1
|
Fekonja LS, Forkel SJ, Aydogan DB, Lioumis P, Cacciola A, Lucas CW, Tournier JD, Vergani F, Ritter P, Schenk R, Shams B, Engelhardt MJ, Picht T. Translational network neuroscience: Nine roadblocks and possible solutions. Netw Neurosci 2025; 9:352-370. [PMID: 40161983 PMCID: PMC11949582 DOI: 10.1162/netn_a_00435] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/13/2024] [Indexed: 04/02/2025] Open
Abstract
Translational network neuroscience aims to integrate advanced neuroimaging and data analysis techniques into clinical practice to better understand and treat neurological disorders. Despite the promise of technologies such as functional MRI and diffusion MRI combined with network analysis tools, the field faces several challenges that hinder its swift clinical translation. We have identified nine key roadblocks that impede this process: (a) theoretical and basic science foundations; (b) network construction, data interpretation, and validation; (c) MRI access, data variability, and protocol standardization; (d) data sharing; (e) computational resources and expertise; (f) interdisciplinary collaboration; (g) industry collaboration and commercialization; (h) operational efficiency, integration, and training; and (i) ethical and legal considerations. To address these challenges, we propose several possible solution strategies. By aligning scientific goals with clinical realities and establishing a sound ethical framework, translational network neuroscience can achieve meaningful advances in personalized medicine and ultimately improve patient care. We advocate for an interdisciplinary commitment to overcoming translational hurdles in network neuroscience and integrating advanced technologies into routine clinical practice.
Collapse
Affiliation(s)
- Lucius S. Fekonja
- Department of Neurosurgery, Charité - University Hospital, Berlin, Germany
- Cluster of Excellence: “Matters of Activity. Image Space Material”, Humboldt University, Berlin, Germany
| | - Stephanie J. Forkel
- Donders Centre for Cognition, Radboud University, Thomas van Aquinostraat 4, 6525 GD Nijmegen, the Netherlands
- Centre for Neuroimaging Sciences, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, United Kingdom
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, 75006, France
- Max Planck Institute for Psycholinguistics, Wundtlaan 4, Nijmegen, the Netherlands
| | - Dogu Baran Aydogan
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Pantelis Lioumis
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
- BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Alberto Cacciola
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
- Center for Complex Network Intelligence (CCNI), Tsinghua Laboratory of Brain and Intelligence (THBI), Tsinghua University, Beijing, China
- Department of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Carolin Weiß Lucas
- University Hospital and Medical Faculty of the University of Cologne, Center for Neurosurgery, Cologne, Germany
| | - Jacques-Donald Tournier
- Department of Perinatal Imaging and Health, School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom
| | - Francesco Vergani
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, Department of Neurosurgery, King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, United Kingdom
| | - Petra Ritter
- Charité – Universitätsmedizin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Einstein Center for Neurosciences, Charitéplatz 1, 10117 Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Neurology with Experimental Neurology, Charité, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Bernstein Focus State Dependencies of Learning and Bernstein Center for Computational Neuroscience, 10115, Berlin, Germany
- Einstein Center Digital Future, Wilhelmstraße 67, 10117, Berlin, Germany
| | - Robert Schenk
- Department of Neurosurgery, Charité - University Hospital, Berlin, Germany
| | - Boshra Shams
- Department of Neurosurgery, Charité - University Hospital, Berlin, Germany
- Cluster of Excellence: “Matters of Activity. Image Space Material”, Humboldt University, Berlin, Germany
| | - Melina Julia Engelhardt
- Department of Neurosurgery, Charité - University Hospital, Berlin, Germany
- Charité – Universitätsmedizin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Einstein Center for Neurosciences, Charitéplatz 1, 10117 Berlin, Germany
| | - Thomas Picht
- Department of Neurosurgery, Charité - University Hospital, Berlin, Germany
- Cluster of Excellence: “Matters of Activity. Image Space Material”, Humboldt University, Berlin, Germany
- Charité – Universitätsmedizin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Einstein Center for Neurosciences, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
2
|
Lenga P, Scherer M, Peretzke R, Neher P, Jesser J, Unterberg AW, Krieg S, Becker D. Q-Ball high-resolution fiber tractography: Optimizing corticospinal tract delineation near gliomas and its role in the prediction of postoperative motor deficits- A proof of concept study. BRAIN & SPINE 2024; 4:104139. [PMID: 39634168 PMCID: PMC11615608 DOI: 10.1016/j.bas.2024.104139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/06/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024]
Abstract
Introduction After resection of eloquent gliomas, impacting motor pathways, patients frequently harbour pronounced motor deficits (MD), predominantly attributed to damage to the corticospinal tract (CST). Research question This study compares the results of conventional DTI-FT and q-ball (QBI)-high resolution FT with patient's postoperative morbidity, relating postoperative MD with the nearest distance from the lesion to the CST (nD-LCST). Materials and methods In this ongoing prospective trial, we utilized probabilistic High-Resolution Fiber Tracking (HRFT) through q-ball imaging (QBI-FT) and conventional Diffusion Tensor Imaging Fiber Tracking (DTI-FT), based on equal and standard diffusion-weighted MRI. Our analysis focused on the normalized Distance from the lesion to the CST-FT (nD-LCST), compared with MD evaluated via standardized clinical examination. Results Post-surgery, 4 patients developed new MD or deteriorated respectively. Among these, one patient was diagnosed with glioblastoma, one with diffuse astrocytoma, one with anaplastic astrocytoma, and one with oligodendroglioma. QBI-FT analysis revealed that patients with MD had a significantly lower median nD-LCST (-0.4 IQR = 2.1), in contrast to those without MD (8.4 IQR = 3.9; p = 0.029). Median values of QBI-FT were located within the tumor outlines, when MD deteriorated. Patients with postoperatively impaired MD had larger tumor volumes compared to those without MD. Discussion and conclusion Our preliminary findings suggest that QBI-FT may offer advantages over DTI-FT in predicting postoperative motor deficits, potentially enhancing neurosurgical planning. However, due to the small sample size of our study, these results are exploratory, and further research with larger patient populations is necessary to confirm the benefits of QBI-FT. QBI-FT shows promise as a complementary tractography technique suitable for clinical purposes alongside standard DTI-FT.
Collapse
Affiliation(s)
- Pavlina Lenga
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
- Medical Faculty of Heidelberg University, Heidelberg, Germany
| | - Moritz Scherer
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
- Medical Faculty of Heidelberg University, Heidelberg, Germany
| | - Robin Peretzke
- Medical Faculty of Heidelberg University, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Division of Medical Image Computing, Heidelberg, Germany
| | - Peter Neher
- Medical Faculty of Heidelberg University, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Division of Medical Image Computing, Heidelberg, Germany
| | - Jessica Jesser
- Medical Faculty of Heidelberg University, Heidelberg, Germany
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Andreas W. Unterberg
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
- Medical Faculty of Heidelberg University, Heidelberg, Germany
| | - Sandro Krieg
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
- Medical Faculty of Heidelberg University, Heidelberg, Germany
| | - Daniela Becker
- IU International University of Applied Sciences, Germany
- Department of Neurology, SRH Kurpfalzkrankenhaus, Heidelberg, Germany
| |
Collapse
|
3
|
Fekonja LS, Schenk R, Schröder E, Tomasello R, Tomšič S, Picht T. The digital twin in neuroscience: from theory to tailored therapy. Front Neurosci 2024; 18:1454856. [PMID: 39376542 PMCID: PMC11457707 DOI: 10.3389/fnins.2024.1454856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/30/2024] [Indexed: 10/09/2024] Open
Abstract
Digital twins enable simulation, comprehensive analysis and predictions, as virtual representations of physical systems. They are also finding increasing interest and application in the healthcare sector, with a particular focus on digital twins of the brain. We discuss how digital twins in neuroscience enable the modeling of brain functions and pathology as they offer an in-silico approach to studying the brain and illustrating the complex relationships between brain network dynamics and related functions. To showcase the capabilities of digital twinning in neuroscience we demonstrate how the impact of brain tumors on the brain's physical structures and functioning can be modeled in relation to the philosophical concept of plasticity. Against this technically derived backdrop, which assumes that the brain's nonlinear behavior toward improvement and repair can be modeled and predicted based on MRI data, we further explore the philosophical insights of Catherine Malabou. Malabou emphasizes the brain's dual capacity for adaptive and destructive plasticity. We will discuss in how far Malabou's ideas provide a more holistic theoretical framework for understanding how digital twins can model the brain's response to injury and pathology, embracing Malabou's concept of both adaptive and destructive plasticity which provides a framework to address such yet incomputable aspects of neuroscience and the sometimes seemingly unfavorable dynamics of neuroplasticity helping to bridge the gap between theoretical research and clinical practice.
Collapse
Affiliation(s)
- Lucius Samo Fekonja
- Cluster of Excellence Matters of Activity, Image Space Material, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Robert Schenk
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Emily Schröder
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Rosario Tomasello
- Cluster of Excellence Matters of Activity, Image Space Material, Humboldt-Universität zu Berlin, Berlin, Germany
- Brain Language Laboratory, Department of Philosophy and Humanities, Freie Universität Berlin, Berlin, Germany
| | - Samo Tomšič
- Cluster of Excellence Matters of Activity, Image Space Material, Humboldt-Universität zu Berlin, Berlin, Germany
- University of Fine Arts of Hamburg, Hamburg, Germany
| | - Thomas Picht
- Cluster of Excellence Matters of Activity, Image Space Material, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
4
|
Yang ZC, Xue BW, Song XY, Yin CD, Yeh FC, Li G, Deng ZH, Sun SJ, Hou ZG, Xie J. Connectomic insights into the impact of 1p/19q co-deletion in dominant hemisphere insular glioma patients. Front Neurosci 2024; 18:1283518. [PMID: 39135733 PMCID: PMC11317282 DOI: 10.3389/fnins.2024.1283518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 07/10/2024] [Indexed: 08/15/2024] Open
Abstract
Objectives This study aimed to elucidate the influences of 1p/19q co-deletion on structural connectivity alterations in patients with dominant hemisphere insular diffuse gliomas. Methods We incorporated 32 cases of left insular gliomas and 20 healthy controls for this study. Using diffusion MRI, we applied correlational tractography, differential tractography, and graph theoretical analysis to explore the potential connectivity associated with 1p/19q co-deletion. Results The study revealed that the quantitative anisotropy (QA) of key deep medial fiber tracts, including the anterior thalamic radiation, superior thalamic radiation, fornix, and cingulum, had significant negative associations with 1p/19q co-deletion (FDR = 4.72 × 10-5). These tracts are crucial in maintaining the integrity of brain networks. Differential analysis further supported these findings (FWER-corrected p < 0.05). The 1p/19q non-co-deletion group exhibited significantly higher clustering coefficients (FDR-corrected p < 0.05) and reduced betweenness centrality (FDR-corrected p < 0.05) in regions around the tumor compared to HC group. Graph theoretical analysis indicated that non-co-deletion patients had increased local clustering and decreased betweenness centrality in peritumoral brain regions compared to co-deletion patients and healthy controls (FDR-corrected p < 0.05). Additionally, despite not being significant through correction, patients with 1p/19q co-deletion exhibited lower trends in weighted average clustering coefficient, transitivity, small worldness, and global efficiency, while showing higher tendencies in weighted path length compared to patients without the co-deletion. Conclusion The findings of this study underline the significant role of 1p/19q co-deletion in altering structural connectivity in insular glioma patients. These alterations in brain networks could have profound implications for the neural functionality in patients with dominant hemisphere insular gliomas.
Collapse
Affiliation(s)
- Zuo-cheng Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bo-wen Xue
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xin-yu Song
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chuan-dong Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fang-cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Gen Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zheng-hai Deng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Sheng-jun Sun
- Neuroimaging Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zong-gang Hou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jian Xie
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Wende T, Güresir E, Wach J, Vychopen M, Hoffmann A, Prasse G, Wilhelmy F, Kasper J. Radiomic white matter parameters of functional integrity of the corticospinal tract in high-grade glioma. Sci Rep 2024; 14:12891. [PMID: 38839940 PMCID: PMC11153211 DOI: 10.1038/s41598-024-63813-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024] Open
Abstract
Tractography has become a widely available tool for the planning of neurosurgical operations as well as for neuroscientific research. The absence of patient interaction makes it easily applicable. However, it leaves uncertainty about the functional relevance of the identified bundles. We retrospectively analyzed the correlation of white matter markers with their clinical function in 24 right-handed patients who underwent first surgery for high-grade glioma. Morphological affection of the corticospinal tract (CST) and grade of paresis were assessed before surgery. Tractography was performed manually with MRTrix3 and automatically with TractSeg. Median and mean fractional anisotropy (FA) from manual tractography showed a significant correlation with CST affection (p = 0.008) and paresis (p = 0.015, p = 0.026). CST affection correlated further most with energy, and surface-volume ratio (p = 0.014) from radiomic analysis. Paresis correlated most with maximum 2D column diameter (p = 0.005), minor axis length (p = 0.006), and kurtosis (p = 0.008) from radiomic analysis. Streamline count yielded no significant correlations. In conclusion, mean or median FA can be used for the assessment of CST integrity in high-grade glioma. Also, several radiomic parameters are suited to describe tract integrity and may be used to quantitatively analyze white matter in the future.
Collapse
Affiliation(s)
- Tim Wende
- Department of Neurosurgery, University Hospital Leipzig, Liebigstr. 20, 04103, Leipzig, Germany.
| | - Erdem Güresir
- Department of Neurosurgery, University Hospital Leipzig, Liebigstr. 20, 04103, Leipzig, Germany
| | - Johannes Wach
- Department of Neurosurgery, University Hospital Leipzig, Liebigstr. 20, 04103, Leipzig, Germany
| | - Martin Vychopen
- Department of Neurosurgery, University Hospital Leipzig, Liebigstr. 20, 04103, Leipzig, Germany
| | - Anastasia Hoffmann
- Department of Neurosurgery, University Hospital Leipzig, Liebigstr. 20, 04103, Leipzig, Germany
- Institute of Neuroradiology, University Hospital Leipzig, Leipzig, Germany
| | - Gordian Prasse
- Institute of Neuroradiology, University Hospital Leipzig, Leipzig, Germany
| | - Florian Wilhelmy
- Department of Neurosurgery, University Hospital Leipzig, Liebigstr. 20, 04103, Leipzig, Germany
| | - Johannes Kasper
- Department of Neurosurgery, University Hospital Leipzig, Liebigstr. 20, 04103, Leipzig, Germany
| |
Collapse
|
6
|
Wang P, Zhao H, Hao Z, Ma X, Wang S, Zhang H, Wu Q, Gao Y. Structural changes in corticospinal tract profiling via multishell diffusion models and their relation to overall survival in glioblastoma. Eur J Radiol 2024; 175:111477. [PMID: 38669755 DOI: 10.1016/j.ejrad.2024.111477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/22/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
PURPOSE Advanced MR fiber tracking imaging reflects fiber bundle invasion by glioblastoma, particularly of the corticospinal tract (CST), which is more susceptible as the largest downstream fiber tracts. We aimed to investigate whether CST features can predict the overall survival of glioblastoma. METHODS In this prospective secondary analysis, 40 participants (mean age, 58 years; 16 male) pathologically diagnosed with glioblastoma were enrolled. Diffusion spectrum MRI was used for CST reconstruction. Fifty morphological and diffusion indicators (DTI, DKI, NODDI, MAP and Q-space) were used to characterize the CST. Optimal parameters capturing fiber bundle damage were obtained through various grouping methods. Eventually, the correlation with overall survival was determined by the hazard ratios (HRs) from various Cox proportional hazard model combinations. RESULTS Only intracellular volume fraction (ICVF) and non-Gaussianity (NG) values on the affected tumor level were significant in all four groups or stratified comparisons (all P < .05). During the median follow-up 698 days, only the ICVF on the affected tumor level was independently associated with overall survival, even after adjusting for all classic prognostic factors (HR [95 % CI]: 0.611 [0.403, 0.927], P = .021). Moreover, stratification by the ICVF on the affected tumor level successfully predicted risk (P < .01) and improved the C-index of the multivariate model (from 0.695 to 0.736). CONCLUSIONS This study demonstrates a relationship between NODDI-derived CST features, ICVF on the affected tumor level, and overall survival in glioblastoma. Independent of classical prognostic factors for glioblastoma, a lower ICVF on the affected tumor level might predict a lower overall survival.
Collapse
Affiliation(s)
- Peng Wang
- Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - He Zhao
- Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Zhiyue Hao
- Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Xueying Ma
- Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Shaoyu Wang
- MR Scientific Marketing, Siemens Healthineers, Shanghai, Shanghai, China
| | - Huapeng Zhang
- MR Scientific Marketing, Siemens Healthineers, Shanghai, Shanghai, China
| | - Qiong Wu
- Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China.
| | - Yang Gao
- Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China.
| |
Collapse
|
7
|
Zhang H, Zhang W, Ohlerth A, Schwendner M, Schröder A, Meyer B, Krieg SM, Ille S. Motor mapping of the hand muscles using peripheral innervation-based navigated transcranial magnetic stimulation to identify functional reorganization of primary motor regions in malignant tumors. Hum Brain Mapp 2024; 45:e26642. [PMID: 38433701 PMCID: PMC10910269 DOI: 10.1002/hbm.26642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 03/05/2024] Open
Abstract
Tumor-related motor reorganization remains unclear. Navigated transcranial magnetic stimulation (nTMS) can investigate plasticity non-invasively. nTMS-induced motor-evoked potentials (MEPs) of different muscles are commonly used to measure the center of gravity (CoG), the location with the highest density of corticospinal neurons in the precentral gyrus. We hypothesized that a peripheral innervation-based MEP analysis could outline the tumor-induced motor reorganization with a higher clinical and oncological relevance. Then, 21 patients harboring tumors inside the left corticospinal tract (CST) or precentral gyrus were enrolled in group one (G1), and 24 patients with tumors outside the left CST or precentral gyrus were enrolled in Group 2 (G2). Median- and ulnar-nerve-based MEP analysis combined with diffusion tensor imaging fiber tracking was used to explore motor function distribution. There was no significant difference in CoGs or size of motor regions and underlying tracts between G1 and G2. However, G1 involved a sparser distribution of motor regions and more motor-positive sites in the supramarginal gyrus-tumors inside motor areas induced motor reorganization. We propose an "anchor-and-ship theory" hypothesis for this process of motor reorganization: motor CoGs are stably located in the cortical projection area of the CST, like a seated anchor, as the core area for motor output. Primary motor regions can relocate to nearby gyri via synaptic plasticity and association fibers, like a ship moving around its anchor. This principle can anticipate functional reorganization and be used as a neuro-oncological tool for local therapy, such as radiotherapy or surgery.
Collapse
Affiliation(s)
- Haosu Zhang
- Department of NeurosurgeryTechnical University of Munich, School of MedicineMunichGermany
- Department of NeurosurgeryHeidelberg University HospitalHeidelbergGermany
| | - Wei Zhang
- Department of NeurosurgeryTechnical University of Munich, School of MedicineMunichGermany
| | - Ann‐Katrin Ohlerth
- Department of NeurosurgeryTechnical University of Munich, School of MedicineMunichGermany
- Center for Language and Cognition GroningenUniversity of GroningenGroningenNetherlands
| | - Maximilian Schwendner
- Department of NeurosurgeryTechnical University of Munich, School of MedicineMunichGermany
- Department of NeurosurgeryHeidelberg University HospitalHeidelbergGermany
| | - Axel Schröder
- Department of NeurosurgeryTechnical University of Munich, School of MedicineMunichGermany
| | - Bernhard Meyer
- Department of NeurosurgeryTechnical University of Munich, School of MedicineMunichGermany
| | - Sandro M. Krieg
- Department of NeurosurgeryTechnical University of Munich, School of MedicineMunichGermany
- Department of NeurosurgeryHeidelberg University HospitalHeidelbergGermany
- TUM‐Neuroimaging CenterTechnical University of Munich, School of MedicineMunichGermany
| | - Sebastian Ille
- Department of NeurosurgeryTechnical University of Munich, School of MedicineMunichGermany
- Department of NeurosurgeryHeidelberg University HospitalHeidelbergGermany
- TUM‐Neuroimaging CenterTechnical University of Munich, School of MedicineMunichGermany
| |
Collapse
|
8
|
Riaz H, Uzair M, Arshad M, Hamza A, Bukhari N, Azam F, Bashir S. Navigated Transcranial Magnetic Stimulation (nTMS) based Preoperative Planning for Brain Tumor Treatment. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:883-893. [PMID: 37340739 DOI: 10.2174/1871527322666230619103429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 06/22/2023]
Abstract
Transcranial Magnetic Stimulation (TMS) is a non-invasive technique for analyzing the central and peripheral nervous system. TMS could be a powerful therapeutic technique for neurological disorders. TMS has also shown potential in treating various neurophysiological complications, such as depression, anxiety, and obsessive-compulsive disorders, without pain and analgesics. Despite advancements in diagnosis and treatment, there has been an increase in the prevalence of brain cancer globally. For surgical planning, mapping brain tumors has proven challenging, particularly those localized in expressive regions. Preoperative brain tumor mapping may lower the possibility of postoperative morbidity in surrounding areas. A navigated TMS (nTMS) uses magnetic resonance imaging (MRI) to enable precise mapping during navigated brain stimulation. The resulting magnetic impulses can be precisely applied to the target spot in the cortical region by employing nTMS. This review focuses on nTMS for preoperative planning for brain cancer. This study reviews several studies on TMS and its subtypes in treating cancer and surgical planning. nTMS gives wider and improved dimensions of preoperative planning of the motor-eloquent areas in brain tumor patients. nTMS also predicts postoperative neurological deficits, which might be helpful in counseling patients. nTMS have the potential for finding possible abnormalities in the motor cortex areas.
Collapse
Affiliation(s)
- Hammad Riaz
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Pakistan
| | - Mohammad Uzair
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Pakistan
| | - Muhammad Arshad
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Pakistan
| | - Ali Hamza
- Brno University of Technology, Brno, Czech Republic
| | - Nedal Bukhari
- Oncology Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
- Department of Internal Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Faisal Azam
- Oncology Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| |
Collapse
|
9
|
Shams B, Reisch K, Vajkoczy P, Lippert C, Picht T, Fekonja LS. Improved prediction of glioma-related aphasia by diffusion MRI metrics, machine learning, and automated fiber bundle segmentation. Hum Brain Mapp 2023. [PMID: 37318944 PMCID: PMC10365236 DOI: 10.1002/hbm.26393] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/07/2023] [Accepted: 05/26/2023] [Indexed: 06/17/2023] Open
Abstract
White matter impairments caused by gliomas can lead to functional disorders. In this study, we predicted aphasia in patients with gliomas infiltrating the language network using machine learning methods. We included 78 patients with left-hemispheric perisylvian gliomas. Aphasia was graded preoperatively using the Aachen aphasia test (AAT). Subsequently, we created bundle segmentations based on automatically generated tract orientation mappings using TractSeg. To prepare the input for the support vector machine (SVM), we first preselected aphasia-related fiber bundles based on the associations between relative tract volumes and AAT subtests. In addition, diffusion magnetic resonance imaging (dMRI)-based metrics [axial diffusivity (AD), apparent diffusion coefficient (ADC), fractional anisotropy (FA), and radial diffusivity (RD)] were extracted within the fiber bundles' masks with their mean, standard deviation, kurtosis, and skewness values. Our model consisted of random forest-based feature selection followed by an SVM. The best model performance achieved 81% accuracy (specificity = 85%, sensitivity = 73%, and AUC = 85%) using dMRI-based features, demographics, tumor WHO grade, tumor location, and relative tract volumes. The most effective features resulted from the arcuate fasciculus (AF), middle longitudinal fasciculus (MLF), and inferior fronto-occipital fasciculus (IFOF). The most effective dMRI-based metrics were FA, ADC, and AD. We achieved a prediction of aphasia using dMRI-based features and demonstrated that AF, IFOF, and MLF were the most important fiber bundles for predicting aphasia in this cohort.
Collapse
Affiliation(s)
- Boshra Shams
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Cluster of Excellence: "Matters of Activity. Image Space Material", Humboldt University, Berlin, Germany
| | - Klara Reisch
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Lippert
- Digital Health - Machine Learning, Hasso Plattner Institute, University of Potsdam, Digital Engineering Faculty, Potsdam, Germany
- Hasso Plattner Institute for Digital Health, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Thomas Picht
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Cluster of Excellence: "Matters of Activity. Image Space Material", Humboldt University, Berlin, Germany
| | - Lucius S Fekonja
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Cluster of Excellence: "Matters of Activity. Image Space Material", Humboldt University, Berlin, Germany
| |
Collapse
|
10
|
Friedrich M, Farrher E, Caspers S, Lohmann P, Lerche C, Stoffels G, Filss CP, Weiss Lucas C, Ruge MI, Langen KJ, Shah NJ, Fink GR, Galldiks N, Kocher M. Alterations in white matter fiber density associated with structural MRI and metabolic PET lesions following multimodal therapy in glioma patients. Front Oncol 2022; 12:998069. [PMID: 36452509 PMCID: PMC9702073 DOI: 10.3389/fonc.2022.998069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/17/2022] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND In glioma patients, multimodality therapy and recurrent tumor can lead to structural brain tissue damage characterized by pathologic findings in MR and PET imaging. However, little is known about the impact of different types of damage on the fiber architecture of the affected white matter. PATIENTS AND METHODS This study included 121 pretreated patients (median age, 52 years; ECOG performance score, 0 in 48%, 1-2 in 51%) with histomolecularly characterized glioma (WHO grade IV glioblastoma, n=81; WHO grade III anaplastic astrocytoma, n=28; WHO grade III anaplastic oligodendroglioma, n=12), who had a resection, radiotherapy, alkylating chemotherapy, or combinations thereof. After a median follow-up time of 14 months (range, 1-214 months), anatomic MR and O-(2-[18F]fluoroethyl)-L-tyrosine (FET) PET images were acquired on a 3T hybrid PET/MR scanner. Post-therapeutic findings comprised resection cavities, regions with contrast enhancement or increased FET uptake and T2/FLAIR hyperintensities. Local fiber density was determined from high angular-resolution diffusion-weighted imaging and advanced tractography methods. A cohort of 121 healthy subjects selected from the 1000BRAINS study matched for age, gender and education served as a control group. RESULTS Lesion types differed in both affected tissue volumes and relative fiber densities compared to control values (resection cavities: median volume 20.9 mL, fiber density 16% of controls; contrast-enhanced lesions: 7.9 mL, 43%; FET uptake areas: 30.3 mL, 49%; T2/FLAIR hyperintensities: 53.4 mL, 57%, p<0.001). In T2/FLAIR-hyperintense lesions caused by peritumoral edema due to recurrent glioma (n=27), relative fiber density was as low as in lesions associated with radiation-induced gliosis (n=13, 48% vs. 53%, p=0.17). In regions with pathologically increased FET uptake, local fiber density was inversely related (p=0.005) to the extent of uptake. Total fiber loss associated with contrast-enhanced lesions (p=0.006) and T2/FLAIR hyperintense lesions (p=0.013) had a significant impact on overall ECOG score. CONCLUSIONS These results suggest that apart from resection cavities, reduction in local fiber density is greatest in contrast-enhancing recurrent tumors, but total fiber loss induced by edema or gliosis has an equal detrimental effect on the patients' performance status due to the larger volume affected.
Collapse
Affiliation(s)
- Michel Friedrich
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
| | - Ezequiel Farrher
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
- Institute for Anatomy I, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
- Department of Stereotaxy and Functional Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Christoph Lerche
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
| | - Gabriele Stoffels
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
| | - Christian P. Filss
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
- Department of Nuclear Medicine, University Hospital Aachen, Rheinisch-Westfaelische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Carolin Weiss Lucas
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
- Department of General Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Maximilian I. Ruge
- Department of Stereotaxy and Functional Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
- Department of Nuclear Medicine, University Hospital Aachen, Rheinisch-Westfaelische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
| | - Nadim J. Shah
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
- Juelich-Aachen Research Alliance (JARA), Section JARA-Brain, Juelich, Germany
- Department of Neurology, University Hospital Aachen, Rheinisch-Westfaelische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Gereon R. Fink
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Norbert Galldiks
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Martin Kocher
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
- Department of Stereotaxy and Functional Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
| |
Collapse
|
11
|
Shams B, Wang Z, Roine T, Aydogan DB, Vajkoczy P, Lippert C, Picht T, Fekonja LS. Machine learning-based prediction of motor status in glioma patients using diffusion MRI metrics along the corticospinal tract. Brain Commun 2022; 4:fcac141. [PMID: 35694146 PMCID: PMC9175193 DOI: 10.1093/braincomms/fcac141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 03/01/2022] [Accepted: 05/24/2022] [Indexed: 12/03/2022] Open
Abstract
Along tract statistics enables white matter characterization using various diffusion MRI metrics. These diffusion models reveal detailed insights into white matter microstructural changes with development, pathology and function. Here, we aim at assessing the clinical utility of diffusion MRI metrics along the corticospinal tract, investigating whether motor glioma patients can be classified with respect to their motor status. We retrospectively included 116 brain tumour patients suffering from either left or right supratentorial, unilateral World Health Organization Grades II, III and IV gliomas with a mean age of 53.51 ± 16.32 years. Around 37% of patients presented with preoperative motor function deficits according to the Medical Research Council scale. At group level comparison, the highest non-overlapping diffusion MRI differences were detected in the superior portion of the tracts’ profiles. Fractional anisotropy and fibre density decrease, apparent diffusion coefficient axial diffusivity and radial diffusivity increase. To predict motor deficits, we developed a method based on a support vector machine using histogram-based features of diffusion MRI tract profiles (e.g. mean, standard deviation, kurtosis and skewness), following a recursive feature elimination method. Our model achieved high performance (74% sensitivity, 75% specificity, 74% overall accuracy and 77% area under the curve). We found that apparent diffusion coefficient, fractional anisotropy and radial diffusivity contributed more than other features to the model. Incorporating the patient demographics and clinical features such as age, tumour World Health Organization grade, tumour location, gender and resting motor threshold did not affect the model’s performance, revealing that these features were not as effective as microstructural measures. These results shed light on the potential patterns of tumour-related microstructural white matter changes in the prediction of functional deficits.
Collapse
Affiliation(s)
- Boshra Shams
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Klinik für Neurochirurgie mit Arbeitsbereich Pädiatrische Neurochirurgie, Campus Charité Mitte , Charitéplatz 1, 10117 Berlin, Germany
- Cluster of Excellence: ‘Matters of Activity. Image Space Material’, Humboldt University Berlin , Berlin, Germany
| | - Ziqian Wang
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Klinik für Neurochirurgie mit Arbeitsbereich Pädiatrische Neurochirurgie, Campus Charité Mitte , Charitéplatz 1, 10117 Berlin, Germany
| | - Timo Roine
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science , Espoo, Finland
- Turku Brain and Mind Center, University of Turku , Turku, Finland
| | - Dogu Baran Aydogan
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science , Espoo, Finland
- Department of Psychiatry, Helsinki University and Helsinki University Hospital , Helsinki, Finland
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland , Kuopio, Finland
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Klinik für Neurochirurgie mit Arbeitsbereich Pädiatrische Neurochirurgie, Campus Charité Mitte , Charitéplatz 1, 10117 Berlin, Germany
| | - Christoph Lippert
- Digital Health - Machine Learning, Hasso Plattner Institute, University of Potsdam , Potsdam, Germany
- Hasso Plattner Institute for Digital Health, Icahn School of Medicine at Mount Sinai , New York, NY, USA
| | - Thomas Picht
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Klinik für Neurochirurgie mit Arbeitsbereich Pädiatrische Neurochirurgie, Campus Charité Mitte , Charitéplatz 1, 10117 Berlin, Germany
- Cluster of Excellence: ‘Matters of Activity. Image Space Material’, Humboldt University Berlin , Berlin, Germany
| | - Lucius S. Fekonja
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Klinik für Neurochirurgie mit Arbeitsbereich Pädiatrische Neurochirurgie, Campus Charité Mitte , Charitéplatz 1, 10117 Berlin, Germany
- Cluster of Excellence: ‘Matters of Activity. Image Space Material’, Humboldt University Berlin , Berlin, Germany
| |
Collapse
|
12
|
Fekonja LS, Wang Z, Cacciola A, Roine T, Aydogan DB, Mewes D, Vellmer S, Vajkoczy P, Picht T. Network analysis shows decreased ipsilesional structural connectivity in glioma patients. Commun Biol 2022; 5:258. [PMID: 35322812 PMCID: PMC8943189 DOI: 10.1038/s42003-022-03190-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/22/2022] [Indexed: 11/15/2022] Open
Abstract
Gliomas that infiltrate networks and systems, such as the motor system, often lead to substantial functional impairment in multiple systems. Network-based statistics (NBS) allow to assess local network differences and graph theoretical analyses enable investigation of global and local network properties. Here, we used network measures to characterize glioma-related decreases in structural connectivity by comparing the ipsi- with the contralesional hemispheres of patients and correlated findings with neurological assessment. We found that lesion location resulted in differential impairment of both short and long connectivity patterns. Network analysis showed reduced global and local efficiency in the ipsilesional hemisphere compared to the contralesional hemispheric networks, which reflect the impairment of information transfer across different regions of a network. Tumors and their location distinctly alter both local and global brain connectivity within the ipsilesional hemisphere of glioma patients.
Collapse
Affiliation(s)
- Lucius S Fekonja
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany. .,Cluster of Excellence: "Matters of Activity. Image Space Material", Humboldt University, Berlin, Germany.
| | - Ziqian Wang
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Alberto Cacciola
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Timo Roine
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland.,Turku Brain and Mind Center, University of Turku, Turku, Finland
| | - D Baran Aydogan
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland.,Department of Psychiatry, Helsinki University and Helsinki University Hospital, Helsinki, Finland.,A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Darius Mewes
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Vellmer
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Picht
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Cluster of Excellence: "Matters of Activity. Image Space Material", Humboldt University, Berlin, Germany
| |
Collapse
|
13
|
Petersen M, Frey BM, Mayer C, Kühn S, Gallinat J, Hanning U, Fiehler J, Borof K, Jagodzinski A, Gerloff C, Thomalla G, Cheng B. Fixel based analysis of white matter alterations in early stage cerebral small vessel disease. Sci Rep 2022; 12:1581. [PMID: 35091684 PMCID: PMC8799636 DOI: 10.1038/s41598-022-05665-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
Cerebral small vessel disease (CSVD) is a common cause of morbidity and cognitive decline in the elderly population. However, characterizing the disease pathophysiology and its association with potential clinical sequelae in early stages is less well explored. We applied fixel-based analysis (FBA), a novel framework of investigating microstructural white matter integrity by diffusion-weighted imaging, to data of 921 participants of the Hamburg City Health Study, comprising middle-aged individuals with increased cerebrovascular risk in early stages of CSVD. In individuals in the highest quartile of white matter hyperintensity loads (n = 232, median age 63 years; IQR 15.3 years), FBA detected significantly reduced axonal density and increased atrophy of transcallosal fiber tracts, the bilateral superior longitudinal fasciculus, and corticospinal tracts compared to participants in the lowest quartile of white matter hyperintensities (n = 228, mean age 55 years; IQR 10 years). Analysis of all participants (N = 921) demonstrated a significant association between reduced fiber density and worse executive functions operationalized by the Trail Making Test. Findings were confirmed by complementary analysis of diffusion tensor metrics.
Collapse
Affiliation(s)
- Marvin Petersen
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| | - Benedikt M Frey
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Carola Mayer
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Simone Kühn
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jürgen Gallinat
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Uta Hanning
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jens Fiehler
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katrin Borof
- Epidemiological Study Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annika Jagodzinski
- Epidemiological Study Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of General and Interventional Cardiology, University Heart and Vascular Center, Hamburg, Germany
| | - Christian Gerloff
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Götz Thomalla
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Bastian Cheng
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| |
Collapse
|
14
|
Yang JYM, Yeh CH, Poupon C, Calamante F. Diffusion MRI tractography for neurosurgery: the basics, current state, technical reliability and challenges. Phys Med Biol 2021; 66. [PMID: 34157706 DOI: 10.1088/1361-6560/ac0d90] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/22/2021] [Indexed: 01/20/2023]
Abstract
Diffusion magnetic resonance imaging (dMRI) tractography is currently the only imaging technique that allows for non-invasive delineation and visualisation of white matter (WM) tractsin vivo,prompting rapid advances in related fields of brain MRI research in recent years. One of its major clinical applications is for pre-surgical planning and intraoperative image guidance in neurosurgery, where knowledge about the location of WM tracts nearby the surgical target can be helpful to guide surgical resection and optimise post-surgical outcomes. Surgical injuries to these WM tracts can lead to permanent neurological and functional deficits, making the accuracy of tractography reconstructions paramount. The quality of dMRI tractography is influenced by many modifiable factors, ranging from MRI data acquisition through to the post-processing of tractography output, with the potential of error propagation based on decisions made at each and subsequent processing steps. Research over the last 25 years has significantly improved the anatomical accuracy of tractography. An updated review about tractography methodology in the context of neurosurgery is now timely given the thriving research activities in dMRI, to ensure more appropriate applications in the clinical neurosurgical realm. This article aims to review the dMRI physics, and tractography methodologies, highlighting recent advances to provide the key concepts of tractography-informed neurosurgery, with a focus on the general considerations, the current state of practice, technical challenges, potential advances, and future demands to this field.
Collapse
Affiliation(s)
- Joseph Yuan-Mou Yang
- Department of Neurosurgery, The Royal Children's Hospital, Melbourne, Australia.,Neuroscience Research, Murdoch Children's Research Institute, Melbourne, Australia.,Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Chun-Hung Yeh
- Institute for Radiological Research, Chang Gung University and Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Child and Adolescent Psychiatry, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Cyril Poupon
- NeuroSpin, Frédéric Joliot Life Sciences Institute, CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Fernando Calamante
- The University of Sydney, Sydney Imaging, Sydney, Australia.,The University of Sydney, School of Biomedical Engineering, Sydney, Australia
| |
Collapse
|
15
|
Fixel-based Analysis of Diffusion MRI: Methods, Applications, Challenges and Opportunities. Neuroimage 2021; 241:118417. [PMID: 34298083 DOI: 10.1016/j.neuroimage.2021.118417] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 07/11/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022] Open
Abstract
Diffusion MRI has provided the neuroimaging community with a powerful tool to acquire in-vivo data sensitive to microstructural features of white matter, up to 3 orders of magnitude smaller than typical voxel sizes. The key to extracting such valuable information lies in complex modelling techniques, which form the link between the rich diffusion MRI data and various metrics related to the microstructural organization. Over time, increasingly advanced techniques have been developed, up to the point where some diffusion MRI models can now provide access to properties specific to individual fibre populations in each voxel in the presence of multiple "crossing" fibre pathways. While highly valuable, such fibre-specific information poses unique challenges for typical image processing pipelines and statistical analysis. In this work, we review the "Fixel-Based Analysis" (FBA) framework, which implements bespoke solutions to this end. It has recently seen a stark increase in adoption for studies of both typical (healthy) populations as well as a wide range of clinical populations. We describe the main concepts related to Fixel-Based Analyses, as well as the methods and specific steps involved in a state-of-the-art FBA pipeline, with a focus on providing researchers with practical advice on how to interpret results. We also include an overview of the scope of all current FBA studies, categorized across a broad range of neuro-scientific domains, listing key design choices and summarizing their main results and conclusions. Finally, we critically discuss several aspects and challenges involved with the FBA framework, and outline some directions and future opportunities.
Collapse
|