1
|
Sarac D, Badza Atanasijevic M, Mitrovic Jovanovic M, Kovac J, Lazic L, Jankovic A, Saponjski DJ, Milosevic S, Stosic K, Masulovic D, Radenkovic D, Papic V, Djuric-Stefanovic A. Applicability of Radiomics for Differentiation of Pancreatic Adenocarcinoma from Healthy Tissue of Pancreas by Using Magnetic Resonance Imaging and Machine Learning. Cancers (Basel) 2025; 17:1119. [PMID: 40227615 PMCID: PMC11987955 DOI: 10.3390/cancers17071119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/12/2025] [Accepted: 03/20/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND This study analyzed different classifier models for differentiating pancreatic adenocarcinoma from surrounding healthy pancreatic tissue based on radiomic analysis of magnetic resonance (MR) images. METHODS We observed T2W-FS and ADC images obtained by 1.5T-MR of 87 patients with histologically proven pancreatic adenocarcinoma for training and validation purposes and then tested the most accurate predictive models that were obtained on another group of 58 patients. The tumor and surrounding pancreatic tissue were segmented on three consecutive slices, with the largest area of interest (ROI) of tumor marked using MaZda v4.6 software. This resulted in a total of 261 ROIs for each of the observed tissue classes in the training-validation group and 174 ROIs in the testing group. The software extracted a total of 304 radiomic features for each ROI, divided into six categories. The analysis was conducted through six different classifier models with six different feature reduction methods and five-fold subject-wise cross-validation. RESULTS In-depth analysis shows that the best results were obtained with the Random Forest (RF) classifier with feature reduction based on the Mutual Information score (all nine features are from the co-occurrence matrix): an accuracy of 0.94/0.98, sensitivity of 0.94/0.98, specificity of 0.94/0.98, and F1-score of 0.94/0.98 were achieved for the T2W-FS/ADC images from the validation group, retrospectively. In the testing group, an accuracy of 0.69/0.81, sensitivity of 0.86/0.82, specificity of 0.52/0.70, and F1-score of 0.74/0.83 were achieved for the T2W-FS/ADC images, retrospectively. CONCLUSIONS The machine learning approach using radiomics features extracted from T2W-FS and ADC achieved a relatively high sensitivity in the differentiation of pancreatic adenocarcinoma from healthy pancreatic tissue, which could be especially applicable for screening purposes.
Collapse
Affiliation(s)
- Dimitrije Sarac
- Center for Radiology, University Clinical Centre of Serbia, Pasterova No. 2, 11000 Belgrade, Serbia
| | - Milica Badza Atanasijevic
- School of Electrical Engineering, University of Belgrade, Bulevar kralja Aleksandra 73, 11120 Belgrade, Serbia; (M.B.A.)
- Innovation Center of the School of Electrical Engineering in Belgrade, Bulevar kralja Aleksandra 73, 11120 Belgrade, Serbia
| | - Milica Mitrovic Jovanovic
- Center for Radiology, University Clinical Centre of Serbia, Pasterova No. 2, 11000 Belgrade, Serbia
- Department for Radiology, Faculty of Medicine, University of Belgrade, Dr Subotica No. 8, 11000 Belgrade, Serbia
| | - Jelena Kovac
- Center for Radiology, University Clinical Centre of Serbia, Pasterova No. 2, 11000 Belgrade, Serbia
- Department for Radiology, Faculty of Medicine, University of Belgrade, Dr Subotica No. 8, 11000 Belgrade, Serbia
| | - Ljubica Lazic
- Center for Radiology, University Clinical Centre of Serbia, Pasterova No. 2, 11000 Belgrade, Serbia
| | - Aleksandra Jankovic
- Center for Radiology, University Clinical Centre of Serbia, Pasterova No. 2, 11000 Belgrade, Serbia
- Department for Radiology, Faculty of Medicine, University of Belgrade, Dr Subotica No. 8, 11000 Belgrade, Serbia
| | - Dusan J. Saponjski
- Center for Radiology, University Clinical Centre of Serbia, Pasterova No. 2, 11000 Belgrade, Serbia
- Department for Radiology, Faculty of Medicine, University of Belgrade, Dr Subotica No. 8, 11000 Belgrade, Serbia
| | - Stefan Milosevic
- Center for Radiology, University Clinical Centre of Serbia, Pasterova No. 2, 11000 Belgrade, Serbia
| | - Katarina Stosic
- Center for Radiology, University Clinical Centre of Serbia, Pasterova No. 2, 11000 Belgrade, Serbia
| | - Dragan Masulovic
- Center for Radiology, University Clinical Centre of Serbia, Pasterova No. 2, 11000 Belgrade, Serbia
- Department for Radiology, Faculty of Medicine, University of Belgrade, Dr Subotica No. 8, 11000 Belgrade, Serbia
| | - Dejan Radenkovic
- Department for HBP Surgery, Clinic for Digestive Surgery, University Clinical Centre of Serbia, Koste Todorovica Street, No. 6, 11000 Belgrade, Serbia
- Department for Surgery, Faculty of Medicine, University of Belgrade, Dr Subotica No. 8, 11000 Belgrade, Serbia
| | - Veljko Papic
- School of Electrical Engineering, University of Belgrade, Bulevar kralja Aleksandra 73, 11120 Belgrade, Serbia; (M.B.A.)
| | - Aleksandra Djuric-Stefanovic
- Center for Radiology, University Clinical Centre of Serbia, Pasterova No. 2, 11000 Belgrade, Serbia
- Department for Radiology, Faculty of Medicine, University of Belgrade, Dr Subotica No. 8, 11000 Belgrade, Serbia
| |
Collapse
|
2
|
Zhao B, Cao B, Xia T, Zhu L, Yu Y, Lu C, Tang T, Wang Y, Ju S. Multiparametric MRI for Assessment of the Biological Invasiveness and Prognosis of Pancreatic Ductal Adenocarcinoma in the Era of Artificial Intelligence. J Magn Reson Imaging 2025. [PMID: 39781607 DOI: 10.1002/jmri.29708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/24/2024] [Accepted: 12/25/2024] [Indexed: 01/12/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the deadliest malignant tumor, with a grim 5-year overall survival rate of about 12%. As its incidence and mortality rates rise, it is likely to become the second-leading cause of cancer-related death. The radiological assessment determined the stage and management of PDAC. However, it is a highly heterogeneous disease with the complexity of the tumor microenvironment, and it is challenging to adequately reflect the biological aggressiveness and prognosis accurately through morphological evaluation alone. With the dramatic development of artificial intelligence (AI), multiparametric magnetic resonance imaging (mpMRI) using specific contrast media and special techniques can provide morphological and functional information with high image quality and become a powerful tool in quantifying intratumor characteristics. Besides, AI has been widespread in the field of medical imaging analysis. Radiomics is the high-throughput mining of quantitative image features from medical imaging that enables data to be extracted and applied for better decision support. Deep learning is a subset of artificial neural network algorithms that can automatically learn feature representations from data. AI-enabled imaging biomarkers of mpMRI have enormous promise to bridge the gap between medical imaging and personalized medicine and demonstrate huge advantages in predicting biological characteristics and the prognosis of PDAC. However, current AI-based models of PDAC operate mainly in the realm of a single modality with a relatively small sample size, and the technical reproducibility and biological interpretation present a barrage of new potential challenges. In the future, the integration of multi-omics data, such as radiomics and genomics, alongside the establishment of standardized analytical frameworks will provide opportunities to increase the robustness and interpretability of AI-enabled image biomarkers and bring these biomarkers closer to clinical practice. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 4.
Collapse
Affiliation(s)
- Ben Zhao
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Buyue Cao
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Tianyi Xia
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Liwen Zhu
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Yaoyao Yu
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Chunqiang Lu
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Tianyu Tang
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Yuancheng Wang
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Shenghong Ju
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| |
Collapse
|
3
|
Li Y, Zheng C, Zhang Y, He T, Chen W, Zheng K. Enhancing preoperative diagnosis of pancreatic ductal adenocarcinoma and mass-forming chronic pancreatitis: a study on normalized conventional MR imaging parameters. Abdom Radiol (NY) 2024:10.1007/s00261-024-04652-7. [PMID: 39488674 DOI: 10.1007/s00261-024-04652-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024]
Abstract
PURPOSE To assess the utility of signal intensity ratio (SIR) in distinguishing between mass-forming chronic pancreatitis (MFCP) and pancreatic ductal adenocarcinoma (PDAC), thereby reducing unnecessary pancreatectomies or delayed diagnosis brought by misdiagnosis. MATERIALS AND METHODS This retrospective study included 170 participants (34 with MFCP and 136 with PDAC) who underwent radical pancreatic surgery and were diagnosed via specimen pathology. The study group was carefully selected with a 1:4 ratio matching for sex, age, and operation time between two entities. T1 SIR, T2 SIR, arterial phase (AP) SIR, portal venous phase (VP) SIR, delay phase (DP) SIR, DWI0-50 SIR, and DWI500-1000 SIR, were calculated by dividing the signal intensity of lesions by that of the paraspinal muscle, serving as a reference organ. Intraclass Correlation Coefficient (ICC) was estimated to evaluate the intraobserver and interobserver reliability. Wilcoxon tests were employed for univariate analysis, and receiver operating characteristic (ROC) curves were generated to determine optimal cutoff points and AUC values for selected predictors. A tenfold cross-validation method was applied to validate the robustness of the results. RESULTS The ICC demonstrated excellent correlation for both intraobserver and interobserver(ICCs > 0.8). T1 SIR, AP SIR, VP SIR, and DP SIR were significantly lower in the PDAC group compared to the MFCP group, and exhibited good independent predictive properties with the sensitivities of 61.8, 61.8, 70.6, and 73.5%, specificities of 66.2, 68.4, 59.6, and 55.9%, and AUCs of 0.620, 0.659, 0.670, and 0.668, respectively, hovering around 0.7. The tenfold cross-validation confirmed the reliability and robustness of our findings, with consistent AUC, sensitivity, specificity, and 95% confidence intervals over 1000 iterations. CONCLUSION T1 SIR, AP SIR, VP SIR, and DP SIR show promise as potential imaging biomarkers for distinguishing between MFCP and PDAC.
Collapse
Affiliation(s)
- Yuxiao Li
- Department of Radiology, Changhai Hospital Affiliated to Navy Medical University, 168 Changhai Road, Shanghai, People's Republic of China
| | - Chenxi Zheng
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital Affiliated to Navy Medical University, 168 Changhai Road, Shanghai, People's Republic of China
| | - Yang Zhang
- Department of Oncology Radiation, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, People's Republic of China
| | - Tianlin He
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital Affiliated to Navy Medical University, 168 Changhai Road, Shanghai, People's Republic of China
| | - Wei Chen
- Department of Radiology, Changhai Hospital Affiliated to Navy Medical University, 168 Changhai Road, Shanghai, People's Republic of China
| | - Kailian Zheng
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital Affiliated to Navy Medical University, 168 Changhai Road, Shanghai, People's Republic of China.
| |
Collapse
|
4
|
Bette S, Canalini L, Feitelson LM, Woźnicki P, Risch F, Huber A, Decker JA, Tehlan K, Becker J, Wollny C, Scheurig-Münkler C, Wendler T, Schwarz F, Kroencke T. Radiomics-Based Machine Learning Model for Diagnosis of Acute Pancreatitis Using Computed Tomography. Diagnostics (Basel) 2024; 14:718. [PMID: 38611632 PMCID: PMC11011980 DOI: 10.3390/diagnostics14070718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
In the early diagnostic workup of acute pancreatitis (AP), the role of contrast-enhanced CT is to establish the diagnosis in uncertain cases, assess severity, and detect potential complications like necrosis, fluid collections, bleeding or portal vein thrombosis. The value of texture analysis/radiomics of medical images has rapidly increased during the past decade, and the main focus has been on oncological imaging and tumor classification. Previous studies assessed the value of radiomics for differentiating between malignancies and inflammatory diseases of the pancreas as well as for prediction of AP severity. The aim of our study was to evaluate an automatic machine learning model for AP detection using radiomics analysis. Patients with abdominal pain and contrast-enhanced CT of the abdomen in an emergency setting were retrospectively included in this single-center study. The pancreas was automatically segmented using TotalSegmentator and radiomics features were extracted using PyRadiomics. We performed unsupervised hierarchical clustering and applied the random-forest based Boruta model to select the most important radiomics features. Important features and lipase levels were included in a logistic regression model with AP as the dependent variable. The model was established in a training cohort using fivefold cross-validation and applied to the test cohort (80/20 split). From a total of 1012 patients, 137 patients with AP and 138 patients without AP were included in the final study cohort. Feature selection confirmed 28 important features (mainly shape and first-order features) for the differentiation between AP and controls. The logistic regression model showed excellent diagnostic accuracy of radiomics features for the detection of AP, with an area under the curve (AUC) of 0.932. Using lipase levels only, an AUC of 0.946 was observed. Using both radiomics features and lipase levels, we showed an excellent AUC of 0.933 for the detection of AP. Automated segmentation of the pancreas and consecutive radiomics analysis almost achieved the high diagnostic accuracy of lipase levels, a well-established predictor of AP, and might be considered an additional diagnostic tool in unclear cases. This study provides scientific evidence that automated image analysis of the pancreas achieves comparable diagnostic accuracy to lipase levels and might therefore be used in the future in the rapidly growing era of AI-based image analysis.
Collapse
Affiliation(s)
- Stefanie Bette
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, 86156 Augsburg, Germany; (S.B.); (L.C.); (L.-M.F.); (A.H.); (J.A.D.); (K.T.); (J.B.); (C.W.); (C.S.-M.); (T.W.)
| | - Luca Canalini
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, 86156 Augsburg, Germany; (S.B.); (L.C.); (L.-M.F.); (A.H.); (J.A.D.); (K.T.); (J.B.); (C.W.); (C.S.-M.); (T.W.)
| | - Laura-Marie Feitelson
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, 86156 Augsburg, Germany; (S.B.); (L.C.); (L.-M.F.); (A.H.); (J.A.D.); (K.T.); (J.B.); (C.W.); (C.S.-M.); (T.W.)
| | - Piotr Woźnicki
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, University of Würzburg, 97080 Würzburg, Germany;
| | - Franka Risch
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, 86156 Augsburg, Germany; (S.B.); (L.C.); (L.-M.F.); (A.H.); (J.A.D.); (K.T.); (J.B.); (C.W.); (C.S.-M.); (T.W.)
| | - Adrian Huber
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, 86156 Augsburg, Germany; (S.B.); (L.C.); (L.-M.F.); (A.H.); (J.A.D.); (K.T.); (J.B.); (C.W.); (C.S.-M.); (T.W.)
| | - Josua A. Decker
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, 86156 Augsburg, Germany; (S.B.); (L.C.); (L.-M.F.); (A.H.); (J.A.D.); (K.T.); (J.B.); (C.W.); (C.S.-M.); (T.W.)
| | - Kartikay Tehlan
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, 86156 Augsburg, Germany; (S.B.); (L.C.); (L.-M.F.); (A.H.); (J.A.D.); (K.T.); (J.B.); (C.W.); (C.S.-M.); (T.W.)
| | - Judith Becker
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, 86156 Augsburg, Germany; (S.B.); (L.C.); (L.-M.F.); (A.H.); (J.A.D.); (K.T.); (J.B.); (C.W.); (C.S.-M.); (T.W.)
| | - Claudia Wollny
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, 86156 Augsburg, Germany; (S.B.); (L.C.); (L.-M.F.); (A.H.); (J.A.D.); (K.T.); (J.B.); (C.W.); (C.S.-M.); (T.W.)
| | - Christian Scheurig-Münkler
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, 86156 Augsburg, Germany; (S.B.); (L.C.); (L.-M.F.); (A.H.); (J.A.D.); (K.T.); (J.B.); (C.W.); (C.S.-M.); (T.W.)
| | - Thomas Wendler
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, 86156 Augsburg, Germany; (S.B.); (L.C.); (L.-M.F.); (A.H.); (J.A.D.); (K.T.); (J.B.); (C.W.); (C.S.-M.); (T.W.)
- Institute of Digital Health, University Hospital Augsburg, Faculty of Medicine, University of Augsburg, 86356 Neusaess, Germany
- Computer-Aided Medical Procedures and Augmented Reality, School of Computation, Information and Technology, Technical University of Munich, 85748 Garching bei Muenchen, Germany
| | - Florian Schwarz
- Centre for Diagnostic Imaging and Interventional Therapy, Donau-Isar-Klinikum, 94469 Deggendorf, Germany;
| | - Thomas Kroencke
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, 86156 Augsburg, Germany; (S.B.); (L.C.); (L.-M.F.); (A.H.); (J.A.D.); (K.T.); (J.B.); (C.W.); (C.S.-M.); (T.W.)
- Centre for Advanced Analytics and Predictive Sciences (CAAPS), University of Augsburg, 86159 Augsburg, Germany
| |
Collapse
|
5
|
Anghel C, Grasu MC, Anghel DA, Rusu-Munteanu GI, Dumitru RL, Lupescu IG. Pancreatic Adenocarcinoma: Imaging Modalities and the Role of Artificial Intelligence in Analyzing CT and MRI Images. Diagnostics (Basel) 2024; 14:438. [PMID: 38396476 PMCID: PMC10887967 DOI: 10.3390/diagnostics14040438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) stands out as the predominant malignant neoplasm affecting the pancreas, characterized by a poor prognosis, in most cases patients being diagnosed in a nonresectable stage. Image-based artificial intelligence (AI) models implemented in tumor detection, segmentation, and classification could improve diagnosis with better treatment options and increased survival. This review included papers published in the last five years and describes the current trends in AI algorithms used in PDAC. We analyzed the applications of AI in the detection of PDAC, segmentation of the lesion, and classification algorithms used in differential diagnosis, prognosis, and histopathological and genomic prediction. The results show a lack of multi-institutional collaboration and stresses the need for bigger datasets in order for AI models to be implemented in a clinically relevant manner.
Collapse
Affiliation(s)
- Cristian Anghel
- Faculty of Medicine, Department of Medical Imaging and Interventional Radiology, Carol Davila University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania; (C.A.); (R.L.D.); (I.G.L.)
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania; (D.A.A.); (G.-I.R.-M.)
| | - Mugur Cristian Grasu
- Faculty of Medicine, Department of Medical Imaging and Interventional Radiology, Carol Davila University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania; (C.A.); (R.L.D.); (I.G.L.)
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania; (D.A.A.); (G.-I.R.-M.)
| | - Denisa Andreea Anghel
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania; (D.A.A.); (G.-I.R.-M.)
| | - Gina-Ionela Rusu-Munteanu
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania; (D.A.A.); (G.-I.R.-M.)
| | - Radu Lucian Dumitru
- Faculty of Medicine, Department of Medical Imaging and Interventional Radiology, Carol Davila University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania; (C.A.); (R.L.D.); (I.G.L.)
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania; (D.A.A.); (G.-I.R.-M.)
| | - Ioana Gabriela Lupescu
- Faculty of Medicine, Department of Medical Imaging and Interventional Radiology, Carol Davila University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania; (C.A.); (R.L.D.); (I.G.L.)
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania; (D.A.A.); (G.-I.R.-M.)
| |
Collapse
|
6
|
Liao H, Yuan J, Liu C, Zhang J, Yang Y, Liang H, Jiang S, Chen S, Li Y, Liu Y. Feasibility and effectiveness of automatic deep learning network and radiomics models for differentiating tumor stroma ratio in pancreatic ductal adenocarcinoma. Insights Imaging 2023; 14:223. [PMID: 38129708 PMCID: PMC10739634 DOI: 10.1186/s13244-023-01553-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/28/2023] [Indexed: 12/23/2023] Open
Abstract
OBJECTIVE This study aims to compare the feasibility and effectiveness of automatic deep learning network and radiomics models in differentiating low tumor stroma ratio (TSR) from high TSR in pancreatic ductal adenocarcinoma (PDAC). METHODS A retrospective analysis was conducted on a total of 207 PDAC patients from three centers (training cohort: n = 160; test cohort: n = 47). TSR was assessed on hematoxylin and eosin-stained specimens by experienced pathologists and divided as low TSR and high TSR. Deep learning and radiomics models were developed including ShuffulNetV2, Xception, MobileNetV3, ResNet18, support vector machine (SVM), k-nearest neighbor (KNN), random forest (RF), and logistic regression (LR). Additionally, the clinical models were constructed through univariate and multivariate logistic regression. Kaplan-Meier survival analysis and log-rank tests were conducted to compare the overall survival time between different TSR groups. RESULTS To differentiate low TSR from high TSR, the deep learning models based on ShuffulNetV2, Xception, MobileNetV3, and ResNet18 achieved AUCs of 0.846, 0.924, 0.930, and 0.941, respectively, outperforming the radiomics models based on SVM, KNN, RF, and LR with AUCs of 0.739, 0.717, 0.763, and 0.756, respectively. Resnet 18 achieved the best predictive performance. The clinical model based on T stage alone performed worse than deep learning models and radiomics models. The survival analysis based on 142 of the 207 patients demonstrated that patients with low TSR had longer overall survival. CONCLUSIONS Deep learning models demonstrate feasibility and superiority over radiomics in differentiating TSR in PDAC. The tumor stroma ratio in the PDAC microenvironment plays a significant role in determining prognosis. CRITICAL RELEVANCE STATEMENT The objective was to compare the feasibility and effectiveness of automatic deep learning networks and radiomics models in identifying the tumor-stroma ratio in pancreatic ductal adenocarcinoma. Our findings demonstrate deep learning models exhibited superior performance compared to traditional radiomics models. KEY POINTS • Deep learning demonstrates better performance than radiomics in differentiating tumor-stroma ratio in pancreatic ductal adenocarcinoma. • The tumor-stroma ratio in the pancreatic ductal adenocarcinoma microenvironment plays a protective role in prognosis. • Preoperative prediction of tumor-stroma ratio contributes to clinical decision-making and guiding precise medicine.
Collapse
Affiliation(s)
- Hongfan Liao
- College of Medical Informatics, Chongqing Medical University, Chongqing, 400016, China
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jiang Yuan
- College of Computer and Information Science, Southwest University, Chongqing, 400715, China
| | - Chunhua Liu
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jiao Zhang
- Department of Radiology, the Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yaying Yang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China
| | - Hongwei Liang
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Song Jiang
- Department of Radiology, Chongqing Ping An Medical Imaging Diagnosis Center, Chongqing, China
| | - Shanxiong Chen
- College of Computer and Information Science, Southwest University, Chongqing, 400715, China.
| | - Yongmei Li
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Yanbing Liu
- College of Medical Informatics, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
7
|
Ramaekers M, Viviers CGA, Janssen BV, Hellström TAE, Ewals L, van der Wulp K, Nederend J, Jacobs I, Pluyter JR, Mavroeidis D, van der Sommen F, Besselink MG, Luyer MDP. Computer-Aided Detection for Pancreatic Cancer Diagnosis: Radiological Challenges and Future Directions. J Clin Med 2023; 12:4209. [PMID: 37445243 PMCID: PMC10342462 DOI: 10.3390/jcm12134209] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Radiological imaging plays a crucial role in the detection and treatment of pancreatic ductal adenocarcinoma (PDAC). However, there are several challenges associated with the use of these techniques in daily clinical practice. Determination of the presence or absence of cancer using radiological imaging is difficult and requires specific expertise, especially after neoadjuvant therapy. Early detection and characterization of tumors would potentially increase the number of patients who are eligible for curative treatment. Over the last decades, artificial intelligence (AI)-based computer-aided detection (CAD) has rapidly evolved as a means for improving the radiological detection of cancer and the assessment of the extent of disease. Although the results of AI applications seem promising, widespread adoption in clinical practice has not taken place. This narrative review provides an overview of current radiological CAD systems in pancreatic cancer, highlights challenges that are pertinent to clinical practice, and discusses potential solutions for these challenges.
Collapse
Affiliation(s)
- Mark Ramaekers
- Department of Surgery, Catharina Cancer Institute, Catharina Hospital Eindhoven, 5623 EJ Eindhoven, The Netherlands;
| | - Christiaan G. A. Viviers
- Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands; (C.G.A.V.); (T.A.E.H.); (F.v.d.S.)
| | - Boris V. Janssen
- Department of Surgery, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (B.V.J.); (M.G.B.)
- Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Terese A. E. Hellström
- Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands; (C.G.A.V.); (T.A.E.H.); (F.v.d.S.)
| | - Lotte Ewals
- Department of Radiology, Catharina Cancer Institute, Catharina Hospital Eindhoven, 5623 EJ Eindhoven, The Netherlands; (L.E.); (K.v.d.W.); (J.N.)
| | - Kasper van der Wulp
- Department of Radiology, Catharina Cancer Institute, Catharina Hospital Eindhoven, 5623 EJ Eindhoven, The Netherlands; (L.E.); (K.v.d.W.); (J.N.)
| | - Joost Nederend
- Department of Radiology, Catharina Cancer Institute, Catharina Hospital Eindhoven, 5623 EJ Eindhoven, The Netherlands; (L.E.); (K.v.d.W.); (J.N.)
| | - Igor Jacobs
- Department of Hospital Services and Informatics, Philips Research, 5656 AE Eindhoven, The Netherlands;
| | - Jon R. Pluyter
- Department of Experience Design, Philips Design, 5656 AE Eindhoven, The Netherlands;
| | - Dimitrios Mavroeidis
- Department of Data Science, Philips Research, 5656 AE Eindhoven, The Netherlands;
| | - Fons van der Sommen
- Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands; (C.G.A.V.); (T.A.E.H.); (F.v.d.S.)
| | - Marc G. Besselink
- Department of Surgery, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (B.V.J.); (M.G.B.)
- Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Misha D. P. Luyer
- Department of Surgery, Catharina Cancer Institute, Catharina Hospital Eindhoven, 5623 EJ Eindhoven, The Netherlands;
| |
Collapse
|
8
|
Pancreatic Cancer in Chronic Pancreatitis: Pathogenesis and Diagnostic Approach. Cancers (Basel) 2023; 15:cancers15030761. [PMID: 36765725 PMCID: PMC9913572 DOI: 10.3390/cancers15030761] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Chronic pancreatitis is one of the main risk factors for pancreatic cancer, but it is a rare event. Inflammation and oncogenes work hand in hand as key promoters of this disease. Tobacco is another co-factor. During alcoholic chronic pancreatitis, the cumulative risk of cancer is estimated at 4% after 15 to 20 years. This cumulative risk is higher in hereditary pancreatitis: 19 and 12% in the case of PRSS1 and SPINK1 mutations, respectively, at an age of 60 years. The diagnosis is difficult due to: (i) clinical symptoms of cancer shared with those of chronic pancreatitis; (ii) the parenchymal and ductal remodeling of chronic pancreatitis rendering imaging analysis difficult; and (iii) differential diagnoses, such as pseudo-tumorous chronic pancreatitis and paraduodenal pancreatitis. Nevertheless, the occurrence of cancer during chronic pancreatitis must be suspected in the case of back pain, weight loss, unbalanced diabetes, and jaundice, despite alcohol withdrawal. Imaging must be systematically reviewed. Endoscopic ultrasound-guided fine-needle biopsy can contribute by targeting suspicious tissue areas with the help of molecular biology (search for KRAS, TP53, CDKN2A, DPC4 mutations). Short-term follow-up of patients is necessary at the clinical and paraclinical levels to try to diagnose cancer at a surgically curable stage. Pancreatic surgery is sometimes necessary if there is any doubt.
Collapse
|
9
|
Pancreatic Mass Characterization Using IVIM-DKI MRI and Machine Learning-Based Multi-Parametric Texture Analysis. Bioengineering (Basel) 2023; 10:bioengineering10010083. [PMID: 36671655 PMCID: PMC9854749 DOI: 10.3390/bioengineering10010083] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Non-invasive characterization of pancreatic masses aids in the management of pancreatic lesions. Intravoxel incoherent motion-diffusion kurtosis imaging (IVIM-DKI) and machine learning-based texture analysis was used to differentiate pancreatic masses such as pancreatic ductal adenocarcinoma (PDAC), pancreatic neuroendocrine tumor (pNET), solid pseudopapillary epithelial neoplasm (SPEN), and mass-forming chronic pancreatitis (MFCP). A total of forty-eight biopsy-proven patients with pancreatic masses were recruited and classified into pNET (n = 13), MFCP (n = 6), SPEN (n = 4), and PDAC (n = 25) groups. All patients were scanned for IVIM-DKI sequences acquired with 14 b-values (0 to 2500 s/mm2) on a 1.5T MRI. An IVIM-DKI model with a 3D total variation (TV) penalty function was implemented to estimate the precise IVIM-DKI parametric maps. Texture analysis (TA) of the apparent diffusion coefficient (ADC) and IVIM-DKI parametric map was performed and reduced using the chi-square test. These features were fed to an artificial neural network (ANN) for characterization of pancreatic mass subtypes and validated by 5-fold cross-validation. Receiver operator characteristics (ROC) analyses were used to compute the area under curve (AUC). Perfusion fraction (f) was significantly higher (p < 0.05) in pNET than PDAC. The f showed better diagnostic performance for PDAC vs. MFCP with AUC:0.77. Both pseudo-diffusion coefficient (D*) and f for PDAC vs. pNET showed an AUC of 0.73. ADC and diffusion coefficient (D) showed good diagnostic performance for pNET vs. MFCP with AUC: 0.79 and 0.76, respectively. In the TA of PDAC vs. non-PDAC, f and combined IVIM-DKI parameters showed high accuracy ≥ 84.3% and AUC ≥ 0.84. Mean f and combined IVIM-DKI parameters estimated that the IVIM-DKI model with TV texture features has the potential to be helpful in characterizing pancreatic masses.
Collapse
|
10
|
Huang J, Yang J, Ding J, Zhou J, Yang R, Li J, Luo Y, Lu Q. Development and validation of an ultrasound-based prediction model for differentiating between malignant and benign solid pancreatic lesions. Eur Radiol 2022; 32:8296-8305. [PMID: 35751698 PMCID: PMC9705429 DOI: 10.1007/s00330-022-08930-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 04/20/2022] [Accepted: 05/30/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To identify the diagnostic ability of precontrast and contrast-enhanced ultrasound (CEUS) in differentiating between malignant and benign solid pancreatic lesions (MSPLs and BSPLs) and to develop an easy-to-use diagnostic nomogram. MATERIALS AND METHODS This study was approved by the institutional review board. Patients with pathologically confirmed solid pancreatic lesions were enrolled from one tertiary medical centre from March 2011 to June 2021 and in two tertiary institutions between January 2015 and June 2021. A prediction nomogram model was established in the training set by using precontrast US and CEUS imaging features that were independently associated with MSPLs. The performance of the prediction model was further externally validated. RESULTS A total of 155 patients (mean age, 55 ± 14.6 years, M/F = 84/71) and 78 patients (mean age, 59 ± 13.4 years, M/F = 36/42) were included in the training and validation cohorts, respectively. In the training set, an ill-defined border and dilated main pancreatic duct on precontrast ultrasound, CEUS patterns of hypoenhancement in both the arterial and venous phases of CEUS, and hyperenhancement/isoenhancement followed by washout were independently associated with MSPLs. The prediction nomogram model developed with the aforementioned variables showed good performance in differentiating MSPLs from BSPLs with an area under the curve (AUC) of 0.938 in the training set and 0.906 in the validation set. CONCLUSION Hypoenhancement in all phases, hyperenhancement/isoenhancement followed by washout on CEUS, an ill-defined border, and a dilated main pancreatic duct were independent risk factors for MSPLs. The nomogram constructed based on these predictors can be used to diagnose MSPLs. KEY POINTS • An ill-defined border and dilated main pancreatic duct on precontrast ultrasound, hypoenhancement in all phases of CEUS, and hyperenhancement/isoenhancement followed by washout were independently associated with MSPLs. • The ultrasound-based prediction model showed good performance in differentiating MSPLs from BSPLs with an AUC of 0.938 in the training set and 0.906 in the external validation set. • An ultrasound-based nomogram is an easy-to-use tool to differentiate between MSPLs and BSPLs with high efficacy.
Collapse
Affiliation(s)
- Jiayan Huang
- Department of Ultrasound, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Jie Yang
- Department of Ultrasound, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Jianming Ding
- Department of Ultrasound, Tianjin Third Central Hospital, Tianjin, 300170, China
| | - Jing Zhou
- Department of Ultrasound, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Rui Yang
- Department of Ultrasound, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Jiawu Li
- Department of Ultrasound, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yan Luo
- Department of Ultrasound, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Qiang Lu
- Department of Ultrasound, Laboratory of Ultrasound Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
11
|
Zhang H, Meng Y, Li Q, Yu J, Liu F, Fang X, Li J, Feng X, Zhou J, Zhu M, Li N, Lu J, Shao C, Bian Y. Two nomograms for differentiating mass-forming chronic pancreatitis from pancreatic ductal adenocarcinoma in patients with chronic pancreatitis. Eur Radiol 2022; 32:6336-6347. [PMID: 35394185 DOI: 10.1007/s00330-022-08698-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/16/2022] [Accepted: 02/25/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To develop and validate a CT nomogram and a radiomics nomogram to differentiate mass-forming chronic pancreatitis (MFCP) from pancreatic ductal adenocarcinoma (PDAC) in patients with chronic pancreatitis (CP). METHODS In this retrospective study, the data of 138 patients with histopathologically diagnosed MFCP or PDAC treated at our institution were retrospectively analyzed. Two radiologists analyzed the original cross-sectional CT images based on predefined criteria. Image segmentation, feature extraction, and feature reduction and selection were used to create the radiomics model. The CT and radiomics models were developed using data from a training cohort of 103 consecutive patients. The models were validated in 35 consecutive patients. Multivariable logistic regression analysis was conducted to develop a model for the differential diagnosis of MFCP and PDAC and visualized as a nomogram. The nomograms' performances were determined based on their differentiating ability and clinical utility. RESULTS The mean age of patients was 53.7 years, 75.4% were male. The CT nomogram showed good differentiation between the two entities in the training (area under the curve [AUC], 0.87) and validation (AUC, 0.94) cohorts. The radiomics nomogram showed good differentiation in the training (AUC, 0.91) and validation (AUC, 0.93) cohorts. Decision curve analysis showed that patients could benefit from the CT and radiomics nomograms, if the threshold probability was 0.05-0.85 and > 0.05, respectively. CONCLUSIONS The two nomograms reasonably accurately differentiated MFCP from PDAC in patients with CP and hold potential for refining the management of pancreatic masses in CP patients. KEY POINTS • A CT nomogram and a computed tomography-based radiomics nomogram reasonably accurately differentiated mass-forming chronic pancreatitis from pancreatic ductal adenocarcinoma in patients with chronic pancreatitis (CP). • The two nomograms can monitor the cancer risk in patients with CP and hold promise to optimize the management of pancreatic masses in patients with CP.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
| | - Yinghao Meng
- Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
- Department of Radiology, No. 971 Hospital of Navy, Qingdao, 266071, Shandong, China
| | - Qi Li
- Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
| | - Jieyu Yu
- Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
| | - Fang Liu
- Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
| | - Xu Fang
- Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
| | - Jing Li
- Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
| | - Xiaochen Feng
- Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
| | - Jian Zhou
- Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
| | - Mengmeng Zhu
- Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
| | - Na Li
- Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
| | - Jianping Lu
- Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
| | - Chengwei Shao
- Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai, 200434, China.
| | - Yun Bian
- Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai, 200434, China.
| |
Collapse
|
12
|
A systematic review of radiomics in pancreatitis: applying the evidence level rating tool for promoting clinical transferability. Insights Imaging 2022; 13:139. [PMID: 35986798 PMCID: PMC9391628 DOI: 10.1186/s13244-022-01279-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/26/2022] [Indexed: 12/16/2022] Open
Abstract
Background Multiple tools have been applied to radiomics evaluation, while evidence rating tools for this field are still lacking. This study aims to assess the quality of pancreatitis radiomics research and test the feasibility of the evidence level rating tool. Results Thirty studies were included after a systematic search of pancreatitis radiomics studies until February 28, 2022, via five databases. Twenty-four studies employed radiomics for diagnostic purposes. The mean ± standard deviation of the adherence rate was 38.3 ± 13.3%, 61.3 ± 11.9%, and 37.1 ± 27.2% for the Radiomics Quality Score (RQS), the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) checklist, and the Image Biomarker Standardization Initiative (IBSI) guideline for preprocessing steps, respectively. The median (range) of RQS was 7.0 (− 3.0 to 18.0). The risk of bias and application concerns were mainly related to the index test according to the modified Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. The meta-analysis on differential diagnosis of autoimmune pancreatitis versus pancreatic cancer by CT and mass-forming pancreatitis versus pancreatic cancer by MRI showed diagnostic odds ratios (95% confidence intervals) of, respectively, 189.63 (79.65–451.48) and 135.70 (36.17–509.13), both rated as weak evidence mainly due to the insufficient sample size. Conclusions More research on prognosis of acute pancreatitis is encouraged. The current pancreatitis radiomics studies have insufficient quality and share common scientific disadvantages. The evidence level rating is feasible and necessary for bringing the field of radiomics from preclinical research area to clinical stage. Supplementary Information The online version contains supplementary material available at 10.1186/s13244-022-01279-4.
Collapse
|
13
|
Schuurmans M, Alves N, Vendittelli P, Huisman H, Hermans J. Setting the Research Agenda for Clinical Artificial Intelligence in Pancreatic Adenocarcinoma Imaging. Cancers (Basel) 2022; 14:cancers14143498. [PMID: 35884559 PMCID: PMC9316850 DOI: 10.3390/cancers14143498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers worldwide, associated with a 98% loss of life expectancy and a 30% increase in disability-adjusted life years. Image-based artificial intelligence (AI) can help improve outcomes for PDAC given that current clinical guidelines are non-uniform and lack evidence-based consensus. However, research on image-based AI for PDAC is too scattered and lacking in sufficient quality to be incorporated into clinical workflows. In this review, an international, multi-disciplinary team of the world’s leading experts in pancreatic cancer breaks down the patient pathway and pinpoints the current clinical touchpoints in each stage. The available PDAC imaging AI literature addressing each pathway stage is then rigorously analyzed, and current performance and pitfalls are identified in a comprehensive overview. Finally, the future research agenda for clinically relevant, image-driven AI in PDAC is proposed. Abstract Pancreatic ductal adenocarcinoma (PDAC), estimated to become the second leading cause of cancer deaths in western societies by 2030, was flagged as a neglected cancer by the European Commission and the United States Congress. Due to lack of investment in research and development, combined with a complex and aggressive tumour biology, PDAC overall survival has not significantly improved the past decades. Cross-sectional imaging and histopathology play a crucial role throughout the patient pathway. However, current clinical guidelines for diagnostic workup, patient stratification, treatment response assessment, and follow-up are non-uniform and lack evidence-based consensus. Artificial Intelligence (AI) can leverage multimodal data to improve patient outcomes, but PDAC AI research is too scattered and lacking in quality to be incorporated into clinical workflows. This review describes the patient pathway and derives touchpoints for image-based AI research in collaboration with a multi-disciplinary, multi-institutional expert panel. The literature exploring AI to address these touchpoints is thoroughly retrieved and analysed to identify the existing trends and knowledge gaps. The results show absence of multi-institutional, well-curated datasets, an essential building block for robust AI applications. Furthermore, most research is unimodal, does not use state-of-the-art AI techniques, and lacks reliable ground truth. Based on this, the future research agenda for clinically relevant, image-driven AI in PDAC is proposed.
Collapse
Affiliation(s)
- Megan Schuurmans
- Diagnostic Image Analysis Group, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (P.V.); (H.H.)
- Correspondence: (M.S.); (N.A.)
| | - Natália Alves
- Diagnostic Image Analysis Group, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (P.V.); (H.H.)
- Correspondence: (M.S.); (N.A.)
| | - Pierpaolo Vendittelli
- Diagnostic Image Analysis Group, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (P.V.); (H.H.)
| | - Henkjan Huisman
- Diagnostic Image Analysis Group, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (P.V.); (H.H.)
| | - John Hermans
- Department of Medical Imaging, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands;
| |
Collapse
|
14
|
Yan G, Yan G, Li H, Liang H, Peng C, Bhetuwal A, McClure MA, Li Y, Yang G, Li Y, Zhao L, Fan X. Radiomics and Its Applications and Progress in Pancreatitis: A Current State of the Art Review. Front Med (Lausanne) 2022; 9:922299. [PMID: 35814756 PMCID: PMC9259974 DOI: 10.3389/fmed.2022.922299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/31/2022] [Indexed: 11/25/2022] Open
Abstract
Radiomics involves high-throughput extraction and analysis of quantitative information from medical images. Since it was proposed in 2012, there are some publications on the application of radiomics for (1) predicting recurrent acute pancreatitis (RAP), clinical severity of acute pancreatitis (AP), and extrapancreatic necrosis in AP; (2) differentiating mass-forming chronic pancreatitis (MFCP) from pancreatic ductal adenocarcinoma (PDAC), focal autoimmune pancreatitis (AIP) from PDAC, and functional abdominal pain (functional gastrointestinal diseases) from RAP and chronic pancreatitis (CP); and (3) identifying CP and normal pancreas, and CP risk factors and complications. In this review, we aim to systematically summarize the applications and progress of radiomics in pancreatitis and it associated situations, so as to provide reference for related research.
Collapse
Affiliation(s)
- Gaowu Yan
- Department of Radiology, Suining Central Hospital, Suining, China
| | - Gaowen Yan
- Department of Radiology, The First Hospital of Suining, Suining, China
| | - Hongwei Li
- Department of Radiology, The Third Hospital of Mianyang and Sichuan Mental Health Center, Mianyang, China
| | - Hongwei Liang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chen Peng
- Department of Gastroenterology, The First Hospital of Suining, Suining, China
| | - Anup Bhetuwal
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Morgan A. McClure
- Department of Radiology and Imaging, Institute of Rehabilitation and Development of Brain Function, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
| | - Yongmei Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Yongmei Li
| | - Guoqing Yang
- Department of Radiology, Suining Central Hospital, Suining, China
- Guoqing Yang
| | - Yong Li
- Department of Radiology, Suining Central Hospital, Suining, China
- Yong Li
| | - Linwei Zhao
- Department of Radiology, Suining Central Hospital, Suining, China
| | - Xiaoping Fan
- Department of Radiology, Suining Central Hospital, Suining, China
| |
Collapse
|
15
|
Rangwani S, Ardeshna DR, Rodgers B, Melnychuk J, Turner R, Culp S, Chao WL, Krishna SG. Application of Artificial Intelligence in the Management of Pancreatic Cystic Lesions. Biomimetics (Basel) 2022; 7:79. [PMID: 35735595 PMCID: PMC9221027 DOI: 10.3390/biomimetics7020079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 12/10/2022] Open
Abstract
The rate of incidentally detected pancreatic cystic lesions (PCLs) has increased over the past decade and was recently reported at 8%. These lesions pose a unique challenge, as each subtype of PCL carries a different risk of malignant transformation, ranging from 0% (pancreatic pseudocyst) to 34-68% (main duct intraductal papillary mucinous neoplasm). It is imperative to correctly risk-stratify the malignant potential of these lesions in order to provide the correct care course for the patient, ranging from monitoring to surgical intervention. Even with the multiplicity of guidelines (i.e., the American Gastroenterology Association guidelines and Fukuoka/International Consensus guidelines) and multitude of diagnostic information, risk stratification of PCLs falls short. Studies have reported that 25-64% of patients undergoing PCL resection have pancreatic cysts with no malignant potential, and up to 78% of mucin-producing cysts resected harbor no malignant potential on pathological evaluation. Clinicians are now incorporating artificial intelligence technology to aid in the management of these difficult lesions. This review article focuses on advancements in artificial intelligence within digital pathomics, radiomics, and genomics as they apply to the diagnosis and risk stratification of PCLs.
Collapse
Affiliation(s)
- Shiva Rangwani
- Department of Internal Medicine, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (S.R.); (D.R.A.)
| | - Devarshi R. Ardeshna
- Department of Internal Medicine, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (S.R.); (D.R.A.)
| | - Brandon Rodgers
- College of Medicine, The Ohio State University, Columbus, OH 43210, USA; (B.R.); (J.M.); (R.T.)
| | - Jared Melnychuk
- College of Medicine, The Ohio State University, Columbus, OH 43210, USA; (B.R.); (J.M.); (R.T.)
| | - Ronald Turner
- College of Medicine, The Ohio State University, Columbus, OH 43210, USA; (B.R.); (J.M.); (R.T.)
| | - Stacey Culp
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, OH 43210, USA;
| | - Wei-Lun Chao
- Department of Computer Science and Engineering, The Ohio State University, Columbus, OH 43210, USA;
| | - Somashekar G. Krishna
- Department of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
16
|
Preuss K, Thach N, Liang X, Baine M, Chen J, Zhang C, Du H, Yu H, Lin C, Hollingsworth MA, Zheng D. Using Quantitative Imaging for Personalized Medicine in Pancreatic Cancer: A Review of Radiomics and Deep Learning Applications. Cancers (Basel) 2022; 14:cancers14071654. [PMID: 35406426 PMCID: PMC8997008 DOI: 10.3390/cancers14071654] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary With a five-year survival rate of only 3% for the majority of patients, pancreatic cancer is a global healthcare challenge. Radiomics and deep learning, two novel quantitative imaging methods that treat medical images as minable data instead of just pictures, have shown promise in advancing personalized management of pancreatic cancer through diagnosing precursor diseases, early detection, accurate diagnosis, and treatment personalization. Radiomics and deep learning methods aim to collect hidden information in medical images that is missed by conventional radiology practices through expanding the data search and comparing information across different patients. Both methods have been studied and applied in pancreatic cancer. In this review, we focus on the current progress of these two methods in pancreatic cancer and provide a comprehensive narrative review on the topic. With better regulation, enhanced workflow, and larger prospective patient datasets, radiomics and deep learning methods could show real hope in the battle against pancreatic cancer through personalized precision medicine. Abstract As the most lethal major cancer, pancreatic cancer is a global healthcare challenge. Personalized medicine utilizing cutting-edge multi-omics data holds potential for major breakthroughs in tackling this critical problem. Radiomics and deep learning, two trendy quantitative imaging methods that take advantage of data science and modern medical imaging, have shown increasing promise in advancing the precision management of pancreatic cancer via diagnosing of precursor diseases, early detection, accurate diagnosis, and treatment personalization and optimization. Radiomics employs manually-crafted features, while deep learning applies computer-generated automatic features. These two methods aim to mine hidden information in medical images that is missed by conventional radiology and gain insights by systematically comparing the quantitative image information across different patients in order to characterize unique imaging phenotypes. Both methods have been studied and applied in various pancreatic cancer clinical applications. In this review, we begin with an introduction to the clinical problems and the technology. After providing technical overviews of the two methods, this review focuses on the current progress of clinical applications in precancerous lesion diagnosis, pancreatic cancer detection and diagnosis, prognosis prediction, treatment stratification, and radiogenomics. The limitations of current studies and methods are discussed, along with future directions. With better standardization and optimization of the workflow from image acquisition to analysis and with larger and especially prospective high-quality datasets, radiomics and deep learning methods could show real hope in the battle against pancreatic cancer through big data-based high-precision personalization.
Collapse
Affiliation(s)
- Kiersten Preuss
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.P.); (N.T.); (M.B.); (J.C.); (C.L.)
- Department of Nutrition and Health Sciences, University of Nebraska Lincoln, Lincoln, NE 68588, USA
| | - Nate Thach
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.P.); (N.T.); (M.B.); (J.C.); (C.L.)
- Department of Computer Science, University of Nebraska Lincoln, Lincoln, NE 68588, USA;
| | - Xiaoying Liang
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Michael Baine
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.P.); (N.T.); (M.B.); (J.C.); (C.L.)
| | - Justin Chen
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.P.); (N.T.); (M.B.); (J.C.); (C.L.)
- Naperville North High School, Naperville, IL 60563, USA
| | - Chi Zhang
- School of Biological Sciences, University of Nebraska Lincoln, Lincoln, NE 68588, USA;
| | - Huijing Du
- Department of Mathematics, University of Nebraska Lincoln, Lincoln, NE 68588, USA;
| | - Hongfeng Yu
- Department of Computer Science, University of Nebraska Lincoln, Lincoln, NE 68588, USA;
| | - Chi Lin
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.P.); (N.T.); (M.B.); (J.C.); (C.L.)
| | - Michael A. Hollingsworth
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Dandan Zheng
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.P.); (N.T.); (M.B.); (J.C.); (C.L.)
- Department of Radiation Oncology, University of Rochester, Rochester, NY 14626, USA
- Correspondence: ; Tel.: +1-(585)-276-3255
| |
Collapse
|
17
|
Tong T, Gu J, Xu D, Song L, Zhao Q, Cheng F, Yuan Z, Tian S, Yang X, Tian J, Wang K, Jiang T. Deep learning radiomics based on contrast-enhanced ultrasound images for assisted diagnosis of pancreatic ductal adenocarcinoma and chronic pancreatitis. BMC Med 2022; 20:74. [PMID: 35232446 PMCID: PMC8889703 DOI: 10.1186/s12916-022-02258-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/13/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Accurate and non-invasive diagnosis of pancreatic ductal adenocarcinoma (PDAC) and chronic pancreatitis (CP) can avoid unnecessary puncture and surgery. This study aimed to develop a deep learning radiomics (DLR) model based on contrast-enhanced ultrasound (CEUS) images to assist radiologists in identifying PDAC and CP. METHODS Patients with PDAC or CP were retrospectively enrolled from three hospitals. Detailed clinicopathological data were collected for each patient. Diagnoses were confirmed pathologically using biopsy or surgery in all patients. We developed an end-to-end DLR model for diagnosing PDAC and CP using CEUS images. To verify the clinical application value of the DLR model, two rounds of reader studies were performed. RESULTS A total of 558 patients with pancreatic lesions were enrolled and were split into the training cohort (n=351), internal validation cohort (n=109), and external validation cohorts 1 (n=50) and 2 (n=48). The DLR model achieved an area under curve (AUC) of 0.986 (95% CI 0.975-0.994), 0.978 (95% CI 0.950-0.996), 0.967 (95% CI 0.917-1.000), and 0.953 (95% CI 0.877-1.000) in the training, internal validation, and external validation cohorts 1 and 2, respectively. The sensitivity and specificity of the DLR model were higher than or comparable to the diagnoses of the five radiologists in the three validation cohorts. With the aid of the DLR model, the diagnostic sensitivity of all radiologists was further improved at the expense of a small or no decrease in specificity in the three validation cohorts. CONCLUSIONS The findings of this study suggest that our DLR model can be used as an effective tool to assist radiologists in the diagnosis of PDAC and CP.
Collapse
Affiliation(s)
- Tong Tong
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jionghui Gu
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- Department of Ultrasound, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Dong Xu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), No.1 East Banshan Road, Gongshu District, Hangzhou, 310022, China
| | - Ling Song
- Department of ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiyu Zhao
- Department of Ultrasound, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Fang Cheng
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), No.1 East Banshan Road, Gongshu District, Hangzhou, 310022, China
| | - Zhiqiang Yuan
- Department of ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shuyuan Tian
- Department of Ultrasound, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China
| | - Xin Yang
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing, 100191, China.
| | - Kun Wang
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Tian'an Jiang
- Department of Ultrasound, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China.
- Zhejiang Provincial Key Laboratory of Pulsed Electric Field Technology for Medical Transformation, Hangzhou, 310003, China.
| |
Collapse
|