1
|
Praditi C, Beverley-Stone E, Reid M, Burgess ER, Crake RL, Vissers MC, Royds JA, Slatter TL, Dachs GU, Phillips E. Iron content of glioblastoma tumours and role of ferrous iron in the hypoxic response in vitro. Front Oncol 2025; 15:1536549. [PMID: 40123902 PMCID: PMC11925887 DOI: 10.3389/fonc.2025.1536549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/17/2025] [Indexed: 03/25/2025] Open
Abstract
Introduction Glioblastomas are an aggressive primary brain cancer, characterised by hypoxia and poor patient survival. Iron is the most abundant transition metal in the brain, yet data on the iron content of brain cancers is sparse. Ferrous iron is an essential cofactor for a super-family of enzymes, the iron- and 2-oxoglutarate-dependent dioxygenase enzymes (2-OGDD). These enzymes control the response to hypoxia via hydroxylation of the hypoxia-inducible factor-1α (HIF-1α), and DNA demethylation via hydroxylation of 5-methyl cytosines (5hmC). Methods This study used clinical glioblastoma samples from 40 patients to determine the relationship between 2-OGDD activity and iron. Elemental iron was measured using inductively coupled plasma mass spectrometry (ICP-MS) and ferrous iron was measured using the colorimetric ferrozine assay. Iron measurements were compared against patient survival and clinicopathological data, and 2-OGDD-dependent activity of HIF-1 activation and 5hmC. Results and discussion Elemental and ferrous iron levels were weakly related. Higher ferrous iron content of clinical glioblastoma tissue was associated with longer overall survival compared to lower ferrous iron content, but elemental iron showed no such relationship. Neither form of iron was related to clinicopathological data or markers of 2-OGDD activity. The impact of iron supplementation on the hypoxic response was assessed in three glioblastoma cell lines in vitro, similarly showing only a limited influence of iron on these 2-OGDD enzymes. Our data, together with prior studies in anaemic patients, highlight the importance of healthy iron levels in patients with glioblastoma, but further mechanistic studies are needed to elucidate the molecular pathways involved.
Collapse
Affiliation(s)
- Citra Praditi
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Eira Beverley-Stone
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Malcolm Reid
- Centre for Trace Element Analysis, Department of Geology, University of Otago, Dunedin, New Zealand
| | - Eleanor R. Burgess
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
- Department of Immunobiochemistry, Medical Faculty, Mannheim Institute for Innate Immunoscience (MI3), Heidelberg University, Mannheim, Germany
| | - Rebekah L. Crake
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
- Oncogenic Transcription Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia
| | - Margreet C.M. Vissers
- Mātai Hāora, Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Janice A. Royds
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Tania L. Slatter
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Gabi U. Dachs
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Elisabeth Phillips
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| |
Collapse
|
2
|
Lee PWT, Kobayashi M, Dohkai T, Takahashi I, Yoshida T, Harada H. 2-Oxoglutarate-dependent dioxygenases as oxygen sensors: their importance in health and disease. J Biochem 2025; 177:79-104. [PMID: 39679914 DOI: 10.1093/jb/mvae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/22/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024] Open
Abstract
Since low oxygen conditions below physiological levels, hypoxia, are associated with various diseases, it is crucial to understand the molecular basis behind cellular response to hypoxia. Hypoxia-inducible factors (HIFs) have been revealed to primarily orchestrate the hypoxic response at the transcription level and have continuously attracted great attention over the past three decades. In addition to these hypoxia-responsive effector proteins, 2-oxoglutarate-dependent dioxygenase (2-OGDD) superfamily including prolyl-4-hydroxylase domain-containing proteins (PHDs) and factor inhibiting HIF-1 (FIH-1) has attracted even greater attention in recent years as factors that act as direct oxygen sensors due to their necessity of oxygen for the regulation of the expression and activity of the regulatory subunit of HIFs. Herein, we present a detailed classification of 2-OGDD superfamily proteins, such as Jumonji C-domain-containing histone demethylases, ten-eleven translocation enzymes, AlkB family of DNA/RNA demethylases and lysyl hydroxylases, and discuss their specific functions and associations with various diseases. By introducing the multifaceted roles of 2-OGDD superfamily proteins in the hypoxic response, this review aims to summarize the accumulated knowledge about the complex mechanisms governing cellular adaptation to hypoxia in various physiological and pathophysiological contexts.
Collapse
Affiliation(s)
- Peter W T Lee
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Minoru Kobayashi
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takakuni Dohkai
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Itsuki Takahashi
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takumi Yoshida
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
3
|
Burgess ER, Praditi C, Phillips E, Vissers MCM, Robinson BA, Dachs GU, Wiggins GAR. Role of Sodium-Dependent Vitamin C Transporter-2 and Ascorbate in Regulating the Hypoxic Pathway in Cultured Glioblastoma Cells. J Cell Biochem 2025; 126:e30658. [PMID: 39382087 PMCID: PMC11729540 DOI: 10.1002/jcb.30658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/21/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024]
Abstract
The most common and aggressive brain cancer, glioblastoma, is characterized by hypoxia and poor survival. The pro-tumour transcription factor, hypoxia-inducible factor (HIF), is regulated via HIF-hydroxylases that require ascorbate as cofactor. Decreased HIF-hydroxylase activity triggers the hypoxic pathway driving cancer progression. Tissue ascorbate accumulates via the sodium-dependent vitamin C transporter-2 (SVCT2). We hypothesize that glioblastoma cells rely on SVCT2 for ascorbate accumulation, and that knockout of this transporter would disrupt the regulation of the hypoxic pathway by ascorbate. Ascorbate uptake was measured in glioblastoma cell lines (U87MG, U251MG, T98G) by high-performance liquid chromatography. CRISPR/Cas9 was used to knockout SVCT2. Cells were treated with cobalt chloride, desferrioxamine or 5% oxygen, with/without ascorbate, and key hypoxic pathway proteins were measured using Western blot analysis. Ascorbate uptake was cell line dependent, ranging from 1.7 to 11.0 nmol/106 cells. SVCT2-knockout cells accumulated 90%-95% less intracellular ascorbate than parental cells. The hypoxic pathway was induced by all three stimuli, and ascorbate reduced this induction. In the SVCT2-knockout cells, ascorbate had limited effect on the hypoxic pathway. This study verifies that intracellular ascorbate is required to suppress the hypoxic pathway. As patient survival is related to an activated hypoxic pathway, increasing intra-tumoral ascorbate may be of clinical interest.
Collapse
Affiliation(s)
- Eleanor R. Burgess
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical ScienceUniversity of Otago ChristchurchChristchurchNew Zealand
- Department of Immunobiochemistry, Mannheim Institute for Innate Immunology (MI3)Heidelberg University, Medical Faculty MannheimMannheimGermany
| | - Citra Praditi
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical ScienceUniversity of Otago ChristchurchChristchurchNew Zealand
- Mātai Hāora, Centre for Redox Biology and Medicine, Department of Pathology and Biomedical ScienceUniversity of Otago ChristchurchChristchurchNew Zealand
| | - Elisabeth Phillips
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical ScienceUniversity of Otago ChristchurchChristchurchNew Zealand
| | - Margreet C. M. Vissers
- Mātai Hāora, Centre for Redox Biology and Medicine, Department of Pathology and Biomedical ScienceUniversity of Otago ChristchurchChristchurchNew Zealand
| | - Bridget A. Robinson
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical ScienceUniversity of Otago ChristchurchChristchurchNew Zealand
- Canterbury Regional Cancer and Haematology ServiceTe Whatu Ora, Waitaha/CanterburyChristchurchNew Zealand
| | - Gabi U. Dachs
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical ScienceUniversity of Otago ChristchurchChristchurchNew Zealand
| | - George A. R. Wiggins
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical ScienceUniversity of Otago ChristchurchChristchurchNew Zealand
| |
Collapse
|
4
|
Cárdenas P, Nuñez-Allimant C, Silva K, Cid-Salinas C, León AC, Vallotton Z, Lorca RA, de Oliveira LCG, Casarini DE, Céspedes C, Prieto MC, Gonzalez AA. OXGR1-Dependent (Pro)Renin Receptor Upregulation in Collecting Ducts of the Clipped Kidney Contributes to Na + Balance in Goldblatt Hypertensive Mice. Int J Mol Sci 2024; 25:10045. [PMID: 39337535 PMCID: PMC11432382 DOI: 10.3390/ijms251810045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
The two-kidney, one-clip (2K1C) Goldblatt rodent model elicits a reduction in renal blood flow (RBF) in the clipped kidney (CK). The reduced RBF and oxygen bio-ability causes the accumulation of the tricarboxylic cycle intermediary, α-ketoglutarate, which activates the oxoglutarate receptor-1 (OXGR1). In the kidney, OXGR1 is abundantly expressed in intercalated cells (ICs) of the collecting duct (CD), thus contributing to sodium transport and electrolyte balance. The (pro)renin receptor (PRR), a member of the renin-angiotensin system (RAS), is a key regulator of sodium reabsorption and blood pressure (BP) that is expressed in ICs. The PRR is upregulated in 2K1C rats. Here, we tested the hypothesis that chronic reduction in RBF in the CK leads to OXGR1-dependent PRR upregulation in the CD and alters sodium balance and BP in 2K1C mice. To determine the role of OXGR1 in regulating the PRR in the CDs during renovascular hypertension, we performed 2K1C Goldblatt surgery (clip = 0.13 mm internal gap, 14 days) in two groups of male mice: (1) mice treated with Montelukast (OXGR1 antagonist; 5 mg/Kg/day); (2) OXGR1-/- knockout mice. Wild-type and sham-operated mice were used as controls. After 14 days, 2K1C mice showed increased systolic BP (SBP) (108 ± 11 vs. control 82 ± 5 mmHg, p < 0.01) and a lower natriuretic response after the saline challenge test. The CK group showed upregulation of erythropoietin, augmented α-ketoglutarate, and increased PRR expression in the renal medulla. The CK of OXGR1 knockout mice and mice subjected to the OXGR1 antagonist elicited impaired PRR upregulation, attenuated SBP, and better natriuretic responses. In 2K1C mice, the effect of reduced RBF on the OXGR1-dependent PRR upregulation in the CK may contribute to the anti-natriuretic and increased SBP responses.
Collapse
MESH Headings
- Animals
- Mice
- Kidney Tubules, Collecting/metabolism
- Receptors, Cell Surface/metabolism
- Receptors, Cell Surface/genetics
- Male
- Up-Regulation
- Sodium/metabolism
- Hypertension, Renovascular/metabolism
- Hypertension, Renovascular/genetics
- Blood Pressure
- Mice, Knockout
- Prorenin Receptor
- Kidney/metabolism
- Disease Models, Animal
- Renin-Angiotensin System
- Mice, Inbred C57BL
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, Purinergic P2
Collapse
Affiliation(s)
- Pilar Cárdenas
- Institute of Chemistry, Pontificia Universidad Catoólica de Valparaióso, Valparaióso 2340000, Chile; (P.C.); (C.N.-A.); (K.S.); (C.C.-S.); (A.C.L.)
| | - Camila Nuñez-Allimant
- Institute of Chemistry, Pontificia Universidad Catoólica de Valparaióso, Valparaióso 2340000, Chile; (P.C.); (C.N.-A.); (K.S.); (C.C.-S.); (A.C.L.)
| | - Katherin Silva
- Institute of Chemistry, Pontificia Universidad Catoólica de Valparaióso, Valparaióso 2340000, Chile; (P.C.); (C.N.-A.); (K.S.); (C.C.-S.); (A.C.L.)
| | - Catalina Cid-Salinas
- Institute of Chemistry, Pontificia Universidad Catoólica de Valparaióso, Valparaióso 2340000, Chile; (P.C.); (C.N.-A.); (K.S.); (C.C.-S.); (A.C.L.)
| | - Allison C. León
- Institute of Chemistry, Pontificia Universidad Catoólica de Valparaióso, Valparaióso 2340000, Chile; (P.C.); (C.N.-A.); (K.S.); (C.C.-S.); (A.C.L.)
| | - Zoe Vallotton
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA 70112, USA; (Z.V.); (M.C.P.)
| | - Ramón A. Lorca
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Lilian Caroline Gonçalves de Oliveira
- Departamento de Medicina, Disciplina de Nefrologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil; (L.C.G.d.O.); (D.E.C.)
| | - Dulce E Casarini
- Departamento de Medicina, Disciplina de Nefrologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil; (L.C.G.d.O.); (D.E.C.)
| | - Carlos Céspedes
- Faculty of Medicine and Science, Universidad San Sebastián, Santiago 7510602, Chile;
| | - Minolfa C. Prieto
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA 70112, USA; (Z.V.); (M.C.P.)
| | - Alexis A. Gonzalez
- Institute of Chemistry, Pontificia Universidad Catoólica de Valparaióso, Valparaióso 2340000, Chile; (P.C.); (C.N.-A.); (K.S.); (C.C.-S.); (A.C.L.)
| |
Collapse
|
5
|
Zheng P, Zhang X, Ren D, Bai Q. Identification and Prognostic Value of m6A-Related Genes in Glioblastoma. Neurol India 2024; 72:830-836. [PMID: 39216042 DOI: 10.4103/neurol-india.ni_1166_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/23/2021] [Indexed: 09/04/2024]
Abstract
BACKGROUND N6-methyladenosine (m6A) is one of the most common forms of mRNA modification, which is dynamically regulated by the m6A-related genes; however, its effect in glioblastoma (GBM) is still unknown. OBJECTIVE We sought to investigate the association between m6A-related genes (m6A-RGs) and GBM. METHODS Transcriptome data and the relevant clinical data were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus databases. The m6A-RGs were identified from differently expressed genes, and COX and lasso regression models were applied to locate the prognosis-related genes. RESULTS We identified 15 out of 19 m6A-RGs differentially expressed between GBM and nontumor tissues. We identified two subgroups of GBM (clusters 1 and 2) by applying consensus clustering. Compared with the cluster 1 subgroup, the cluster 1 subgroup correlates with a poorer prognosis, and most of the 19 m6A-RGs are higher expressed in cluster 1. Through univariate Cox and lasso regression model, we identified three m6A-RGs, namely HNRNPC, ALKBH5, and FTO, which were used to construct a Cox regression risk model to predict the prognosis of GBM patients. CONCLUSION We identified a valuable m6A model for predicting the prognosis of GBM patients, which can provide useful epigenetic biomarkers.
Collapse
Affiliation(s)
- Ping Zheng
- Department of Neurosurgery, Shanghai Pudong New area People's Hospital, Shanghai, China
- Key Molecular Lab, Shanghai Pudong New area People's Hospital, Shanghai, China
| | - Xiaoxue Zhang
- Key Molecular Lab, Shanghai Pudong New area People's Hospital, Shanghai, China
| | - Dabin Ren
- Department of Neurosurgery, Shanghai Pudong New area People's Hospital, Shanghai, China
| | - Qingke Bai
- Neurology, Shanghai Pudong New area People's Hospital, Shanghai, China
| |
Collapse
|
6
|
Kurhaluk N. Tricarboxylic Acid Cycle Intermediates and Individual Ageing. Biomolecules 2024; 14:260. [PMID: 38540681 PMCID: PMC10968119 DOI: 10.3390/biom14030260] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 06/04/2025] Open
Abstract
Anti-ageing biology and medicine programmes are a focus of genetics, molecular biology, immunology, endocrinology, nutrition, and therapy. This paper discusses metabolic therapies aimed at prolonging longevity and/or health. Individual components of these effects are postulated to be related to the energy supply by tricarboxylic acid (TCA) cycle intermediates and free radical production processes. This article presents several theories of ageing and clinical descriptions of the top markers of ageing, which define ageing in different categories; additionally, their interactions with age-related changes and diseases related to α-ketoglutarate (AKG) and succinate SC formation and metabolism in pathological states are explained. This review describes convincingly the differences in the mitochondrial characteristics of energy metabolism in animals, with different levels (high and low) of physiological reactivity of functional systems related to the state of different regulatory systems providing oxygen-dependent processes. Much attention is given to the crucial role of AKG and SC in the energy metabolism in cells related to amino acid synthesis, epigenetic regulation, cell stemness, and differentiation, as well as metabolism associated with the development of pathological conditions and, in particular, cancer cells. Another goal was to address the issue of ageing in terms of individual characteristics related to physiological reactivity. This review also demonstrated the role of the Krebs cycle as a key component of cellular energy and ageing, which is closely associated with the development of various age-related pathologies, such as cancer, type 2 diabetes, and cardiovascular or neurodegenerative diseases where the mTOR pathway plays a key role. This article provides postulates of postischaemic phenomena in an ageing organism and demonstrates the dependence of accelerated ageing and age-related pathology on the levels of AKG and SC in studies on different species (roundworm Caenorhabditis elegans, Drosophila, mice, and humans used as models). The findings suggest that this approach may also be useful to show that Krebs cycle metabolites may be involved in age-related abnormalities of the mitochondrial metabolism and may thus induce epigenetic reprogramming that contributes to the senile phenotype and degenerative diseases. The metabolism of these compounds is particularly important when considering ageing mechanisms connected with different levels of initial physiological reactivity and able to initiate individual programmed ageing, depending on the intensity of oxygen consumption, metabolic peculiarities, and behavioural reactions.
Collapse
Affiliation(s)
- Natalia Kurhaluk
- Department of Animal Physiology, Institute of Biology, Pomeranian University in Słupsk, Arciszewski St. 22 B, PL 76-200 Słupsk, Poland
| |
Collapse
|
7
|
Sun JKL, Wong GCN, Chow KHM. Cross-talk between DNA damage response and the central carbon metabolic network underlies selective vulnerability of Purkinje neurons in ataxia-telangiectasia. J Neurochem 2023; 166:654-677. [PMID: 37319113 DOI: 10.1111/jnc.15881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023]
Abstract
Cerebellar ataxia is often the first and irreversible outcome in the disease of ataxia-telangiectasia (A-T), as a consequence of selective cerebellar Purkinje neuronal degeneration. A-T is an autosomal recessive disorder resulting from the loss-of-function mutations of the ataxia-telangiectasia-mutated ATM gene. Over years of research, it now becomes clear that functional ATM-a serine/threonine kinase protein product of the ATM gene-plays critical roles in regulating both cellular DNA damage response and central carbon metabolic network in multiple subcellular locations. The key question arises is how cerebellar Purkinje neurons become selectively vulnerable when all other cell types in the brain are suffering from the very same defects in ATM function. This review intended to comprehensively elaborate the unexpected linkages between these two seemingly independent cellular functions and the regulatory roles of ATM involved, their integrated impacts on both physical and functional properties, hence the introduction of selective vulnerability to Purkinje neurons in the disease will be addressed.
Collapse
Affiliation(s)
- Jacquelyne Ka-Li Sun
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong
| | - Genper Chi-Ngai Wong
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong
| | - Kim Hei-Man Chow
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong
- Nexus of Rare Neurodegenerative Diseases, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
8
|
Wang H, Liu B, Chen H, Xu P, Xue H, Yuan J. Dynamic changes of DNA methylation induced by benzo(a)pyrene in cancer. Genes Environ 2023; 45:21. [PMID: 37391844 DOI: 10.1186/s41021-023-00278-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/07/2023] [Indexed: 07/02/2023] Open
Abstract
Benzo(a)pyrene (BaP), the earliest and most significant carcinogen among polycyclic aromatic hydrocarbons (PAHs), has been found in foods, tobacco smoke, and automobiles exhaust, etc. Exposure to BaP induced DNA damage directly, or oxidative stress-related damage, resulting in cell apoptosis and carcinogenesis in human respiratory system, digestive system, reproductive system, etc. Moreover, BaP triggered genome-wide epigenetic alterations by methylation, which might cause disturbances in regulation of gene expression, and thereby induced cancer. It has been proved that BaP reduced genome-wide DNA methylation, and activated proto-oncogene by hypomethylation in the promoter region, but silenced tumor suppressor genes by promoter hypermethylation, resulting in cancer initiation and progression. Here we summarized the changes in DNA methylation in BaP exposure, and revealed the methylation of DNA plays a role in cancer development.
Collapse
Affiliation(s)
- Huizeng Wang
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Bingchun Liu
- Stem Cell Research Center, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Hong Chen
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Peixin Xu
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Huiting Xue
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010010, China.
| | - Jianlong Yuan
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China.
| |
Collapse
|
9
|
Liu H, Xie Y, Wang X, Abboud MI, Ma C, Ge W, Schofield CJ. Exploring links between 2-oxoglutarate-dependent oxygenases and Alzheimer's disease. Alzheimers Dement 2022; 18:2637-2668. [PMID: 35852137 PMCID: PMC10083964 DOI: 10.1002/alz.12733] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/12/2022] [Accepted: 06/10/2022] [Indexed: 01/31/2023]
Abstract
Hypoxia, that is, an inadequate oxygen supply, is linked to neurodegeneration and patients with cardiovascular disease are prone to Alzheimer's disease (AD). 2-Oxoglutarate and ferrous iron-dependent oxygenases (2OGDD) play a key role in the regulation of oxygen homeostasis by acting as hypoxia sensors. 2OGDD also have roles in collagen biosynthesis, lipid metabolism, nucleic acid repair, and the regulation of transcription and translation. Many biological processes in which the >60 human 2OGDD are involved are altered in AD patient brains, raising the question as to whether 2OGDD are involved in the transition from normal aging to AD. Here we give an overview of human 2OGDD and critically discuss their potential roles in AD, highlighting possible relationships with synapse dysfunction/loss. 2OGDD may regulate neuronal/glial differentiation through enzyme activity-dependent mechanisms and modulation of their activity has potential to protect against synapse loss. Work linking 2OGDD and AD is at an early stage, especially from a therapeutic perspective; we suggest integrated pathology and in vitro discovery research to explore their roles in AD is merited. We hope to help enable long-term research on the roles of 2OGDD and, more generally, oxygen/hypoxia in AD. We also suggest shorter term empirically guided clinical studies concerning the exploration of 2OGDD/oxygen modulators to help maintain synaptic viability are of interest for AD treatment.
Collapse
Affiliation(s)
- Haotian Liu
- State Key Laboratory of Medical Molecular Biology & Department of ImmunologyInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Yong Xie
- State Key Laboratory of Medical Molecular Biology & Department of ImmunologyInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
- National Clinical Research Center for OrthopedicsSports Medicine & RehabilitationDepartment of OrthopedicsGeneral Hospital of Chinese PLABeijingChina
| | - Xia Wang
- State Key Laboratory of Medical Molecular Biology & Department of ImmunologyInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Martine I. Abboud
- The Chemistry Research LaboratoryDepartment of Chemistry and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of OxfordOxfordUK
| | - Chao Ma
- Department of Human Anatomy, Histology and EmbryologyNeuroscience CenterNational Human Brain Bank for Development and FunctionInstitute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Wei Ge
- State Key Laboratory of Medical Molecular Biology & Department of ImmunologyInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Christopher J. Schofield
- The Chemistry Research LaboratoryDepartment of Chemistry and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of OxfordOxfordUK
| |
Collapse
|
10
|
Ascorbate content of clinical glioma tissues is related to tumour grade and to global levels of 5-hydroxymethyl cytosine. Sci Rep 2022; 12:14845. [PMID: 36050369 PMCID: PMC9436949 DOI: 10.1038/s41598-022-19032-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022] Open
Abstract
Gliomas are incurable brain cancers with poor prognosis, with epigenetic dysregulation being a distinctive feature. 5-hydroxymethylcytosine (5-hmC), an intermediate generated in the demethylation of 5-methylcytosine, is present at reduced levels in glioma tissue compared with normal brain, and that higher levels of 5-hmC are associated with improved patient survival. DNA demethylation is enzymatically driven by the ten–eleven translocation (TET) dioxygenases that require ascorbate as an essential cofactor. There is limited data on ascorbate in gliomas and the relationship between ascorbate and 5-hmC in gliomas has never been reported. Clinical glioma samples (11 low-grade, 26 high-grade) were analysed for ascorbate, global DNA methylation and hydroxymethylation, and methylation status of the O-6-methylguanine-DNA methyltransferase (MGMT) promoter. Low-grade gliomas contained significantly higher levels of ascorbate than high-grade gliomas (p = 0.026). Levels of 5-hmC were significantly higher in low-grade than high-grade glioma (p = 0.0013). There was a strong association between higher ascorbate and higher 5-hmC (p = 0.004). Gliomas with unmethylated and methylated MGMT promoters had similar ascorbate levels (p = 0.96). One mechanism by which epigenetic modifications could occur is through ascorbate-mediated optimisation of TET activity in gliomas. These findings open the door to clinical intervention trials in patients with glioma to provide both mechanistic information and potential avenues for adjuvant ascorbate therapy.
Collapse
|
11
|
Hanse EA, Kong M. A happy cell stays home: When metabolic stress creates epigenetic advantages in the tumor microenvironment. Front Oncol 2022; 12:962928. [PMID: 36091163 PMCID: PMC9459228 DOI: 10.3389/fonc.2022.962928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
A paradox of fast-proliferating tumor cells is that they deplete extracellular nutrients that often results in a nutrient poor microenvironment in vivo. Having a better understanding of the adaptation mechanisms cells exhibit in response to metabolic stress will open new therapeutic windows targeting the tumor’s extreme nutrient microenvironment. Glutamine is one of the most depleted amino acids in the tumor core and here, we provide insight into how important glutamine and its downstream by-product, α-ketoglutarate (αKG), are to communicating information about the nutrient environment. This communication is key in the cell’s ability to foster adaptation. We highlight the epigenetic changes brought on when αKG concentrations are altered in cancer and discuss how depriving cells of glutamine may lead to cancer cell de-differentiation and the ability to grow and thrive in foreign environments. When we starve cells, they adapt to survive. Those survival “skills” allow them to go out looking for other places to live and metastasize. We further examine current challenges to modelling the metabolic tumor microenvironment in the laboratory and discuss strategies that consider current findings to target the tumor’s poor nutrient microenvironment.
Collapse
|
12
|
Travaglini S, Gurnari C, Antonelli S, Silvestrini G, Noguera NI, Ottone T, Voso MT. The Anti-Leukemia Effect of Ascorbic Acid: From the Pro-Oxidant Potential to the Epigenetic Role in Acute Myeloid Leukemia. Front Cell Dev Biol 2022; 10:930205. [PMID: 35938170 PMCID: PMC9352950 DOI: 10.3389/fcell.2022.930205] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Data derived from high-throughput sequencing technologies have allowed a deeper understanding of the molecular landscape of Acute Myeloid Leukemia (AML), paving the way for the development of novel therapeutic options, with a higher efficacy and a lower toxicity than conventional chemotherapy. In the antileukemia drug development scenario, ascorbic acid, a natural compound also known as Vitamin C, has emerged for its potential anti-proliferative and pro-apoptotic activities on leukemic cells. However, the role of ascorbic acid (vitamin C) in the treatment of AML has been debated for decades. Mechanistic insight into its role in many biological processes and, especially, in epigenetic regulation has provided the rationale for the use of this agent as a novel anti-leukemia therapy in AML. Acting as a co-factor for 2-oxoglutarate-dependent dioxygenases (2-OGDDs), ascorbic acid is involved in the epigenetic regulations through the control of TET (ten-eleven translocation) enzymes, epigenetic master regulators with a critical role in aberrant hematopoiesis and leukemogenesis. In line with this discovery, great interest has been emerging for the clinical testing of this drug targeting leukemia epigenome. Besides its role in epigenetics, ascorbic acid is also a pivotal regulator of many physiological processes in human, particularly in the antioxidant cellular response, being able to scavenge reactive oxygen species (ROS) to prevent DNA damage and other effects involved in cancer transformation. Thus, for this wide spectrum of biological activities, ascorbic acid possesses some pharmacologic properties attractive for anti-leukemia therapy. The present review outlines the evidence and mechanism of ascorbic acid in leukemogenesis and its therapeutic potential in AML. With the growing evidence derived from the literature on situations in which the use of ascorbate may be beneficial in vitro and in vivo, we will finally discuss how these insights could be included into the rational design of future clinical trials.
Collapse
Affiliation(s)
- S. Travaglini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - C. Gurnari
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States
| | - S. Antonelli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - G. Silvestrini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - N. I. Noguera
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Neuro-Oncohematology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - T. Ottone
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Neuro-Oncohematology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - M. T. Voso
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Neuro-Oncohematology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
- *Correspondence: M. T. Voso,
| |
Collapse
|
13
|
Zheng P, Zhang X, Ren D, Zhang Y. RP11-552D4.1: a novel m6a-related LncRNA associated with immune status in glioblastoma. Aging (Albany NY) 2022; 14:7348-7363. [PMID: 35852867 PMCID: PMC9550243 DOI: 10.18632/aging.204177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 07/05/2022] [Indexed: 11/25/2022]
Abstract
Glioblastoma (GBM) is the most malignant form of brain cancer in the world. Nevertheless, the survival rate of patients with GBM is extremely low. N6-methyladenosine (m6A) and long noncoding RNAs (lncRNAs) conduct important biological functions in patients’ survival status and the immunotherapeutic response. Here, m6A-related lncRNAs were identified by a co-expression method. Univariate and multivariate Cox regression together with LASSO were applied to establish the risk model. Kaplan-Meier and ROC analysis were applied to evaluate the prediction power of this risk model. Finally, the related immune profiling and chemical sensitivity targets were also investigated. The risk model holding three m6A-related lncRNAs was confirmed as an independent predictor for the prognosis. Furthermore, we found the risk model based on m6A-related lncRNAs is associated with the immune status, immunosuppressive biomarkers, and chemo-sensitivity in GBM patients. The RP11-552D4.1 is found to facilitate neuronal proliferation. This risk model consisted of m6A-related lncRNAs may be available for the clinical interventions in GBM patients.
Collapse
Affiliation(s)
- Ping Zheng
- Department of Neurosurgery, Shanghai Pudong New Area People’s Hospital, Shanghai, China
- Key Molecular Lab, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Xiaoxue Zhang
- Key Molecular Lab, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Dabin Ren
- Department of Neurosurgery, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Yisong Zhang
- Department of Neurosurgery, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| |
Collapse
|
14
|
Burgess ER, Crake RLI, Phillips E, Morrin HR, Royds JA, Slatter TL, Wiggins GAR, Vissers MCM, Robinson BA, Dachs GU. Increased Ascorbate Content of Glioblastoma Is Associated With a Suppressed Hypoxic Response and Improved Patient Survival. Front Oncol 2022; 12:829524. [PMID: 35419292 PMCID: PMC8995498 DOI: 10.3389/fonc.2022.829524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 02/23/2022] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma multiforme is a challenging disease with limited treatment options and poor survival. Glioblastoma tumours are characterised by hypoxia that activates the hypoxia inducible factor (HIF) pathway and controls a myriad of genes that drive cancer progression. HIF transcription factors are regulated at the post-translation level via HIF-hydroxylases. These hydroxylases require oxygen and 2-oxoglutarate as substrates, and ferrous iron and ascorbate as cofactors. In this retrospective observational study, we aimed to determine whether ascorbate played a role in the hypoxic response of glioblastoma, and whether this affected patient outcome. We measured the ascorbate content and members of the HIF-pathway of clinical glioblastoma samples, and assessed their association with clinicopathological features and patient survival. In 37 samples (37 patients), median ascorbate content was 7.6 μg ascorbate/100 mg tissue, range 0.8 – 20.4 μg ascorbate/100 mg tissue. In tumours with above median ascorbate content, HIF-pathway activity as a whole was significantly suppressed (p = 0.005), and several members of the pathway showed decreased expression (carbonic anhydrase-9 and glucose transporter-1, both p < 0.01). Patients with either lower tumour HIF-pathway activity or higher tumour ascorbate content survived significantly longer than patients with higher HIF-pathway or lower ascorbate levels (p = 0.011, p = 0.043, respectively). Median survival for the low HIF-pathway score group was 362 days compared to 203 days for the high HIF-pathway score group, and median survival for the above median ascorbate group was 390 days, compared to the below median ascorbate group with 219 days. The apparent survival advantage associated with higher tumour ascorbate was more prominent for the first 8 months following surgery. These associations are promising, suggesting an important role for ascorbate-regulated HIF-pathway activity in glioblastoma that may impact on patient survival.
Collapse
Affiliation(s)
- Eleanor R Burgess
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Rebekah L I Crake
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand.,Metastasis Research Laboratory, GIGA-Cancer, University of Liège, Liege, Belgium
| | - Elisabeth Phillips
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Helen R Morrin
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand.,Cancer Society Tissue Bank, University of Otago Christchurch, Christchurch, New Zealand
| | - Janice A Royds
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Tania L Slatter
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - George A R Wiggins
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Margreet C M Vissers
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Bridget A Robinson
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand.,Canterbury Regional Cancer and Haematology Service, Canterbury District Health Board, and Department of Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | - Gabi U Dachs
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| |
Collapse
|
15
|
Albracht SP. Hypothesis: mutual dependency of ascorbate and calcidiol for optimal performance of the immune system. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
16
|
Ke Y, Su S, Duan C, Wang Y, Cao G, Fang Z, Tuo Y, Li W, Wang Z, Zhang S. Hsa_circ_0076931 suppresses malignant biological properties, down-regulates miR-6760-3p through direct binding, and up-regulates CCBE1 in glioma. Biosci Rep 2022; 42:BSR20211895. [PMID: 34931668 PMCID: PMC8738865 DOI: 10.1042/bsr20211895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 11/17/2022] Open
Abstract
The function of circular RNAs (circRNAs) in gliomas is as yet unknown. The present study explored role of hsa_circ_0076931 in glioma. circRNA expression profiles were identified via RNA-seq followed by qRT-PCR validation in three pairs of glioma and normal brain tissues (NBT). The function of hsa_circ_0076931 was investigated in vitro using cell lines as well as in vivo using a xenograft tumor. Hsa_circ_0076931 was up-regulated by overexpression and an mRNA profile compared with wild-type was identified by RNA-seq. The relationship between miR-6760-3p and hsa_circ_0076931 or CCBE1 was confirmed via luciferase reporter or AGO2-RIP assays. A total of 507 circRNAs were identified in glioma tissues that were differentially expressed compared with that in NBT, and the sequencing data were deposited in BioProject (ID: PRJNA746438). Hsa_circ_0007694 and hsa_circ_0008016 were memorably increased whereas hsa_circ_0076931 and hsa_circ_0076948 decreased in glioma compared with those in NBT. Additionally, hsa_circ_0076931 expression was negatively correlated with histological grade. Overexpression of hsa_circ_0076931 inhibited proliferation, migration, and invasion while promoting apoptosis of glioma cells. A total of 4383 and 537 aberrantly expressed genes were identified between the hsa_circ_0076931-overexpressed and control groups in H4 and U118-MG cells, respectively; the sequencing data were deposited in BioProject (ID: PRJNA746438). These differentially expressed genes were mainly enriched in cancer-related pathways. In addition, elevated hsa_circ_0076931 levels induced the expression of CCBE1 while suppressing miR-6760-3p expression. miR-6760-3p can bind to hsa_circ_0076931. The experimental evidence supports using hsa_circ_0076931 as a marker for glioma and to help prevent malignant progression. The mechanism might be relevant to miR-6760-3p and CCBE1.
Collapse
Affiliation(s)
- Yanbin Ke
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong, China
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Shixing Su
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong, China
| | - Chuanzhi Duan
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong, China
| | - Yezhong Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Guobin Cao
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Zelu Fang
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Yonghua Tuo
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Wei Li
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Zhaotao Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Shizhen Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| |
Collapse
|
17
|
Expression of 3-Methylcrotonyl-CoA Carboxylase in Brain Tumors and Capability to Catabolize Leucine by Human Neural Cancer Cells. Cancers (Basel) 2022; 14:cancers14030585. [PMID: 35158853 PMCID: PMC8833481 DOI: 10.3390/cancers14030585] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Leucine is an essential, ketogenic amino acid with proteinogenic, metabolic, and signaling roles. It is readily imported from the bloodstream into the brain parenchyma. Therefore, it could serve as a putative substrate that is complementing glucose for sustaining the metabolic needs of brain tumor cells. Here, we investigated the ability of cultured human cancer cells to metabolize leucine. Indeed, cancer cells dispose of leucine from their environment and enrich their media with the metabolite 2-oxoisocaproate. The enrichment of the culture media with a high level of leucine stimulated the production of 3-hydroxybutyrate. When 13C6-leucine was offered, it led to an increased appearance of the heavier citrate isotope with a molar mass greater by two units in the culture media. The expression of 3-methylcrotonyl-CoA carboxylase (MCC), an enzyme characteristic for the irreversible part of the leucine catabolic pathway, was detected in cultured cancer cells and human tumor samples by immunoprobing methods. Our results demonstrate that these cancer cells can catabolize leucine and furnish its carbon atoms into the tricarboxylic acid (TCA) cycle. Furthermore, the release of 3-hydroxybutyrate and citrate by cancer cells suggests their capability to exchange these metabolites with their milieu and the capability to participate in their metabolism. This indicates that leucine could be an additional substrate for cancer cell metabolism in the brain parenchyma. In this way, leucine could potentially contribute to the synthesis of metabolites such as lipids, which require the withdrawal of citrate from the TCA cycle.
Collapse
|