 patients with ALF.
Collapse
Affiliation(s)
- Jihang Shi
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China.,Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China.,Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
| | - Guangya Li
- MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Peking University-Tsinghua University-National Institute of Biological Science Joint Graduate Program, College of Life Science, Peking University, Beijing, China
| | - Xiandun Yuan
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, China
| | - Yafei Wang
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China.,Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China.,Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
| | - Ming Gong
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China.,Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China.,Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
| | - Chonghui Li
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China.,Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
| | - Xinlan Ge
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China.,Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
| | - Shichun Lu
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China.,Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
| |
Collapse
|
19
|
Targeting the Hippo Pathway in Gastric Cancer and Other Malignancies in the Digestive System: From Bench to Bedside. Biomedicines 2022; 10:biomedicines10102512. [PMID: 36289774 PMCID: PMC9599207 DOI: 10.3390/biomedicines10102512] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
The Hippo pathway is an evolutionally conserved signaling cascade that controls organ size and tissue regeneration under physiological conditions, and its aberrations have been well studied to promote tumor initiation and progression. Dysregulation of the Hippo tumor suppressor signaling frequently occurs in gastric cancer (GC) and other solid tumors and contributes to cancer development through modulating multiple aspects, including cell proliferation, survival, metastasis, and oncotherapy resistance. In the clinic, Hippo components also possess diagnostic and prognostic values for cancer patients. Considering its crucial role in driving tumorigenesis, targeting the Hippo pathway may greatly benefit developing novel cancer therapies. This review summarizes the current research progress regarding the core components and regulation of the Hippo pathway, as well as the mechanism and functional roles of their dysregulation in gastrointestinal malignancies, especially in GC, and discusses the therapeutic potential of targeting the Hippo pathway against cancers.
Collapse
|
20
|
Gao T, Zhao L, Zhang F, Cao C, Fan S, Shi X. Evaluate the diagnostic and prognostic value of NUSAP1 in papillary thyroid carcinoma and identify the relationship with genes, proteins, and immune factors. World J Surg Oncol 2022; 20:207. [PMID: 35710427 PMCID: PMC9202173 DOI: 10.1186/s12957-022-02652-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 05/21/2022] [Indexed: 11/10/2022] Open
Abstract
Background Nucleolar spindle-associated protein 1 (NUSAP1) is reported to be a useful diagnostic and prognostic marker for a variety of cancers, but relevant studies are lacking in papillary thyroid carcinoma (PTC). Methods The relationship between NUSAP1 expression and the overall survival (OS) of pan-cancer was examined by GEPIA and KMplot. We explored the relationship between NUSAP1 and clinical PTC data based on the THCA dataset of TCGA and the GEO dataset of NCBI; GO, KEGG analysis, and ceRNA networks were performed on co-expressed genes through LinkedOmics and Starbase. We assessed the relevance between NUSAP1 and the tumor microenvironment using ESTIMATE, correlations between NUSAP1 and immune cells with TIMER, the relationship between NUSAP1 and immunotherapy by TCIA, and small-molecule drugs targeting NUSAP1 that can be discovered using the CMap database. Results Higher expression of NUSAP1 in pan-cancer tissues was correlated with shorter OS. NUSAP1 was also significantly expressed in PTC tissues and was an independent prognostic risk factor. Compared to the NUSAP1 low expression group, the NUSAP1 high expression group was more likely to also have lymph node metastasis, pathological PTC type, shorter progression-free survival (PFS), and higher scores for immune checkpoint inhibitor treatment. The genes associated with NUSAP1 were mostly involved in the cell cycle, immune-related pathways, and AITD. Ten lncRNAs (GAS5, SNHG7, UCA1, SNHG1, HCP5, DLEU2, HOTAIR, TP53TG1, SNHG12, C9orf106), eleven miRNAs (hsa-miR-10a-5p, hsa-miR-10b-5p, hsa-miR-18a-5p, hsa-miR-18b-5p, hsa-miR-128-3p, hsa-miR-214-3p, hsa-miR-219a-2-3p, hsa-miR-339-5p, hsa-miR-494-3p, hsa-miR-545-3p, hsa-miR-769-5p), and one mRNA (NUSAP1) were constructed. NUSAP1 participated in the formation of the tumor microenvironment. CMap predicted the 10 most important small molecules about NUSAP1. Conclusions In PTC, NUSAP1 shows good diagnostic value and prognostic value; NUSAP1 impacts the cell cycle, immune-related pathways, and AITD and has a complex effect on the tumor microenvironment in PTC. Supplementary Information The online version contains supplementary material available at 10.1186/s12957-022-02652-9.
Collapse
Affiliation(s)
- Tiantian Gao
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110001, People's Republic of China
| | - Lei Zhao
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110001, People's Republic of China
| | - Fan Zhang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110001, People's Republic of China
| | - Conghui Cao
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110001, People's Republic of China
| | - Shuting Fan
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110001, People's Republic of China
| | - Xiaoguang Shi
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110001, People's Republic of China.
| |
Collapse
|
21
|
Hu Y, Xue Z, Qiu C, Feng Z, Qi Q, Wang J, Jin W, Zhong Z, Liu X, Li W, Zhang Q, Huang B, Chen A, Wang J, Yang N, Zhou W. Knockdown of NUSAP1 inhibits cell proliferation and invasion through downregulation of TOP2A in human glioblastoma. Cell Cycle 2022; 21:1842-1855. [PMID: 35532155 PMCID: PMC9359390 DOI: 10.1080/15384101.2022.2074199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Nucleolar and spindle associated protein 1 (NUSAP1), an indispensable mitotic regulator, has been reported to be involved in the development, progression, and metastasis of several types of cancer. Here, we investigated the expression and biological function of NUSAP1 in human glioblastoma (GBM), an aggressive brain tumor type with largely ineffective treatment options. Analysis of the molecular data in CGGA, TCGA and Rembrandt datasets demonstrated that NUSAP1 was significantly upregulated in GBM relative to low grade gliomas and non-neoplastic brain tissue samples. Kaplan-Meier analysis indicated that patients with tumors showing high NUSAP1 expression exhibited significantly poorer survival in both CGGA (P = 0.002) and Rembrandt cohorts (P = 0.017). Analysis of RNA sequencing data from P3-cells with stable knockdown of NUSAP1 revealed topoisomerase 2A (TOP2A) as a possible molecule downregulated by the loss of NUSAP1. Molecular analysis of the CGGA data revealed a strong correlation between NUSAP1 and TOP2A expression in primary gliomas and recurrent gliomas samples. SiRNA knockdown of either NUSAP1 or TOP2A in U251, T98 and GBM derived patient P3 cells inhibited GBM cell proliferation and invasion, and induced cell apoptosis. Finally, stable knockdown of NUSAP1 with shRNA led to decreased tumor growth in an orthotopic xenograft model of GBM in mice. Taken together, NUSAP1 gene silencing induced apoptosis possibly through the downregulation of the candidate downstream molecule TOP2A. Interference with the expression of NUSAP1 might therefore inhibit malignant progression in GBM, and NUSAP1 might thus serve as a promising molecular target for GBM treatment.
Collapse
Affiliation(s)
- Yaotian Hu
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Zhiyi Xue
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Chen Qiu
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China.,Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Zichao Feng
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qichao Qi
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jiwei Wang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wenxing Jin
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Zhaoyang Zhong
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Xiaofei Liu
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Wenjie Li
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Qing Zhang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Anjing Chen
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China.,Department of Biomedicine, University of Bergen, Norway
| | - Ning Yang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Wenjing Zhou
- Department of Blood Transfusion, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
22
|
Guo X, Li Y, Che X, Hou K, Qu X, Li C. microRNA-569 inhibits tumor metastasis in pancreatic cancer by directly targeting NUSAP1. Aging (Albany NY) 2022; 14:3652-3665. [PMID: 35483343 PMCID: PMC9085231 DOI: 10.18632/aging.204035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 03/14/2022] [Indexed: 11/25/2022]
Abstract
MicroRNAs (miRNAs) are known to be involved in the development and progression of pancreatic cancer (PC). In this study, the prognostic significance and mechanistic role of microRNA-569 in PC were explored. Quantitative real-time PCR was used to detect the expression of microRNA-569 in PC tissues and cell lines. Scratch test and Transwell assay were conducted to detect migration and invasion ability. The xenograft nude mice model was used to determine tumor metastasis in vivo. The direct targets of microRNA-569 were determined by using bioinformatics analysis and a dual-luciferase reporter assay. The expression level of microRNA-569 was down-regulated in PC patients with a poor prognosis. In vitro and in vivo experiments indicated that over-expression of microRNA-569 inhibited the migration and invasion of PC cells. MicroRNA-569 negatively regulated NUSAP1 by directly binding its 3'-untranslated region. Further mechanism research implied that the ZEB1 pathway was involved in microRNA-569/NUSAP1 mediation of the biological behaviors in PC. These data demonstrated that microRNA-569 may exert a tumor-suppressing effect in PC and maybe a potential therapeutic target for PC patients.
Collapse
Affiliation(s)
- Xiaohui Guo
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yatian Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiaofang Che
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang 110001, China
| | - Kezuo Hou
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang 110001, China
| | - Ce Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
23
|
The E3 Ubiquitin Ligase TRIM11 Facilitates Gastric Cancer Progression by Activating the Wnt/β-Catenin Pathway via Destabilizing Axin1 Protein. JOURNAL OF ONCOLOGY 2022; 2022:8264059. [PMID: 35237324 PMCID: PMC8885197 DOI: 10.1155/2022/8264059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 01/03/2022] [Accepted: 01/08/2022] [Indexed: 12/03/2022]
Abstract
Background Aberrant expression of tripartite motif 11 (TRIM11) and the Wnt/β-catenin pathway are essential for facilitating tumorigenesis and progression in multiple types of cancer. Aim To investigate the molecular changes linking the dysregulation of TRIM11 and Wnt/β-catenin pathway activation in gastric cancer (GC) progression. Methods The expression levels of TRIM11 were detected in GC tissues and cells by immunohistochemistry and western blotting. The role of TRIM11 in the growth, proliferation, and invasion of gastric cancer cells was observed by a series of cell functional experiments and further verified in vivo. Co-immunoprecipitation (Co-IP), immunofluorescence, cycloheximide, and western blotting assays and other experiments were conducted to explore the mechanisms of TRIM11 underlying the regulation of the Wnt/β-catenin pathway. For further verification, rescue experiments were performed by cotransfection of TRIM11 and Axin1 siRNA in GC cells. Results Using Co-IP assays, we identified TRIM11 as a potent binding partner of Axin1 in GC cells. Elevated TRIM11 levels were significantly correlated with unfavorable clinical outcomes and poor survival in patients with GC. In addition, TRIM11 promoted the cell proliferation and invasion capacities of GC cells in vitro and tumor growth in vivo. Mechanistic investigations revealed that TRIM11 destabilized Axin1 protein by interacting with Axin1, thus inducing the activation of the Wnt/β-catenin pathway. Moreover, we found that the oncogenic effects of TRIM11 on GC cells were partly mediated by suppression of Axin1. Furthermore, the protein expression of TRIM11 and Axin1 was negatively correlated in GC tissues. Conclusion Collectively, our findings not only establish a pivotal TRIM11-Axin1-β-catenin axis in driving GC progression but also indicate that TRIM11 serves as a valuable therapeutic target for the treatment of GC patients.
Collapse
|
24
|
Han Y, Hu X, Yun X, Liu J, Yang J, Tian Z, Zhang X, Zhang Y, Wang X. Nucleolar and spindle associated protein 1 enhances chemoresistance through DNA damage repair pathway in chronic lymphocytic leukemia by binding with RAD51. Cell Death Dis 2021; 12:1083. [PMID: 34782617 PMCID: PMC8593035 DOI: 10.1038/s41419-021-04368-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 12/14/2022]
Abstract
Nucleolar and spindle-associated protein 1 (NUSAP1) is an essential regulator of mitotic progression, spindle assembly, and chromosome attachment. Although NUSAP1 acts as an oncogene involved in the progression of several cancers, the exact role of chronic lymphocytic leukemia (CLL) remains elusive. Herein, we first discovered obvious overexpression of NUSAP1 in CLL associated with poor prognosis. Next, the NUSAP1 level was modulated by transfecting CLL cells with lentivirus. Silencing NUSAP1 inhibited the cell proliferation, promoted cell apoptosis and G0/G1 phase arrest. Mechanistically, high expression of NUSAP1 strengthened DNA damage repairing with RAD51 engagement. Our results also indicated that NUSAP1 knockdown suppressed the growth CLL cells in vivo. We further confirmed that NUSAP1 reduction enhanced the sensitivity of CLL cells to fludarabine or ibrutinib. Overall, our research investigates the mechanism by which NUSAP1 enhances chemoresistance via DNA damage repair (DDR) signaling by stabilizing RAD51 in CLL cells. Hence, NUSAP1 may be expected to be a perspective target for the treatment of CLL with chemotherapy resistance.
Collapse
Affiliation(s)
- Yang Han
- grid.460018.b0000 0004 1769 9639Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021 China ,grid.460018.b0000 0004 1769 9639Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021 China ,grid.27255.370000 0004 1761 1174School of Medicine, Shandong University, Jinan, Shandong 250012 China ,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong 250021 China
| | - Xinting Hu
- grid.460018.b0000 0004 1769 9639Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021 China ,grid.460018.b0000 0004 1769 9639Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021 China ,grid.27255.370000 0004 1761 1174School of Medicine, Shandong University, Jinan, Shandong 250012 China ,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong 250021 China
| | - Xiaoya Yun
- grid.460018.b0000 0004 1769 9639Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021 China ,grid.460018.b0000 0004 1769 9639Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021 China ,grid.27255.370000 0004 1761 1174School of Medicine, Shandong University, Jinan, Shandong 250012 China ,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong 250021 China
| | - Jiarui Liu
- grid.460018.b0000 0004 1769 9639Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021 China ,grid.460018.b0000 0004 1769 9639Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021 China ,grid.27255.370000 0004 1761 1174School of Medicine, Shandong University, Jinan, Shandong 250012 China ,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong 250021 China
| | - Juan Yang
- grid.460018.b0000 0004 1769 9639Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021 China ,grid.460018.b0000 0004 1769 9639Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021 China ,grid.27255.370000 0004 1761 1174School of Medicine, Shandong University, Jinan, Shandong 250012 China ,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong 250021 China
| | - Zheng Tian
- grid.460018.b0000 0004 1769 9639Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021 China ,grid.460018.b0000 0004 1769 9639Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021 China ,grid.27255.370000 0004 1761 1174School of Medicine, Shandong University, Jinan, Shandong 250012 China ,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong 250021 China
| | - Xin Zhang
- grid.460018.b0000 0004 1769 9639Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021 China ,grid.460018.b0000 0004 1769 9639Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021 China ,grid.27255.370000 0004 1761 1174School of Medicine, Shandong University, Jinan, Shandong 250012 China ,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong 250021 China
| | - Ya Zhang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China. .,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China. .,School of Medicine, Shandong University, Jinan, Shandong, 250012, China. .,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong, 250021, China. .,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China. .,National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China. .,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China. .,School of Medicine, Shandong University, Jinan, Shandong, 250012, China. .,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong, 250021, China. .,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China. .,National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| |
Collapse
|
25
|
Hu Y, Ma Y, Luo G, Liao W, Zhang S, Li G. Effect of MiR-375 Regulates YAP1 on the Invasion, Apoptosis, and Epithelial-Mesenchymal Transition of Cervical Cancer HeLa Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:3088723. [PMID: 34512774 PMCID: PMC8429006 DOI: 10.1155/2021/3088723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/17/2021] [Indexed: 12/16/2022]
Abstract
Yes-associated protein 1 (YAP1) is an important signaling pathway activator molecule. Studies have shown that it is involved in the occurrence of malignant tumors. This study identified a microRNA (miR/miRNA) targeting the 3' untranslated region (3″ utr) of the YAP1 gene and evaluated its biological impact on human cervical cancer cells and related molecular mechanisms. qPCR and western blotting were used to detect the levels of miR-375 and YAP1 in HeLa cells. TargetScan software was used to identify the binding sites of YAP1 and miR-375. The MTT method was used to determine the viability of HeLa cells transfected with miR-375 mimic and YAP1 interference vector, the Transwell chamber experiment was used to detect the invasion of HeLa cells after transfection, the apoptosis of HeLa cells after transfection was detected by flow cytometry, and the western blotting was used to detect the epithelial mesenchymal transition (EMT) of HeLa cells after transfection. The expression of miR-375 in HeLa cells was significantly lower than that of normal control cervical cells, and the expression of YAP1 in HeLa cells was significantly higher than that of normal control cervical cells. TargetScan analysis showed that miR-375 was bound to the 3' UTR of YAP1. qPCR and western blot analysis showed that transfection of miR-375 mimics inhibited YAP1 expression in HeLa cells. Transfection of miR-375 mimic and YAP1 interference vector inhibited HeLa cell invasion and EMT and promoted HeLa cell apoptosis. These findings indicate that miR-375 inhibits the malignant development of human cervical cancer cells by regulating the expression of YAP1.
Collapse
Affiliation(s)
- Yi Hu
- The First Affiliated Hospital, Department of Obstetrics and Gynaecology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yan Ma
- The First Affiliated Hospital, Department of Obstetrics and Gynaecology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Guifang Luo
- The First Affiliated Hospital, Department of Obstetrics and Gynaecology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Wenyan Liao
- The First Affiliated Hospital, Department of Obstetrics and Gynaecology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Shufen Zhang
- The First Affiliated Hospital, Department of Obstetrics and Gynaecology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Genlin Li
- The First Affiliated Hospital, Department of Obstetrics and Gynaecology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|