1
|
Karabulut B, Yukruk FA, Yenidunya S, Kandemir O, Kosemehmetoglu K. Differential cyclin-E1 expression in CIC-rearranged sarcoma. Ann Diagn Pathol 2024; 72:152320. [PMID: 38703529 DOI: 10.1016/j.anndiagpath.2024.152320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/06/2024]
Abstract
CIC-rearranged sarcoma (CRS) is a group of high-grade undifferentiated small round cell sarcomas examined as a separate entity in the current WHO classification; since it shows more aggressive clinical behavior and distinct morphological and molecular features compared to Ewing sarcoma (ES). As CCNE1 expression is associated with tumor growth in CIC::DUX4 sarcomas, we aimed to demonstrate the value of cyclin E1 expression in CRS. Cyclin E1 immunohistochemistry and break-apart FISH for EWSR1 and CIC gene rearrangements were performed on 3-mm tissue microarrays composed of 40 small round cell tumors. Five cases were classified as CRS, whereas 22 were ES and 13 were unclassified (EWSR1-/CIC-). Among all three diagnostic groups, we found cyclin E1 expression level to be higher in CRS (80 %) and unclassified groups (61.5 %) compared to ES (4.5 %, p < 0.001). In addition, high cyclin E1 expression levels were associated with higher mean age at diagnosis, presence of atypical histology and myxoid stroma, low CD99 expression, and presence of metastasis at diagnosis. The sensitivity and specificity of high cyclin E1 expression in detecting non-ES cases were 95.5 % and 66.7 %, respectively. However, the correlation between cyclin E1 expression level and survival was not statistically significant. This is the first study that shows cyclin E1 immunohistochemical expression in EWSR1-negative undifferentiated small cell sarcomas, particularly CRS.
Collapse
MESH Headings
- Humans
- Male
- Oncogene Proteins/metabolism
- Oncogene Proteins/genetics
- Female
- Adult
- Cyclin E/metabolism
- Cyclin E/genetics
- Middle Aged
- Gene Rearrangement
- Adolescent
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/genetics
- Young Adult
- Child
- Repressor Proteins/metabolism
- Repressor Proteins/genetics
- Immunohistochemistry/methods
- Sarcoma, Ewing/metabolism
- Sarcoma, Ewing/pathology
- Sarcoma, Ewing/genetics
- Sarcoma/pathology
- Sarcoma/metabolism
- Sarcoma/genetics
- Sarcoma/diagnosis
- In Situ Hybridization, Fluorescence/methods
- Aged
- Child, Preschool
- RNA-Binding Protein EWS/genetics
- RNA-Binding Protein EWS/metabolism
- Sarcoma, Small Cell/metabolism
- Sarcoma, Small Cell/genetics
- Sarcoma, Small Cell/pathology
- Sarcoma, Small Cell/diagnosis
Collapse
Affiliation(s)
- Berna Karabulut
- Department of Pathology, Dr. Abdurrahman Yurtaslan Ankara Oncology Training and Research Hospital, Ankara 06200, Turkey.
| | - Fisun Ardic Yukruk
- Department of Pathology, Dr. Abdurrahman Yurtaslan Ankara Oncology Training and Research Hospital, Ankara 06200, Turkey
| | - Sibel Yenidunya
- Department of Pathology, Dr. Abdurrahman Yurtaslan Ankara Oncology Training and Research Hospital, Ankara 06200, Turkey
| | | | - Kemal Kosemehmetoglu
- Department of Pathology, Hacettepe University Faculty of Medicine, Ankara 06230, Turkey.
| |
Collapse
|
2
|
Wani AK, Prakash A, Sena S, Akhtar N, Singh R, Chopra C, Ariyanti EE, Mudiana D, Yulia ND, Rahayu F. Unraveling molecular signatures in rare bone tumors and navigating the cancer pathway landscapes for targeted therapeutics. Crit Rev Oncol Hematol 2024; 196:104291. [PMID: 38346462 DOI: 10.1016/j.critrevonc.2024.104291] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/23/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Rare cancers (RCs), which account for over 20% of cancer cases, face significant research and treatment challenges due to their limited prevalence. This results in suboptimal outcomes compared to more common malignancies. Rare bone tumors (RBTs) constitute 5-10% of rare cancer cases and pose unique diagnostic complexities. The therapeutic potential of anti-cancer drugs for RBTs remains largely unexplored. Identifying molecular alterations in cancer-related genes and their associated pathways is essential for precision medicine in RBTs. Small molecule inhibitors and monoclonal antibodies targeting specific RBT-associated proteins show promise. Ongoing clinical trials aim to define RBT biomarkers, subtypes, and optimal treatment contexts, including combination therapies and immunotherapeutic agents. This review addresses the challenges in diagnosing, treating, and studying RBTs, shedding light on the current state of RBT biomarkers, potential therapeutic targets, and promising inhibitors. Rare cancers demand attention and innovative solutions to improve clinical outcomes.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar 144411, India.
| | - Ajit Prakash
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Saikat Sena
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar 144411, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar 144411, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar 144411, India
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar 144411, India
| | - Esti Endah Ariyanti
- Research Center for Applied Botany, National Research and Innovation Agency, Bogor 16911, Indonesia
| | - Deden Mudiana
- Research Center for Ecology and Ethnobiology, National Research and Innovation Agency, Bogor 16911, Indonesia
| | - Nina Dwi Yulia
- Research Center for Applied Botany, National Research and Innovation Agency, Bogor 16911, Indonesia
| | - Farida Rahayu
- Research Center for Genetic Engineering, National Research and Innovation Agency, Bogor 16911, Indonesia
| |
Collapse
|
3
|
Rubino F, Alvarez-Breckenridge C, Akdemir K, Conley AP, Bishop AJ, Wang WL, Lazar AJ, Rhines LD, DeMonte F, Raza SM. Prognostic molecular biomarkers in chordomas: A systematic review and identification of clinically usable biomarker panels. Front Oncol 2022; 12:997506. [PMID: 36248987 PMCID: PMC9557284 DOI: 10.3389/fonc.2022.997506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction and objective Despite the improvements in management and treatment of chordomas over time, the risk of disease recurrence remains high. Consequently, there is a push to develop effective systemic therapeutics for newly diagnosed and recurrent disease. In order to tailor treatment for individual chordoma patients and develop effective surveillance strategies, suitable clinical biomarkers need to be identified. The objective of this study was to systematically review all prognostic biomarkers for chordomas reported to date in order to classify them according to localization, study design and statistical analysis. Methods Using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we systematically reviewed published studies reporting biomarkers that correlated with clinical outcomes. We included time-to-event studies that evaluated biomarkers in skull base or spine chordomas. To be included in our review, the study must have analyzed the outcomes with univariate and/or multivariate methods (log-rank test or a Cox-regression model). Results We included 68 studies, of which only 5 were prospective studies. Overall, 103 biomarkers were analyzed in 3183 patients. According to FDA classification, 85 were molecular biomarkers (82.5%) mainly located in nucleus and cytoplasm (48% and 27%, respectively). Thirty-four studies analyzed biomarkers with Cox-regression model. Within these studies, 32 biomarkers (31%) and 22 biomarkers (21%) were independent prognostic factors for PFS and OS, respectively. Conclusion Our analysis identified a list of 13 biomarkers correlating with tumor control rates and survival. The future point will be gathering all these results to guide the clinical validation for a chordoma biomarker panel. Our identified biomarkers have strengths and weaknesses according to FDA's guidelines, some are affordable, have a low-invasive collection method and can be easily measured in any health care setting (RDW and D-dimer), but others molecular biomarkers need specialized assay techniques (microRNAs, PD-1 pathway markers, CDKs and somatic chromosome deletions were more chordoma-specific). A focused list of biomarkers that correlate with local recurrence, metastatic spread and survival might be a cornerstone to determine the need of adjuvant therapies.
Collapse
Affiliation(s)
- Franco Rubino
- Department of Neurosurgery, Division of surgery, The University of Texas MD Anderson Cancer Center, University of Texas, Houston, TX, United States
| | - Christopher Alvarez-Breckenridge
- Department of Neurosurgery, Division of surgery, The University of Texas MD Anderson Cancer Center, University of Texas, Houston, TX, United States
| | - Kadir Akdemir
- Department of Neurosurgery, Division of surgery, The University of Texas MD Anderson Cancer Center, University of Texas, Houston, TX, United States
| | - Anthony P. Conley
- Department of Sarcoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, University of Texas, Houston, TX, United States
| | - Andrew J. Bishop
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, University of Texas, Houston, TX, United States
| | - Wei-Lien Wang
- Department of Pathology, Division of Pathology-Lab Medicine Division, The University of Texas MD Anderson Cancer Center, University of Texas, Houston, TX, United States
| | - Alexander J. Lazar
- Department of Pathology, Division of Pathology-Lab Medicine Division, The University of Texas MD Anderson Cancer Center, University of Texas, Houston, TX, United States
| | - Laurence D. Rhines
- Department of Neurosurgery, Division of surgery, The University of Texas MD Anderson Cancer Center, University of Texas, Houston, TX, United States
| | - Franco DeMonte
- Department of Neurosurgery, Division of surgery, The University of Texas MD Anderson Cancer Center, University of Texas, Houston, TX, United States
| | - Shaan M. Raza
- Department of Neurosurgery, Division of surgery, The University of Texas MD Anderson Cancer Center, University of Texas, Houston, TX, United States
| |
Collapse
|