1
|
Schallmayer E, Isigkeit L, Elson L, Müller S, Knapp S, Marschner JA, Merk D. Chemogenomics for steroid hormone receptors (NR3). Commun Chem 2025; 8:29. [PMID: 39900826 PMCID: PMC11790914 DOI: 10.1038/s42004-025-01427-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/23/2025] [Indexed: 02/05/2025] Open
Abstract
The nine human NR3 nuclear receptors translate steroid hormone signals in transcriptomic responses and operate multiple highly important processes ranging from development over reproductive tissue function to inflammatory and metabolic homeostasis. Although several NR3 ligands such as glucocorticoids are invaluable drugs, this family is only partially explored, for example, in autoimmune diseases and neurodegeneration, but may hold therapeutic potential in new areas. Here we report a chemogenomics (CG) library to reveal elusive effects of NR3 receptor modulation in phenotypic settings. 34 highly annotated and chemically diverse ligands covering all NR3 receptors were selected considering complementary modes of action and activity, selectivity and lack of toxicity. Endoplasmic reticulum stress resolving effects of N3 CG subsets in proof-of-concept application validate suitability of the set to connect phenotypic outcomes with targets and to explore NR3 receptors from a translational perspective.
Collapse
Affiliation(s)
- Espen Schallmayer
- Institute of Pharmaceutical Chemistry, Goethe-Universität Frankfurt, Frankfurt, Germany
| | - Laura Isigkeit
- Institute of Pharmaceutical Chemistry, Goethe-Universität Frankfurt, Frankfurt, Germany
| | - Lewis Elson
- Institute of Pharmaceutical Chemistry, Goethe-Universität Frankfurt, Frankfurt, Germany
| | - Susanne Müller
- Institute of Pharmaceutical Chemistry, Goethe-Universität Frankfurt, Frankfurt, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe-Universität Frankfurt, Frankfurt, Germany
| | - Julian A Marschner
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe-Universität Frankfurt, Frankfurt, Germany.
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
2
|
Liu K, Zhang L, Xu X, Song M, Ding H, Xiao L, Wen J, Zhou C, Bai J, Liu Y. Lactational high weight loss impairs follicular development by causing mitochondrial dysfunction of ovarian cells in sows and mitigated by butyrate supplement. J Adv Res 2025:S2090-1232(25)00069-4. [PMID: 39892609 DOI: 10.1016/j.jare.2025.01.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025] Open
Abstract
INTRODUCTION In modern sows, lactational high weight loss (HWL), caused by the large litter size and inadequate feed intake, has a negative effect on follicular development after weaning, resulting in poor reproductive performance in the subsequent parity. However, the underlying mechanism remains unclear. OBJECTIVES This research aimed to explore the mechanism that sows HWL during lactation damages follicular development and attempt to improve the reproductive function by treating with butyrate. METHOD Four multiparous sister sows were chosen to build a HWL model for lactating sows through feed restriction during the final week of a 21-day lactation. Spatially transcriptomics (ST) and tissue immunofluorescent staining were then utilized for the antral follicles in the ovarian surface to search for differentially expressed genes and proteins among different cell types. Subsequently, the mouse assay, including immunofluorescent staining, transmission electron microscopy, hormone detection and western blot, were conducted to verify the findings in sows and investigate the effect of butyrate on the follicular development in HWL mice. RESULTS Based on the transcriptomic analysis, differentially expressed genes in granulosa cells, theca cells, and ovarian stromal cells were examined. The findings revealed that HWL disturbs the mitochondrial electron transport chain and steroidogenesis in all three cell types by downregulating the expression of NDUFB3, SDHB, CYCS, COX8A and CYP19A1, as well as upregulating the expression of STAR, CYP11A1 and CYP17A1. Furthermore, results from mouse assays demonstrated that HWL causes apoptosis and alters sex hormone secretion by impairing mitochondrial function and disordering the expression of steroidogenesis key enzymes in ovarian cells, while these effects were partially mitigated by butyrate treatment. CONCLUSION The mitochondrial dysfunction and abnormal steroidogenesis induced by HWL during lactation in ovarian cells harm the follicular development of weaning sows, which could be alleviated by butyrate treatment.
Collapse
Affiliation(s)
- Kexiong Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Luyao Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai 810008, China
| | - Xiaoling Xu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Mengyao Song
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Haiquan Ding
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Linli Xiao
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Junhui Wen
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Chunmei Zhou
- Beijing Feifan Biotechnology Co., Ltd., Beijing 100094, China
| | - Jiahua Bai
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Yan Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
3
|
Zhao X, Jia C, Ji S, Lu K, Yang P, Wang Y. Development and validation of a metabolic syndrome and its components to predict the efficacy of neoadjuvant chemotherapy in breast cancer: An observational, single-center, cohort study. Medicine (Baltimore) 2025; 104:e41221. [PMID: 39792756 PMCID: PMC11730647 DOI: 10.1097/md.0000000000041221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/19/2024] [Indexed: 01/12/2025] Open
Abstract
To assess whether metabolic syndrome can be used as a reference index to evaluate the efficacy of neoadjuvant chemotherapy treatment for breast cancer (BC). Seventy cases of female BC patients who received neoadjuvant chemotherapy treatment and surgical treatment at the Glandular Surgery Department of Hebei Provincial People's Hospital from January 2021 to December 2023 were retrospectively collected, and clinical data such as puncture pathology were recorded. The clinical data were analyzed by 1-way analysis using the χ2 test, and further multifactorial logistic regression analysis was performed for statistically significant differences. The independent risk factor metabolic syndrome (MetS) and its components were plotted in the receiver operating characteristic curve (ROC) curve and baseline graph by R Studio 4.41 software, and the meaningful components were plotted in the column graph by lasso regression analysis for internal validation, and the quality of the model was evaluated by the ROC curve and calibration graph, and then the clinical decision curve analysis was used to evaluate the clinical effectiveness of the model. The neoadjuvant efficacy was statistically associated with whether the patient was first diagnosed between 45 and 55 years of age, estrogen receptors (ER), progesterone receptors (PR) expression status, Her-2 expression status, and whether the patient had MetS, as determined by univariate analysis through χ2 (P < .05). On multifactorial binary logistic regression analysis, ER, PR status, Her-2 status, and the presence of MetS were statistically significant (P < .05) for the efficacy of neoadjuvant chemotherapy. Patients with MetS were less likely to achieve complete pathological remission than those without MetS. MetS and its components were analyzed by lasso regression analysis with RStudio 4.41 software to conclude that hypertension, hyperglycemia, and high-density lipoprotein were all correlates affecting the pathologic complete response (pCR), and a column-line graph was plotted, with a C-index of 0.76, indicating a good predictive efficacy. ER, PR status, Her-2 status and the presence of MetS are independent predictors for assessing the efficacy of neoadjuvant chemotherapy in BC, and MetS can be used as a predictor of the efficacy of neoadjuvant chemotherapy. Clinical references are provided.
Collapse
Affiliation(s)
- Xingdong Zhao
- Department of Thyroid and Breast Surgery, Hebei General Hospital Affiliated to North China University of Science and Technology, Shijiazhuang, Hebei Province, China
| | - Chengfang Jia
- Hebei General Hospital Affiliated to North China University of Science and Technology, Shijiazhuang, Hebei Province, China
| | - Shuaichong Ji
- Department of Thyroid and Breast Surgery, Hebei General Hospital Affiliated to North China University of Science and Technology, Shijiazhuang, Hebei Province, China
| | - Kewen Lu
- Department of Thyroid and Breast Surgery, Hebei General Hospital Affiliated to Hebei Medicine University, Shijiazhuang, Hebei Province, China
| | - Pei Yang
- Department of Thyroid and Breast Surgery, Hebei General Hospital Affiliated to Hebei Medicine University, Shijiazhuang, Hebei Province, China
| | - Yuexin Wang
- Department of Thyroid and Breast Surgery, Hebei General Hospital, Shijiazhuang, Hebei Province, China
| |
Collapse
|
4
|
McSwiggen DT, Liu H, Tan R, Agramunt Puig S, Akella LB, Berman R, Bretan M, Chen H, Darzacq X, Ford K, Godbey R, Gonzalez E, Hanuka A, Heckert A, Ho JJ, Johnson SL, Kelso R, Klammer A, Krishnamurthy R, Li J, Lin K, Margolin B, McNamara P, Meyer L, Pierce SE, Sule A, Stashko C, Tang Y, Anderson DJ, Beck HP. A high-throughput platform for single-molecule tracking identifies drug interaction and cellular mechanisms. eLife 2025; 12:RP93183. [PMID: 39786807 PMCID: PMC11717362 DOI: 10.7554/elife.93183] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
The regulation of cell physiology depends largely upon interactions of functionally distinct proteins and cellular components. These interactions may be transient or long-lived, but often affect protein motion. Measurement of protein dynamics within a cellular environment, particularly while perturbing protein function with small molecules, may enable dissection of key interactions and facilitate drug discovery; however, current approaches are limited by throughput with respect to data acquisition and analysis. As a result, studies using super-resolution imaging are typically drawing conclusions from tens of cells and a few experimental conditions tested. We addressed these limitations by developing a high-throughput single-molecule tracking (htSMT) platform for pharmacologic dissection of protein dynamics in living cells at an unprecedented scale (capable of imaging >106 cells/day and screening >104 compounds). We applied htSMT to measure the cellular dynamics of fluorescently tagged estrogen receptor (ER) and screened a diverse library to identify small molecules that perturbed ER function in real time. With this one experimental modality, we determined the potency, pathway selectivity, target engagement, and mechanism of action for identified hits. Kinetic htSMT experiments were capable of distinguishing between on-target and on-pathway modulators of ER signaling. Integrated pathway analysis recapitulated the network of known ER interaction partners and suggested potentially novel, kinase-mediated regulatory mechanisms. The sensitivity of htSMT revealed a new correlation between ER dynamics and the ability of ER antagonists to suppress cancer cell growth. Therefore, measuring protein motion at scale is a powerful method to investigate dynamic interactions among proteins and may facilitate the identification and characterization of novel therapeutics.
Collapse
Affiliation(s)
| | - Helen Liu
- Eikon Therapeutics IncHaywardUnited States
| | | | | | | | | | | | | | - Xavier Darzacq
- Eikon Therapeutics IncHaywardUnited States
- University of California, BerkeleyBerkeleyUnited States
| | | | | | | | - Adi Hanuka
- Eikon Therapeutics IncHaywardUnited States
| | | | | | | | - Reed Kelso
- Eikon Therapeutics IncHaywardUnited States
| | | | | | - Jifu Li
- Eikon Therapeutics IncHaywardUnited States
| | - Kevin Lin
- Eikon Therapeutics IncHaywardUnited States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Teklemariam AB, Muche ZT, Agidew MM, Mulu AT, Zewde EA, Baye ND, Adugna DG, Maru L, Ayele TM. Receptor tyrosine kinases and steroid hormone receptors in breast cancer: Review of recent evidences. Metabol Open 2024; 24:100324. [PMID: 39493231 PMCID: PMC11530601 DOI: 10.1016/j.metop.2024.100324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 11/05/2024] Open
Abstract
Breast cancer development and progression are driven by intricate networks involving receptor tyrosine kinases (RTKs) and steroid hormone receptors specifically estrogen receptor (ER) and progesterone receptor (PR). This review examined roles of each receptor under normal physiology and in breast cancer, and explored their multifaceted interactions via signaling pathways, focusing on their contributions to breast cancer progression. Since defining the mechanism by which these two-receptor mediated signaling pathways cooperate is essential for understanding breast cancer progression, we discussed the mechanisms of cross-talk between RTKs and ER and PR and their potential therapeutic implications as well. The crosstalk between RTKs and steroid hormone receptors (ER and PR) in breast cancer can influence the disease's progression and treatment outcomes. Therefore, understanding the functions of the aforementioned receptors and their interactions is crucial for developing effective therapies.
Collapse
Affiliation(s)
| | - Zelalem Tilahun Muche
- Department of Medical Physiology, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Melaku Mekonnen Agidew
- Department of Medical Biochemistry, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Anemut Tilahun Mulu
- Department of Medical Biochemistry, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Edgeit Abebe Zewde
- Department of Medical Physiology, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Nega Dagnew Baye
- Department of Human Anatomy, School of Medicine, College of Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Dagnew Getnet Adugna
- Department of Human Anatomy, School of Medicine, College of Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Lemlemu Maru
- Department of Medical Physiology, School of Medicine, College of Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Teklie Mengie Ayele
- Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| |
Collapse
|
6
|
Sarsenova M, Lawarde A, Pathare ADS, Saare M, Modhukur V, Soplepmann P, Terasmaa A, Käämbre T, Gemzell-Danielsson K, Lalitkumar PGL, Salumets A, Peters M. Endometriotic lesions exhibit distinct metabolic signature compared to paired eutopic endometrium at the single-cell level. Commun Biol 2024; 7:1026. [PMID: 39169201 PMCID: PMC11339455 DOI: 10.1038/s42003-024-06713-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024] Open
Abstract
Current therapeutics of endometriosis focus on hormonal disruption of endometriotic lesions (ectopic endometrium, EcE). Recent findings show higher glycolysis utilization in EcE, suggesting non-hormonal strategy for disease treatment that addresses cellular metabolism. Identifying metabolically altered cell types in EcE is important for targeted metabolic drug therapy without affecting eutopic endometrium (EuE). Here, using single-cell RNA-sequencing, we examine twelve metabolic pathways in paired samples of EuE and EcE from women with confirmed endometriosis. We detect nine major cell types in both EuE and EcE. Metabolic pathways are most differentially regulated in perivascular, stromal, and endothelial cells, with the highest changes in AMPK signaling, HIF-1 signaling, glutathione metabolism, oxidative phosphorylation, and glycolysis. We identify transcriptomic co-activation of glycolytic and oxidative metabolism in perivascular and stromal cells of EcE, indicating a critical role of metabolic reprogramming in maintaining endometriotic lesion growth. Perivascular cells, involved in endometrial stroma repair and angiogenesis, may be potential targets for non-hormonal treatment of endometriosis.
Collapse
Affiliation(s)
- Meruert Sarsenova
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Division of Neonatology, Obstetrics and Gynecology, and Reproductive Health, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- WHO Collaborating Centre, Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
- Competence Centre on Health Technologies, Tartu, Estonia
| | - Ankita Lawarde
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Competence Centre on Health Technologies, Tartu, Estonia
| | - Amruta D S Pathare
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Competence Centre on Health Technologies, Tartu, Estonia
| | - Merli Saare
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Competence Centre on Health Technologies, Tartu, Estonia
| | - Vijayachitra Modhukur
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Competence Centre on Health Technologies, Tartu, Estonia
| | | | - Anton Terasmaa
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Tuuli Käämbre
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Kristina Gemzell-Danielsson
- Division of Neonatology, Obstetrics and Gynecology, and Reproductive Health, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- WHO Collaborating Centre, Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Parameswaran Grace Luther Lalitkumar
- Division of Neonatology, Obstetrics and Gynecology, and Reproductive Health, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- WHO Collaborating Centre, Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Andres Salumets
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.
- Competence Centre on Health Technologies, Tartu, Estonia.
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden.
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden.
| | - Maire Peters
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Competence Centre on Health Technologies, Tartu, Estonia
| |
Collapse
|
7
|
Toso A, Garoche C, Balaguer P. Human and fish differences in steroid receptors activation: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174889. [PMID: 39047839 DOI: 10.1016/j.scitotenv.2024.174889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/05/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Steroid receptors (SRs) are transcription factors activated by steroid hormones (SHs) that belong to the nuclear receptors (NRs) superfamily. Several studies have shown that SRs are targets of endocrine disrupting chemicals (EDCs), widespread substances in the environment capable of interfering with the endogenous hormonal pathways and causing adverse health effects in living organisms and/or their progeny. Cell lines with SRs reporter gene are currently used for in vitro screening of large quantities of chemicals with suspected endocrine-disrupting activities. However, most of these cell lines express human SRs and therefore the toxicological data obtained are also extrapolated to non-mammalian species. In parallel, in vivo tests have recently been developed on fish species whose data are also extrapolated to mammalian species. As some species-specific differences in SRs activation by natural and synthetic chemicals have been recently reported, the aim of this review is to summarize those between human and fish SRs, as representatives of mammalian and non-mammalian toxicology, respectively. Overall, this literature study aims to improve inter-species extrapolation of toxicological data on EDCs and to understand which reporter gene cell lines expressing human SRs are relevant for the assessment of effects in fish and whether in vivo tests on fish can be properly used in the assessment of adverse effects on human health.
Collapse
Affiliation(s)
- Anna Toso
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université Montpellier, Institut régional du Cancer de Montpellier (ICM), 34090 Montpellier, France; Department Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, 8600 Dübendorf, Switzerland.
| | - Clémentine Garoche
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université Montpellier, Institut régional du Cancer de Montpellier (ICM), 34090 Montpellier, France
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université Montpellier, Institut régional du Cancer de Montpellier (ICM), 34090 Montpellier, France
| |
Collapse
|
8
|
Xu S, Xie B, Liu H, Liu J, Wang M, Zhong L, Zhou J, Wen Z, Zhang L, Chen X, Zhang S. 5 mC modification of steroid hormone biosynthesis-related genes orchestrates feminization of channel catfish induced by high-temperature. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124310. [PMID: 38838810 DOI: 10.1016/j.envpol.2024.124310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024]
Abstract
To elucidate the mechanism behind channel catfish feminization induced by high temperature, gonad samples were collected from XY pseudo-females and wild-type females and subjected to high-throughput sequencing for Whole-Genome-Bisulfite-Seq (WGBS) and transcriptome sequencing (RNA-Seq). The analysis revealed 50 differentially methylated genes between wild-type females and XY pseudo-females, identified through the analysis of KEGG pathways and GO enrichment in the promoter of the genome and differentially methylated regions (DMRs). Among these genes, multiple differential methylation sites observed within the srd5a2 gene. Repeatability tests confirmed 7 differential methylation sites in the srd5a2 gene in XY pseudo-females compared to normal males, with 1 specific differential methylation site (16608174) distinguishing XY pseudo-females from normal females. Interestingly, the expression of these genes in the transcriptome showed no difference between wild-type females and XY pseudo-females. Our study concluded that methylation of the srd5a2 gene sequence leads to decreased expression, which inhibits testosterone synthesis while promoting the synthesis of 17β-estradiol from testosterone. This underscores the significance of the srd5a2 gene in the sexual differentiation of channel catfish, as indicated by the ipu00140 KEGG pathway analysis.
Collapse
Affiliation(s)
- Siqi Xu
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210027, China; Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Fisheries, Southwest University, Chongqing 402460, China
| | - Bingjie Xie
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210027, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Hongyan Liu
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210027, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Ju Liu
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210027, China
| | - Minghua Wang
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210027, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Liqiang Zhong
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210027, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Jian Zhou
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611731, China
| | - Zhengyong Wen
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641100, China
| | - Lu Zhang
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611731, China
| | - Xiaohui Chen
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210027, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China; College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Shiyong Zhang
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210027, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China; College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
9
|
Shirani N, Mahdi‐Esferizi R, Eshraghi Samani R, Tahmasebian S, Yaghoobi H. In silico identification and in vitro evaluation of MRPS30-DT lncRNA and MRPS30 gene expression in breast cancer. Cancer Rep (Hoboken) 2024; 7:e2114. [PMID: 38886335 PMCID: PMC11182701 DOI: 10.1002/cnr2.2114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/20/2024] [Accepted: 05/07/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND It has been reported that long non-coding RNAs (lncRNAs) can play important roles in a variety of biological processes and cancer regulatory networks, including breast cancer. AIMS This study aimed to identify a novel upregulated lncRNA in breast cancer and its associated gene using bioinformatics analysis, and then evaluate their potential roles in breast cancer. METHODS AND RESULTS Extensive in silico studies were performed using various bioinformatics databases and tools to identify a potential upregulated breast cancer-associated lncRNA and its co-expressed gene, and to predict their potential roles, functions, and interactions. The expression level of MRPS30-DT lncRNA and MRPS30 was assessed in both BC tissues and cell lines using qRT-PCR technology. MRPS30-DT lncRNA and MRPS30 were selected as target genes using bioinformatics analysis. We found that MRPS30-DT and MRPS30 were significantly overexpressed in BC tissues compared with normal tissues. Also, MRPS30 showed upregulation in all three BC cell lines compared with HDF. On the other hand, MRPS30-DT significantly increased in MDA-MB-231 compared with HDF. While the expression of MRPS30-DT was significantly dropped in the resistance cell line MCF/MX compared to HDF and MCF7. Moreover, bioinformatics analysis suggested that MRPS30-DT and MRPS30 may play a potential role in BC through their involvement in some cancer signaling pathways and processes, as well as through their interaction with TFs, genes, miRNAs, and proteins related to carcinogenesis. CONCLUSIONS Overall, our findings showed the dysregulation of MRPS30-DT lncRNA and MRPS30 may provide clues for exploring new therapeutic targets or molecular biomarkers in BC.
Collapse
Affiliation(s)
- Nooshafarin Shirani
- Clinical Biochemistry Research Center, Basic Health Sciences InstituteShahrekord University of Medical SciencesShahrekordIran
| | - Roohallah Mahdi‐Esferizi
- Clinical Biochemistry Research Center, Basic Health Sciences InstituteShahrekord University of Medical SciencesShahrekordIran
- Department of Medical BiotechnologySchool of Advanced Technologies, Shahrekord University of Medical SciencesShahrekordIran
| | - Reza Eshraghi Samani
- Department of General SurgerySchool of Medicine, Isfahan University of Medical SciencesIsfahanIran
| | - Shahram Tahmasebian
- Department of Medical BiotechnologySchool of Advanced Technologies, Shahrekord University of Medical SciencesShahrekordIran
| | - Hajar Yaghoobi
- Clinical Biochemistry Research Center, Basic Health Sciences InstituteShahrekord University of Medical SciencesShahrekordIran
| |
Collapse
|
10
|
Rong J, Xie X, Niu Y, Su Z. Correlation between the RNA Expression and the DNA Methylation of Estrogen Receptor Genes in Normal and Malignant Human Tissues. Curr Issues Mol Biol 2024; 46:3610-3625. [PMID: 38666956 PMCID: PMC11049367 DOI: 10.3390/cimb46040226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Estrogen plays a multifaceted function in humans via interacting with the estrogen receptors ERα, ERβ, and G protein-coupled estrogen receptor 1 (GPER1). Previous research has predominantly concentrated on elucidating the signaling route of estrogen. However, the comprehensive understanding of the expression profile and control of these estrogen receptors in various human tissues is not well known. In the present study, the RNA levels of estrogen receptors in various normal and malignant human tissues were retrieved from the human protein atlas, the cancer genome atlas (TCGA), and the genotype-tissue expression (GTEx) databases for analyzing the expression profile of estrogen receptors through gene expression profiling interactive analysis (GEPIA). The status of DNA methylation of estrogen receptor genes from TCGA were analyzed through the software Wanderer and cBioPortal. The MethSurv tool was utilized to estimate the relevance between specific cytosine-guanine (CG) methylation and tumor survival. The expression profile analysis revealed that ERα, ERβ, and GPER1 have unique expression patterns in diverse tissues and malignancies. The interesting results were the higher expression of ERβ RNA in the male testis than in females and the positive association between the RNA level of ERα and the androgen receptor in different human normal tissues. Especially, the significant changes in GPER1 expression in multiple malignancies showed a consistent decrease with no exception, which indicates the role of GPER1 in common tumor inhibition. The finding on the expression profile provides clues for exploring novel potential physiological and pathophysiological functions of estrogen. The DNA methylation analysis manifested that the expression of GPER1 and ERα showed a substantial correlation with the methylation of specific CG sites in the cis-regulating region of the gene. However, no such association was observed for ERβ. When comparing tumor tissues to normal tissues, the DNA methylation of certain CG sites of estrogen receptors showed a correlation with tumor survival but did not always correlate with the expression of that gene or with the expression of DNA methyltransferases. We proposed that the variation in DNA methylation at different CG sites in estrogen receptor genes had other functions beyond its regulatory role in its gene expression, and this might be associated with the progression and therapy efficiency of the tumor based on the modulation of the chromatin configuration.
Collapse
Affiliation(s)
- Ju Rong
- The First Clinical Institute, Shantou University Medical College, Shantou 515041, China
| | - Xiaojun Xie
- Department of Histology and Embryology, Shantou University Medical College, Shantou 515041, China
| | - Yongdong Niu
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Zhongjing Su
- Department of Histology and Embryology, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
11
|
Zafar MN, Pitt WG, Husseini GA. Encapsulation and release of calcein from herceptin-conjugated eLiposomes. Heliyon 2024; 10:e27882. [PMID: 38524567 PMCID: PMC10958368 DOI: 10.1016/j.heliyon.2024.e27882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
Achieving an optimal therapeutic level is crucial in effectively eradicating cancer cells during treatment. However, conventional chemotherapy-associated systemic administration of anticancer agents leads to many side effects. To achieve the desired control over the target site, active targeting of HER2-positive breast cancer cells can be achieved by conjugating liposomal vesicles with Human Epidermal growth factor Receptor 2 (HER2) and inducing release of the encapsulated drug using ultrasound. To further enhance the delivery efficiency, nanoemulsion droplets exhibiting responsiveness to low-frequency ultrasound are encapsulated within these lipid vesicles. In this study, we prepared four different liposomal formulations, namely pegylated liposomes, emulsion liposomes (eLiposomes), HER-conjugated liposomes, and HER-conjugated eLiposomes, each loaded with calcein and subjected to a thorough characterization process. Their sizes, phospholipid concentration, and amount of antibody conjugation were compared and analyzed. Cryogenic transmission electron microscopy was used to confirm the encapsulation of nanoemulsion droplets within the liposomes. The drug-releasing performance of Herceptin-conjugated eLiposomes was found to surpass that of other liposomal formulations with a notably higher calcein release and established it as a highly effective nanocarrier. The study showcases the efficacy of calcein-loaded and Herceptin-conjugated eLiposomes, which demonstrate rapid and efficient drug release among other liposomal formulations when subjected to ultrasound. This discovery paves the way for a more targeted, efficient, and humane approach to cancer therapy.
Collapse
Affiliation(s)
- Mah Noor Zafar
- Biomedical Engineering Program, College of Engineering, American University of Sharjah, Sharjah, P.O. Box. 26666, United Arab Emirates
| | - William G. Pitt
- Department of Chemical Engineering, Brigham Young University, Provo, UT, 84602, USA
| | - Ghaleb A. Husseini
- Materials Science and Engineering Ph.D. Program, College of Arts and Sciences, American University of Sharjah, Sharjah, P.O. Box. 26666, United Arab Emirates
- Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| |
Collapse
|
12
|
Wei L, Xin Y, Pu M, Zhang Y. Patient-specific analysis of co-expression to measure biological network rewiring in individuals. Life Sci Alliance 2024; 7:e202302253. [PMID: 37977656 PMCID: PMC10656351 DOI: 10.26508/lsa.202302253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
To effectively understand the underlying mechanisms of disease and inform the development of personalized therapies, it is critical to harness the power of differential co-expression (DCE) network analysis. Despite the promise of DCE network analysis in precision medicine, current approaches have a major limitation: they measure an average differential network across multiple samples, which means the specific etiology of individual patients is often overlooked. To address this, we present Cosinet, a DCE-based single-sample network rewiring degree quantification tool. By analyzing two breast cancer datasets, we demonstrate that Cosinet can identify important differences in gene co-expression patterns between individual patients and generate scores for each individual that are significantly associated with overall survival, recurrence-free interval, and other clinical outcomes, even after adjusting for risk factors such as age, tumor size, HER2 status, and PAM50 subtypes. Cosinet represents a remarkable development toward unlocking the potential of DCE analysis in the context of precision medicine.
Collapse
Affiliation(s)
- Lanying Wei
- Beijing StoneWise Technology Co Ltd, Danling SOHO, Beijing, China
| | - Yucui Xin
- Beijing StoneWise Technology Co Ltd, Danling SOHO, Beijing, China
| | - Mengchen Pu
- Beijing StoneWise Technology Co Ltd, Danling SOHO, Beijing, China
| | - Yingsheng Zhang
- Beijing StoneWise Technology Co Ltd, Danling SOHO, Beijing, China
| |
Collapse
|
13
|
Irani S, Tan W, Li Q, Toy W, Jones C, Gadiya M, Marra A, Katzenellenbogen JA, Carlson KE, Katzenellenbogen BS, Karimi M, Segu Rajappachetty R, Del Priore IS, Reis-Filho JS, Shen Y, Chandarlapaty S. Somatic estrogen receptor α mutations that induce dimerization promote receptor activity and breast cancer proliferation. J Clin Invest 2024; 134:e163242. [PMID: 37883178 PMCID: PMC10760953 DOI: 10.1172/jci163242] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/23/2023] [Indexed: 10/27/2023] Open
Abstract
Physiologic activation of estrogen receptor α (ERα) is mediated by estradiol (E2) binding in the ligand-binding pocket of the receptor, repositioning helix 12 (H12) to facilitate binding of coactivator proteins in the unoccupied coactivator binding groove. In breast cancer, activation of ERα is often observed through point mutations that lead to the same H12 repositioning in the absence of E2. Through expanded genetic sequencing of breast cancer patients, we identified a collection of mutations located far from H12 but nonetheless capable of promoting E2-independent transcription and breast cancer cell growth. Using machine learning and computational structure analyses, this set of mutants was inferred to act distinctly from the H12-repositioning mutants and instead was associated with conformational changes across the ERα dimer interface. Through both in vitro and in-cell assays of full-length ERα protein and isolated ligand-binding domain, we found that these mutants promoted ERα dimerization, stability, and nuclear localization. Point mutations that selectively disrupted dimerization abrogated E2-independent transcriptional activity of these dimer-promoting mutants. The results reveal a distinct mechanism for activation of ERα function through enforced receptor dimerization and suggest dimer disruption as a potential therapeutic strategy to treat ER-dependent cancers.
Collapse
Affiliation(s)
- Seema Irani
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Wuwei Tan
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA
| | - Qing Li
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Weiyi Toy
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Catherine Jones
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Mayur Gadiya
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Antonio Marra
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - John A. Katzenellenbogen
- Department of Chemistry and Molecular and Integrative Physiology, and the Cancer Center, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Kathryn E. Carlson
- Department of Chemistry and Molecular and Integrative Physiology, and the Cancer Center, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Benita S. Katzenellenbogen
- Department of Chemistry and Molecular and Integrative Physiology, and the Cancer Center, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Mostafa Karimi
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA
| | - Ramya Segu Rajappachetty
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Isabella S. Del Priore
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jorge S. Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Yang Shen
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA
- Department of Computer Science and Engineering and
- Institute of Biosciences and Technology and Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, Texas, USA
| | - Sarat Chandarlapaty
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
14
|
Majeed J, Sabbagh MN, Kang MH, Lawrence JJ, Pruitt K, Bacus S, Reyna E, Brown M, Decourt B. Cancer drugs with high repositioning potential for Alzheimer's disease. Expert Opin Emerg Drugs 2023; 28:311-332. [PMID: 38100555 PMCID: PMC10877737 DOI: 10.1080/14728214.2023.2296079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/13/2023] [Indexed: 12/17/2023]
Abstract
INTRODUCTION Despite the recent full FDA approval of lecanemab, there is currently no disease modifying therapy (DMT) that can efficiently slow down the progression of Alzheimer's disease (AD) in the general population. This statement emphasizes the need to identify novel DMTs in the shortest time possible to prevent a global epidemic of AD cases as the world population experiences an increase in lifespan. AREAS COVERED Here, we review several classes of anti-cancer drugs that have been or are being investigated in Phase II/III clinical trials for AD, including immunomodulatory drugs, RXR agonists, sex hormone therapies, tyrosine kinase inhibitors, and monoclonal antibodies. EXPERT OPINION Given the overall course of brain pathologies during the progression of AD, we express a great enthusiasm for the repositioning of anti-cancer drugs as possible AD DMTs. We anticipate an increasing number of combinatorial therapy strategies to tackle AD symptoms and their underlying pathologies. However, we strongly encourage improvements in clinical trial study designs to better assess target engagement and possible efficacy over sufficient periods of drug exposure.
Collapse
Affiliation(s)
- Jad Majeed
- University of Arizona Honors College, Tucson, Arizona, USA
| | - Marwan N. Sabbagh
- Alzheimer’s and Memory Disorders Division, Department of Neurology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Min H. Kang
- Department of Pediatrics, Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - J. Josh Lawrence
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Kevin Pruitt
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | - Ellie Reyna
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Maddy Brown
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Boris Decourt
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
- Roseman University of Health Sciences, Las Vegas, Nevada, USA
| |
Collapse
|
15
|
Panagiotopoulos AA, Konstantinou E, Pirintsos SA, Castanas E, Kampa M. Mining the ZINC database of natural products for specific, testosterone-like, OXER1 antagonists. Steroids 2023; 199:109309. [PMID: 37696380 DOI: 10.1016/j.steroids.2023.109309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
OXER1, the receptor for the oxidized arachidonic acid metabolite 5-oxo-ETE has been reported to play a significant role in inflammatory responses, being responsible for leucocyte chemotactic responses. Recently, we have identified OXER1 (GPR170) as a membrane receptor for androgens in prostate and breast cancer cells. Testosterone action via OXER1 induces specific Ca2+ release from intracellular organelles, modifies polymerized actin distribution induces apoptosis and decreases cancer cell migration. These actions are antagonized by 5-oxo-ETE. In addition, 5-oxo-ETE through a Gαi protein decreases cAMP, an action antagonized by testosterone. In this work, we mined the ZINC15 database, using QSAR, for natural compounds able to signal through Gαi and Gβγ simultaneously, mimicking testosterone actions, as well as for specific Gβγ interactors, inhibiting 5-oxo-ETE tumor promoting actions. We were able to identify four druggable Gαβγ and seven Gβγ specific OXER1 interactors. We further confirmed by bio-informatic methods their binding to the 5-oxo-ETE/testosterone binding groove of the receptor, their ADME properties and their possible interaction with other receptor and/or enzyme targets. Two compounds, ZINC04017374 (Naphthofluorescein) and ZINC08589130 (Puertogaline A) were purchased, tested in vitro and confirmed their OXER1 Gβγ and Gαβγ activity, respectively. The methodology followed is useful for a better understanding of the mechanism by which OXER1 mediates its actions, it has the potential to provide structural insights, in order to design small molecular specific interactors and ultimately design new anti-inflammatory and anti-cancer agents. Finally, the methodology may also be useful for identifying specific agonists/antagonists of other GPCRs.
Collapse
Affiliation(s)
| | - Evangelia Konstantinou
- Laboratory of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece
| | - Stergios A Pirintsos
- Department of Biology, School of Science and Technology, University of Crete, Heraklion, Greece; Botanical Garden, University of Crete, Rethymnon, Greece
| | - Elias Castanas
- Laboratory of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece.
| | - Marilena Kampa
- Laboratory of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece.
| |
Collapse
|
16
|
Chuang KT, Chiou SS, Hsu SH. Recent Advances in Transcription Factors Biomarkers and Targeted Therapies Focusing on Epithelial-Mesenchymal Transition. Cancers (Basel) 2023; 15:3338. [PMID: 37444447 DOI: 10.3390/cancers15133338] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Transcription factors involve many proteins in the process of transactivating or transcribing (none-) encoded DNA to initiate and regulate downstream signals, such as RNA polymerase. Their unique characteristic is that they possess specific domains that bind to specific DNA element sequences called enhancer or promoter sequences. Epithelial-mesenchymal transition (EMT) is involved in cancer progression. Many dysregulated transcription factors-such as Myc, SNAIs, Twists, and ZEBs-are key drivers of tumor metastasis through EMT regulation. This review summarizes currently available evidence related to the oncogenic role of classified transcription factors in EMT editing and epigenetic regulation, clarifying the roles of the classified conserved transcription factor family involved in the EMT and how these factors could be used as therapeutic targets in future investigations.
Collapse
Affiliation(s)
- Kai-Ting Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shyh-Shin Chiou
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center of Applied Genomics, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shih-Hsien Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center of Applied Genomics, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
17
|
Tamburello M, Abate A, Rossini E, Basnet RM, Zizioli D, Cosentini D, Hantel C, Laganà M, Tiberio GAM, Grisanti S, Memo M, Berruti A, Sigala S. Preclinical Evidence of Progesterone as a New Pharmacological Strategy in Human Adrenocortical Carcinoma Cell Lines. Int J Mol Sci 2023; 24:6829. [PMID: 37047801 PMCID: PMC10095539 DOI: 10.3390/ijms24076829] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Adrenocortical cancer (ACC) is a rare malignancy with a dismal prognosis. The treatment includes mitotane and EDP chemotherapy (etoposide, doxorubicin, and cisplatin). However, new therapeutic approaches for advanced ACC are needed, particularly targeting the metastatic process. Here, we deepen the role of progesterone as a new potential drug for ACC, in line with its antitumoral effect in other cancers. METHODS NCI-H295R, MUC-1, and TVBF-7 cell lines were used and xenografted in zebrafish embryos. Migration and invasion were studied using transwell assays, and MMP2 activity was studied using zymography. Apoptosis and cell cycle were analyzed by flow cytometry. RESULTS Progesterone significantly reduced xenograft tumor area and metastases formation in embryos injected with metastatic lines, MUC-1 and TVBF-7. These results were confirmed in vitro, where the reduction of invasion was mediated, at least in part, by the decrease in MMP2 levels. Progesterone exerted a long-lasting effect in metastatic cells. Progesterone caused apoptosis in NCI-H295R and MUC-1, inducing changes in the cell-cycle distribution, while autophagy was predominantly activated in TVBF-7 cells. CONCLUSION Our results give support to the role of progesterone in ACC. The involvement of its analog (megestrol acetate) in reducing ACC progression in ACC patients undergoing EDP-M therapy is now under investigation in the PESETA phase II clinical study.
Collapse
Affiliation(s)
- Mariangela Tamburello
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Andrea Abate
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Elisa Rossini
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Ram Manohar Basnet
- Section of Biotechnology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Daniela Zizioli
- Section of Biotechnology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Deborah Cosentini
- Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Constanze Hantel
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zürich, Switzerland
- Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, 01307 Dresden, Germany
| | - Marta Laganà
- Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Guido Alberto Massimo Tiberio
- Surgical Clinic, Department of Clinical and Experimental Sciences, University of Brescia at ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Salvatore Grisanti
- Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Maurizio Memo
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Alfredo Berruti
- Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Sandra Sigala
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
18
|
Abdelmalak M, Singh R, Anwer M, Ivanchenko P, Randhawa A, Ahmed M, Ashton AW, Du Y, Jiao X, Pestell R. The Renaissance of CDK Inhibitors in Breast Cancer Therapy: An Update on Clinical Trials and Therapy Resistance. Cancers (Basel) 2022; 14:cancers14215388. [PMID: 36358806 PMCID: PMC9655989 DOI: 10.3390/cancers14215388] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Simple Summary Cyclin-dependent kinase inhibitors (palbociclib (Ibrance), ribociclib (Kisqali), and abemaciclib (Verzenio)), targeting aberrant cell-cycle activity have been evaluated extensively in clinical trials. Significant delays in progression free survival and overall survival are now documented with each agent in estrogen receptor positive and human epidermal growth factor receptor two negative advanced breast cancer including luminal B breast cancer. Therapy resistance, driven by chromosomal instability, results in genomic rearrangements, activation of cell-cycle components (cyclin E/cdk2 in Rb− tumors, cyclin D1 in growth factor activated pathways), and the immune response. Molecular analysis of therapy resistant tumors may provide the rational basis for new therapies (brivanib, CYC065, WEE1 kinase and other inhibitors). Luminal B breast cancer is enriched for cyclin D1 overexpression and the chromosomal instability gene signature. The molecular mechanisms governing chromosomal instability in luminal B breast cancer remain poorly understood. Co-targeting of chromosomal instability may potentially reduce the prevalent escape mechanisms that reduce the effectiveness of cyclin-dependent kinase inhibitors. Abstract Cyclin-dependent kinases (CDKs) govern cell-cycle checkpoint transitions necessary for cancer cell proliferation. Recent developments have illustrated nuanced important differences between mono CDK inhibitor (CDKI) treatment and the combination therapies of breast cancers. The CDKIs that are currently FDA-approved for breast cancer therapy are oral agents that selectively inhibit CDK4 and CDK6, include palbociclib (Ibrance), ribociclib (Kisqali), and abemaciclib (Verzenio). CDKI therapy is effective in hormone receptor positive (HR+), and human epidermal growth factor receptor two negative (HER2−) advanced breast cancers (ABC) malignancies, but remains susceptible due to estrogen and progesterone receptor overexpression. Adding a CDK4/6I to endocrine therapy increases efficacy and delays disease progression. Given the side effects of CDKI, identifying potential new treatments to enhance CDKI effectiveness is essential. Recent long-term studies with Palbociclib, including the PALLAS and PENELOPE B, which failed to meet their primary endpoints of influencing progression-free survival, suggest a deeper mechanistic understanding of cyclin/CDK functions is required. The impact of CDKI on the anti-tumor immune response represents an area of great promise. CDKI therapy resistance that arises provides the opportunity for specific types of new therapies currently in clinical trials.
Collapse
Affiliation(s)
- Mary Abdelmalak
- Xavier University School of Medicine, #23, Santa Helenastraat, Oranjestad, Aruba
| | - Rajanbir Singh
- Xavier University School of Medicine, #23, Santa Helenastraat, Oranjestad, Aruba
| | - Mohammed Anwer
- Xavier University School of Medicine, #23, Santa Helenastraat, Oranjestad, Aruba
| | - Pavel Ivanchenko
- Xavier University School of Medicine, #23, Santa Helenastraat, Oranjestad, Aruba
| | - Amritdeep Randhawa
- Xavier University School of Medicine, #23, Santa Helenastraat, Oranjestad, Aruba
| | - Myra Ahmed
- Xavier University School of Medicine, #23, Santa Helenastraat, Oranjestad, Aruba
| | - Anthony W. Ashton
- Xavier University School of Medicine, #23, Santa Helenastraat, Oranjestad, Aruba
- Lankenau Institute for Medical Research Philadelphia, 100 East Lancaster Ave., Wynnewood, PA 19069, USA
| | - Yanming Du
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902, USA
| | - Xuanmao Jiao
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902, USA
- Xavier University School of Medicine, #23, Santa Helenastraat, Oranjestad, Aruba
- Correspondence: (X.J.); (R.P.)
| | - Richard Pestell
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902, USA
- Xavier University School of Medicine, #23, Santa Helenastraat, Oranjestad, Aruba
- The Wistar Cancer Center, Philadelphia, PA 19107, USA
- Correspondence: (X.J.); (R.P.)
| |
Collapse
|
19
|
Pérez Piñero C, Giulianelli S, Lamb CA, Lanari C. New Insights in the Interaction of FGF/FGFR and Steroid Receptor Signaling in Breast Cancer. Endocrinology 2022; 163:6491899. [PMID: 34977930 DOI: 10.1210/endocr/bqab265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Indexed: 11/19/2022]
Abstract
Luminal breast cancer (BrCa) has a favorable prognosis compared with other tumor subtypes. However, with time, tumors may evolve and lead to disease progression; thus, there is a great interest in unraveling the mechanisms that drive tumor metastasis and endocrine resistance. In this review, we focus on one of the many pathways that have been involved in tumor progression, the fibroblast growth factor/fibroblast growth factor receptor (FGFR) axis. We emphasize in data obtained from in vivo experimental models that we believe that in luminal BrCa, tumor growth relies in a crosstalk with the stromal tissue. We revisited the studies that illustrate the interaction between hormone receptors and FGFR. We also highlight the most frequent alterations found in BrCa cell lines and provide a short review on the trials that use FGFR inhibitors in combination with endocrine therapies. Analysis of these data suggests there are many players involved in this pathway that might be also targeted to decrease FGF signaling, in addition to specific FGFR inhibitors that may be exploited to increase their efficacy.
Collapse
Affiliation(s)
- Cecilia Pérez Piñero
- Instituto de Biología y Medicina Experimental, IBYME CONICET, C1428ADN Ciudad de Buenos Aires, Argentina
| | - Sebastián Giulianelli
- Instituto de Biología y Medicina Experimental, IBYME CONICET, C1428ADN Ciudad de Buenos Aires, Argentina
- Instituto de Biología de Organismos Marinos, IBIOMAR-CCT CENPAT-CONICET, U9120ACD Puerto Madryn, Argentina
| | - Caroline A Lamb
- Instituto de Biología y Medicina Experimental, IBYME CONICET, C1428ADN Ciudad de Buenos Aires, Argentina
| | - Claudia Lanari
- Instituto de Biología y Medicina Experimental, IBYME CONICET, C1428ADN Ciudad de Buenos Aires, Argentina
| |
Collapse
|
20
|
Hong K, Zhang Y, Yao L, Zhang J, Sheng X, Guo Y. Tumor microenvironment-related multigene prognostic prediction model for breast cancer. Aging (Albany NY) 2022; 14:845-868. [PMID: 35060926 PMCID: PMC8833129 DOI: 10.18632/aging.203845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/14/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Breast cancer is an invasive disease with complex molecular mechanisms. Prognosis-related biomarkers are still urgently needed to predict outcomes of breast cancer patients. METHODS Original data were download from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO). The analyses were performed using perl-5.32 and R-x64-4.1.1. RESULTS In this study, 1086 differentially expressed genes (DEGs) were identified in the TCGA cohort; 523 shared DEGs were identified in the TCGA and GSE10886 cohorts. Eight subtypes were estimated using non-negative matrix factorization clustering with significant differences seen in overall survival (OS) and progression-free survival (PFS) (P < 0.01). Univariate Cox analysis and least absolute shrinkage and selection operator (LASSO) regression analysis were performed to develop a related risk score related to the 17 DEGs; this score separated breast cancer into low- and high-risk groups with significant differences in survival (P < 0.01) and showed powerful effectiveness (TCGA all group: 1-year area under the curve [AUC] = 0.729, 3-year AUC = 0.778, 5-year AUC = 0.781). A nomogram prediction model was constructed using non-negative matrix factorization clustering, the risk score, and clinical characteristics. Our model was confirmed to be related with tumor microenvironment. Furthermore, DEGs in high-risk breast cancer were enriched in histidine metabolism (normalized enrichment score [NES] = 1.49, P < 0.05), protein export (NES = 1.58, P < 0.05), and steroid hormone biosynthesis signaling pathways (NES = 1.56, P < 0.05). CONCLUSIONS We established a comprehensive model that can predict prognosis and guide treatment.
Collapse
Affiliation(s)
- Kai Hong
- Medicine School, Ningbo University, Jiangbei, Ningbo 315211, Zhejiang, China
| | - Yingjue Zhang
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka 565–0871, Japan
| | - Lingli Yao
- Medicine School, Ningbo University, Jiangbei, Ningbo 315211, Zhejiang, China
| | - Jiabo Zhang
- Department of Thyroid and Breast Surgery, Ningbo City First Hospital, Haishu, Ningbo 315010, Zhejiang, China
| | - Xianneng Sheng
- Department of Thyroid and Breast Surgery, Ningbo City First Hospital, Haishu, Ningbo 315010, Zhejiang, China
| | - Yu Guo
- Department of Thyroid and Breast Surgery, Ningbo City First Hospital, Haishu, Ningbo 315010, Zhejiang, China
| |
Collapse
|
21
|
Kalinina T, Kononchuk V, Klyushova L, Gulyaeva L. Effects of Endocrine Disruptors o, p'-Dichlorodiphenyltrichloroethane, p, p'-Dichlorodiphenyltrichloroethane, and Endosulfan on the Expression of Estradiol-, Progesterone-, and Testosterone-Responsive MicroRNAs and Their Target Genes in MCF-7 Cells. TOXICS 2022; 10:25. [PMID: 35051067 PMCID: PMC8780485 DOI: 10.3390/toxics10010025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 12/10/2022]
Abstract
Many studies have shown that dichlorodiphenyltrichloroethane (DDT) exposure raises breast cancer risk. Another insecticide with similar properties is endosulfan, which has been actively used in agriculture after DDT prohibition. Previously, we have identified some estradiol-, progesterone-, and testosterone-sensitive microRNAs (miRNAs, miRs). Because DDT and endosulfan have estrogenic, antiandrogenic, and antiprogesterone properties, we hypothesized that these miRNAs are affected by the insecticides. We quantified relative levels of miRNAs and expression levels of their target genes in breast cancer MCF-7 cells treated with p,p'-DDT, o,p'-DDT, or endosulfan. We also quantified miR-19b expression, which, as previously shown, is regulated by estrogen. Here, we observed that miR-19b expression increased in response not only to estradiol but also to testosterone and progesterone. Treatment of MCF-7 cells with p,p'-DDT or endosulfan decreased the protein levels of apoptosis regulators TP53INP1 and APAF1. In cells treated with o,p'-DDT, the TP53INP1 amount decreased after 24 h of incubation, but increased after 48 h of incubation with insecticide. OXTR expression, which is known to be associated with breast carcinogenesis, significantly diminished under the exposure of all insecticides. In cells treated with p,p'-DDT or o,p'-DDT, the observed changes were accompanied by alterations of the levels of hormone-responsive miRNAs: miR-324, miR-190a, miR-190b, miR-27a, miR-193b, and miR-19b.
Collapse
Affiliation(s)
- Tatiana Kalinina
- Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2/12, 630117 Novosibirsk, Russia; (V.K.); (L.K.); (L.G.)
| | - Vladislav Kononchuk
- Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2/12, 630117 Novosibirsk, Russia; (V.K.); (L.K.); (L.G.)
- Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, Rechkunovskaya Str. 15, 630055 Novosibirsk, Russia
| | - Lyubov Klyushova
- Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2/12, 630117 Novosibirsk, Russia; (V.K.); (L.K.); (L.G.)
| | - Lyudmila Gulyaeva
- Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2/12, 630117 Novosibirsk, Russia; (V.K.); (L.K.); (L.G.)
- Institute for Medicine and Psychology, Novosibirsk State University, Pirogova Str. 2, 630090 Novosibirsk, Russia
| |
Collapse
|
22
|
Associations between the Levels of Estradiol-, Progesterone-, and Testosterone-Sensitive MiRNAs and Main Clinicopathologic Features of Breast Cancer. J Pers Med 2021; 12:jpm12010004. [PMID: 35055320 PMCID: PMC8779432 DOI: 10.3390/jpm12010004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/15/2021] [Accepted: 12/19/2021] [Indexed: 12/13/2022] Open
Abstract
Despite the existing advances in the diagnosis and treatment of breast cancer (BC), the search for markers associated with the clinicopathological features of BC is still in demand. MiRNAs (miRs) have potential as markers, since a change in the miRNA expression profile accompanies the initiation and progression of malignant diseases. The receptors for estrogen, androgen, and progesterone (ER, AR, and PR) play an important role in breast carcinogenesis. Therefore, to search for miRNAs that may function as markers in BC, using bioinformatic analysis and the literature data, we selected 13 miRNAs whose promoter regions contain binding sites for ER or AR, or putative binding sites for ER, AR, and PR. We quantified their expression in MCF-7 cells treated with estradiol, progesterone, or testosterone. The levels of miRNAs sensitive to one or more of these hormones were quantified in BC samples (n = 196). We discovered that high expression levels of miR-190b in breast tumor tissue indicate a positive ER status, and miR-423 and miR-200b levels differ between patients with and without HER2 amplification. The miR-193b, -423, -190a, -324, and -200b levels were associated with tumor size or lymph node status in BC patients, but the presence of these associations depended on the status and expression level of ER, PR, HER2, and Ki-67. We also found that miR-21 expression depends on HER2 expression in ER- and/or PR-positive BC. The levels of miRNA were significantly different between HER2 0 and HER2 1+ tumors (p = 0.027), and between HER2 0 and HER2 2+, 3+ tumors (p = 0.005).
Collapse
|
23
|
Tribukait B. Dynamics of Serum Thymidine Kinase 1 at the First Cycle of Neoadjuvant Chemotherapy Predicts Outcome of Disease in Estrogen-Receptor-Positive Breast Cancer. Cancers (Basel) 2021; 13:cancers13215442. [PMID: 34771604 PMCID: PMC8582392 DOI: 10.3390/cancers13215442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Chemotherapy before surgery (NAC) is an option for high-risk breast cancer (BC) patients. Pathologic complete response (pCR) predicts long-term outcome and has become a surrogate biomarker for survival. pCR is, however, reached in only <10% of hormone-receptor-positive (ER+) patients and is of limited prognostic value. Biomarkers able to predict outcome early during NAC would facilitate individualized therapy with the possibility to adjust or interrupt an ineffective therapy. Here, it is shown that differential response of the serum concentration of thymidine kinase 1, an enzyme involved in the DNA synthesis and released from the tumor into the blood, 48 h after the first cycle of NAC, predicts long-term outcome in localized advanced ER+/HER2-BC. The different reactions to chemotherapy could be used to guide this process early during NAC and utilized to identify mechanisms of tumor sensitivity that could provide a prediction of long-term outcome prior to chemotherapy. Abstract Pathologic complete response (pCR) predicts the long-term outcome of neoadjuvantly treated (NAC) breast cancer (BC) but is reached in <10% of hormone-receptor-positive patients. Biomarkers enabling adjustment or interruption of an ineffective therapy are desired. Here, we evaluated whether changes in the serum concentration of thymidine kinase 1 (sTK1) during NAC could be utilized as a biomarker. In the PROMIX trial, women with localized HER2- BC received neoadjuvant epirubicin/docetaxel in six cycles. sTK1 was measured with an ELISA in 54 patients at cycles 1–4 and in an additional 77 patients before and 48 h after treatment 1. Treatment resulted in a 2-fold increase of sTK1 before and a 3-fold increase 48 h after the cycles, except for the first cycle, where half of the patients reacted with a significant decrease and the other half with an increase of sTK1. In Kaplan–Meier estimates of ER+ patients divided by the median of the post/pre-treatment sTK1 ratio at the first treatment cycle, OS was 97.7% and 78% (p = 0.005), and DFS was 90.7% and 68% (p = 0.006), respectively. Thus, the response of sTK1 at the first cycle of chemotherapy could be used both as an early biomarker for the guidance of chemotherapy and for the study of inherent tumor chemo-sensitivity, which could predict long-term outcome prior to therapy.
Collapse
Affiliation(s)
- Bernhard Tribukait
- Department of Oncology-Pathology, Karolinska Institute and University Hospital Solna, 17164 Stockholm, Sweden;
- Cancer Centrum Karolinska, CCK, Plan 00, Visionsgatan 56, Karolinska Universitetssjukhuset, Solna, 17164 Stockholm, Sweden
| |
Collapse
|
24
|
Kyriakopoulou K, Kefali E, Piperigkou Z, Riethmüller C, Greve B, Franchi M, Götte M, Karamanos NK. EGFR is a pivotal player of the E2/ERβ - mediated functional properties, aggressiveness, and stemness in triple-negative breast cancer cells. FEBS J 2021; 289:1552-1574. [PMID: 34665934 DOI: 10.1111/febs.16240] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/23/2021] [Accepted: 10/18/2021] [Indexed: 12/31/2022]
Abstract
Triple-negative breast cancer (TNBC) is defined by aggressive behavior, limited response to chemotherapy and lower overall survival rates. The increased metastatic potential of TNBC is a combined result of extensive extracellular matrix (ECM) remodeling that leads to cytoskeleton rearrangement and activation of epithelial-to-mesenchymal transition (EMT). The overexpression of epidermal growth factor receptor (EGFR) in TNBC tumors has been linked to induced expression of EMT-related molecules. EMT activation has often been associated with increased metastasis and stemness. Recently, we described the crucial role of EGFR/estrogen receptor beta (ERβ) interplay in the regulation of invasion and cell-matrix interactions. In this study, we report on the EGFR-ERβ functional relationship in connection to the aggressiveness and cancer stem cell (CSC)-like characteristics of TNBC cells. ERβ-suppressed and MDA-MB-231 cells were subjected to downstream EGFR inhibition and/or estradiol stimulation to assess alterations in functional parameters as well as in morphological characteristics, studied by scanning electron, atomic force, and immunofluorescence microscopies. Moreover, the expression and localization of key EMT and CSC-related markers were also evaluated by real-time qPCR, immunofluorescence microscopy, and flow cytometry. EGFR inhibition resulted in an overall suppression of aggressive functional characteristics, which occurred in an ERβ-mediated manner. These changes could be attributed to a reduction, at the molecular level, of EMT and stemness-linked markers, most notably reduced expression of Notch signaling constituents and the cell surface proteoglycan, syndecan-1. Collectively, our study highlights the importance of EGFR signaling as a key effector of aggressiveness, EMT, and stemness in an ERβ-dependent way in TNBC.
Collapse
Affiliation(s)
- Konstantina Kyriakopoulou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Elena Kefali
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | | | - Burkhard Greve
- Department of Radiotherapy-Radiooncology, University Hospital Münster, Germany
| | - Marco Franchi
- Department for Life Quality Study, University of Bologna, Rimini, Italy
| | - Martin Götte
- Department of Gynecology and Obstetrics, University Hospital Münster, Germany
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| |
Collapse
|
25
|
Jean A, Mhaouty-Kodja S, Hardin-Pouzet H. Hypothalamic cellular and molecular plasticity linked to sexual experience in male rats and mice. Front Neuroendocrinol 2021; 63:100949. [PMID: 34687674 DOI: 10.1016/j.yfrne.2021.100949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/22/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022]
Abstract
Male sexual behavior is subject to learning, resulting in increased efficiency of experienced males compared to naive ones. The improvement in behavioral parameters is underpinned by cellular and molecular changes in the neural circuit controlling sexual behavior, particularly in the hypothalamic medial preoptic area. This review provides an update on the mechanisms related to the sexual experience in male rodents, emphasizing the differences between rats and mice.
Collapse
Affiliation(s)
- Arnaud Jean
- Sorbonne Université - Faculté de Sciences et Ingénierie, Neuroplasticité des Comportements de la Reproduction, Neurosciences Paris Seine, UM119 - CNRS UMR 8246 - INSERM UMRS 1130, 7 quai Saint Bernard, 75 005 Paris, France
| | - Sakina Mhaouty-Kodja
- Sorbonne Université - Faculté de Sciences et Ingénierie, Neuroplasticité des Comportements de la Reproduction, Neurosciences Paris Seine, UM119 - CNRS UMR 8246 - INSERM UMRS 1130, 7 quai Saint Bernard, 75 005 Paris, France
| | - Hélène Hardin-Pouzet
- Sorbonne Université - Faculté de Sciences et Ingénierie, Neuroplasticité des Comportements de la Reproduction, Neurosciences Paris Seine, UM119 - CNRS UMR 8246 - INSERM UMRS 1130, 7 quai Saint Bernard, 75 005 Paris, France.
| |
Collapse
|
26
|
The Expanding Role of Mitochondria, Autophagy and Lipophagy in Steroidogenesis. Cells 2021; 10:cells10081851. [PMID: 34440620 PMCID: PMC8391558 DOI: 10.3390/cells10081851] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
The fundamental framework of steroidogenesis is similar across steroidogenic cells, especially in initial mitochondrial steps. For instance, the START domain containing protein-mediated cholesterol transport to the mitochondria, and its conversion to pregnenolone by the enzyme P450scc, is conserved across steroidogenic cells. The enzyme P450scc localizes to the inner mitochondrial membrane, which makes the mitochondria essential for steroidogenesis. Despite this commonality, mitochondrial structure, number, and dynamics vary substantially between different steroidogenic cell types, indicating implications beyond pregnenolone biosynthesis. This review aims to focus on the growing roles of mitochondria, autophagy and lipophagy in cholesterol uptake, trafficking and homeostasis in steroidogenic cells and consequently in steroidogenesis. We will focus on these aspects in the context of the physiological need for different steroid hormones and cell-intrinsic inherent features in different steroidogenic cell types beyond mitochondria as a mere site for the beginning of steroidogenesis. The overall goal is to provide an authentic and comprehensive review on the expanding role of steroidogenic cell-intrinsic processes in cholesterol homeostasis and steroidogenesis, and to bring attention to the scientific community working in this field on these promising advancements. Moreover, we will discuss a novel mitochondrial player, prohibitin, and its potential role in steroidogenic mitochondria and cells, and consequently, in steroidogenesis.
Collapse
|
27
|
Santandrea G, Bellarosa C, Gibertoni D, Cucchi MC, Sanchez AM, Franceschini G, Masetti R, Foschini MP. Hormone Receptor Expression Variations in Normal Breast Tissue: Preliminary Results of a Prospective Observational Study. J Pers Med 2021; 11:jpm11050387. [PMID: 34066838 PMCID: PMC8150273 DOI: 10.3390/jpm11050387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/27/2021] [Accepted: 05/04/2021] [Indexed: 01/13/2023] Open
Abstract
Normal breast tissue undergoes great variations during a woman’s life as a consequence of the different hormonal stimulation. The purpose of the present study was to examine the hormonal receptor expression variations according to age, menstrual cycle, menopausal state and body mass index. To this purpose, 49 tissue samples of normal breast tissue, obtained during surgery performed for benign and malignant conditions, were immunostained with Estrogen (ER), Progesterone (PR) and Androgen receptors (AR). In addition, Ki67 and Gross Cystic Disease Fluid Protein were studied. The data obtained revealed a great variability of hormone receptor expression. ER and AR generally increased in older and post-menopausal women, while young women presented a higher proliferative rate, evaluated with Ki67. PR increase was observed in women with BMI higher than 25. The different hormonal receptor expression could favor the development of breast cancer.
Collapse
Affiliation(s)
- Giacomo Santandrea
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy;
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy
| | - Chiara Bellarosa
- Unit of Anatomic Pathology at Bellaria Hospital, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy;
| | - Dino Gibertoni
- Unit of Hygiene and Biostatistics, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy;
| | - Maria C. Cucchi
- Breast Surgery Unit, Bellaria Hospital, AUSL Bologna, 40126 Bologna, Italy;
| | - Alejandro M. Sanchez
- Multidisciplinary Breast Center–Dipartimento Scienze della Salute della donna e del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.F.); (R.M.)
- Correspondence: (A.M.S.); (M.P.F.); Tel.: +39-051-622-5523 (M.P.F.); Fax: +39-051-622-5759 (M.P.F.)
| | - Gianluca Franceschini
- Multidisciplinary Breast Center–Dipartimento Scienze della Salute della donna e del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.F.); (R.M.)
| | - Riccardo Masetti
- Multidisciplinary Breast Center–Dipartimento Scienze della Salute della donna e del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.F.); (R.M.)
| | - Maria P. Foschini
- Unit of Anatomic Pathology at Bellaria Hospital, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy;
- Correspondence: (A.M.S.); (M.P.F.); Tel.: +39-051-622-5523 (M.P.F.); Fax: +39-051-622-5759 (M.P.F.)
| |
Collapse
|