1
|
Akrida I, Michalopoulos NV, Lagadinou M, Papadoliopoulou M, Maroulis I, Mulita F. An Updated Review on the Emerging Role of Indocyanine Green (ICG) as a Sentinel Lymph Node Tracer in Breast Cancer. Cancers (Basel) 2023; 15:5755. [PMID: 38136301 PMCID: PMC10742210 DOI: 10.3390/cancers15245755] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Sentinel lymph node biopsy (SLNB) has become the standard of care for clinically node-negative breast cancer and has recently been shown by clinical trials to be also feasible for clinically node-positive patients treated with primary systemic therapy. The dual technique using both radioisotope (RI) and blue dye (BD) as tracers for the identification of sentinel lymph nodes is considered the gold standard. However, allergic reactions to blue dye as well as logistics issues related to the use of radioactive agents, have led to research on new sentinel lymph node (SLN) tracers and to the development and introduction of novel techniques in the clinical practice. Indocyanine green (ICG) is a water-soluble dye with fluorescent properties in the near-infrared (NIR) spectrum. ICG has been shown to be safe and effective as a tracer during SLNB for breast cancer and accumulating evidence suggests that ICG is superior to BD and at least comparable to RI alone and to RI combined with BD. Thus, ICG was recently proposed as a reliable SLN tracer in some breast cancer clinical practice guidelines. Nevertheless, there is lack of consensus regarding the optimal role of ICG for SLN mapping. Specifically, it is yet to be determined whether ICG should be used in addition to BD and/or RI, or if ICG could potentially replace these long-established traditional SLN tracers. This article is an updated overview of somerecent studies that compared ICG with BD and/or RI regarding their accuracy and effectiveness during SLNB for breast cancer.
Collapse
Affiliation(s)
- Ioanna Akrida
- Department of Surgery, General University Hospital of Patras, 26504 Rio, Greece; (I.A.); (I.M.)
| | - Nikolaos V. Michalopoulos
- 4th Department of Surgery, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 1 Rimini Street, Chaidari, 12462 Athens, Greece; (N.V.M.); (M.P.)
| | - Maria Lagadinou
- Department of Internal Medicine, General University Hospital of Patras, 26504 Rio, Greece;
| | - Maria Papadoliopoulou
- 4th Department of Surgery, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 1 Rimini Street, Chaidari, 12462 Athens, Greece; (N.V.M.); (M.P.)
| | - Ioannis Maroulis
- Department of Surgery, General University Hospital of Patras, 26504 Rio, Greece; (I.A.); (I.M.)
| | - Francesk Mulita
- Department of Surgery, General University Hospital of Patras, 26504 Rio, Greece; (I.A.); (I.M.)
| |
Collapse
|
2
|
Zhou L, Gan Y, Wu Y, Xue D, Hu J, Zhang Y, Liu Y, Ma S, Zhou J, Luo G, Peng D, Qian W. Indocyanine Green Fluorescence Imaging in the Surgical Management of Skin Squamous Cell Carcinoma. Clin Cosmet Investig Dermatol 2023; 16:3309-3320. [PMID: 38021421 PMCID: PMC10657744 DOI: 10.2147/ccid.s413266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/28/2023] [Indexed: 12/01/2023]
Abstract
Introduction Indocyanine green (ICG) fluorescence imaging has been used in the resection surgery and sentinel lymph node biopsy of many tumors. The aim of the present study is to verify the feasibility and effectiveness of ICG fluorescence imaging used for guiding the biopsy and resection of skin squamous cell carcinoma (SSCC). Methods Sixty patients were enrolled, including 18 patients of suspected SSCC and 42 patients of diagnosed SSCC on admission. The ICG fluorescence imaging-guided skin biopsy was performed preoperatively in the 18 cases of suspected SSCC. Fifty-three patients underwent ICG fluorescence imaging-guided radical excision. Results The results showed that 138 skin tissue samples in 60 patients with preoperative or intraoperative ICG fluorescence imaging-guide biopsy were collected. For a total number of 138 biopsies, 122 specimens were squamous cell carcinoma, and the accuracy rate was 88.4%, which was significantly higher than that of the group without preoperative ICG fluorescence imaging (41/62, 66.1%, P < 0.05). Fifty-three patients underwent surgery guided with ICG fluorescence imaging. Residual fluorescent signals in 24 patients were intraoperatively found and the excision was then expanded until the signals disappeared. Follow-up to November 2022, 12 patients died, of which 5 cases died from the tumor recurrence, and the others died due to advanced ages or other reasons. The recurrence rate was 9.4%, which was not significantly different from that of the group received routine radical resection (4/35, 11.4%, P > 0.05). Moreover, sentinel lymph nodes were successfully detected under ICG fluorescence imaging in the 4 patients with suspected lymph node metastases, and the location of lymph nodes can be precisely identified. Conclusion ICG fluorescence imaging technique can guide the pathology biopsy to improve the accuracy of pathological examination, and help to identify the boundaries of tumor tissues and sentinel lymph nodes to resect tumor radically during operation.
Collapse
Affiliation(s)
- Ling Zhou
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University (Third Military Medical University), Chongqing, 400038, People’s Republic of China
| | - Yu Gan
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University (Third Military Medical University), Chongqing, 400038, People’s Republic of China
| | - Yanjun Wu
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University (Third Military Medical University), Chongqing, 400038, People’s Republic of China
| | - Dongdong Xue
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University (Third Military Medical University), Chongqing, 400038, People’s Republic of China
| | - Jianhong Hu
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University (Third Military Medical University), Chongqing, 400038, People’s Republic of China
| | - Yilan Zhang
- Department of Oral and Maxillofacial Head and Neck Surgery, Army Medical Center of PLA/Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People’s Republic of China
| | - Yang Liu
- Department of Urology, Urology Institute of PLA, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, People’s Republic of China
| | - Siyuan Ma
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University (Third Military Medical University), Chongqing, 400038, People’s Republic of China
| | - Junyi Zhou
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University (Third Military Medical University), Chongqing, 400038, People’s Republic of China
| | - Gaoxing Luo
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University (Third Military Medical University), Chongqing, 400038, People’s Republic of China
| | - Daizhi Peng
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University (Third Military Medical University), Chongqing, 400038, People’s Republic of China
| | - Wei Qian
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University (Third Military Medical University), Chongqing, 400038, People’s Republic of China
| |
Collapse
|
3
|
Ju M, Yoon K, Lee S, Kim KG. Single Quasi-Symmetrical LED with High Intensity and Wide Beam Width Using Diamond-Shaped Mirror Refraction Method for Surgical Fluorescence Microscope Applications. Diagnostics (Basel) 2023; 13:2763. [PMID: 37685301 PMCID: PMC10486995 DOI: 10.3390/diagnostics13172763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
To remove tumors with the same blood vessel color, observation is performed using a surgical microscope through fluorescent staining. Therefore, surgical microscopes use light emitting diode (LED) emission and excitation wavelengths to induce fluorescence emission wavelengths. LEDs used in hand-held type microscopes have a beam irradiation range of 10° and a weak power of less than 0.5 mW. Therefore, fluorescence emission is difficult. This study proposes to increase the beam width and power of LED by utilizing the quasi-symmetrical beam irradiation method. Commercial LED irradiates a beam 1/r2 distance away from the target (working distance). To obtain the fluorescence emission probability, set up four mirrors. The distance between the mirrors and the LED is 5.9 cm, and the distance between the mirrors and the target is 2.95 cm. The commercial LED reached power on target of 8.0 pW within the wavelength band of 405 nm. The power reaching the target is 0.60 mW in the wavelength band of 405 nm for the LED with the beam mirror attachment method using the quasi-symmetrical beam irradiation method. This result is expected to be sufficient for fluorescence emission. The light power of the mirror was increased by approximately four times.
Collapse
Affiliation(s)
- Minki Ju
- Medical Devices R&D Center, Gachon University Gil Medical Center, 21, 774 beon-gil, Namdong-daero Namdong-gu, Incheon 21565, Republic of Korea; (M.J.); (K.Y.); (S.L.)
- Department of Biomedical Engineering, College of Health Science & Medicine, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Kicheol Yoon
- Medical Devices R&D Center, Gachon University Gil Medical Center, 21, 774 beon-gil, Namdong-daero Namdong-gu, Incheon 21565, Republic of Korea; (M.J.); (K.Y.); (S.L.)
- Department of Biomedical Engineering, College of Health Science & Medicine, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Sangyun Lee
- Medical Devices R&D Center, Gachon University Gil Medical Center, 21, 774 beon-gil, Namdong-daero Namdong-gu, Incheon 21565, Republic of Korea; (M.J.); (K.Y.); (S.L.)
- Department of Biomedical Engineering, College of Health Science & Medicine, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Kwang Gi Kim
- Medical Devices R&D Center, Gachon University Gil Medical Center, 21, 774 beon-gil, Namdong-daero Namdong-gu, Incheon 21565, Republic of Korea; (M.J.); (K.Y.); (S.L.)
- Department of Biomedical Engineering, College of Health Science & Medicine, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, 38-13, 3 Dokjom-ro, Namdong-gu, Incheon 21565, Republic of Korea
| |
Collapse
|
4
|
NIR-II and visible fluorescence hybrid imaging-guided surgery via aggregation-induced emission fluorophores cocktails. Mater Today Bio 2022; 16:100399. [PMID: 36052153 PMCID: PMC9424606 DOI: 10.1016/j.mtbio.2022.100399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 11/26/2022] Open
Abstract
Fluorescence imaging-guided surgery is one of important techniques to realize precision surgery. Although second near-infrared window (NIR-II) fluorescence imaging has the advantages of high resolution and large penetration depth in surgical navigation, its major drawback is that NIR-II images cannot be detected by our naked eyes, which demands a high hand-eye coordination for surgeons and increases the surgical difficulty. On the contrary, visible fluorescence can be observed by our naked eyes but has poor penetration. Here, we firstly propose a kind of NIR-II and visible fluorescence hybrid navigation surgery assisted via a cocktail of aggregation-induced emission nanoparticles (AIE NPs). NIR-II imaging helps to locate deep targeted tissues and judge the residual, and visible fluorescence offers an easily surgical navigation. We apply this hybrid navigation mode in different animals and systems, and verify that it can accelerate surgical process and compatible with a visible fluorescence endoscopy. To deepen the understanding of lymph node (LN) labelling, the distribution of NPs in LNs after local administration is initially analyzed by NIR-II fluorescence wide-filed microscopy, and two fates of the NPs are summarized. An alternative strategy which combines indocyanine green and berberine is also reported as a compromise for rapidly clinical translation.
Collapse
|
5
|
Manrique-Moreno M, Santa-González G, Gallego V. Bioactive cationic peptides as potential agents for breast cancer treatment. Biosci Rep 2021; 41:BSR20211218C. [PMID: 34874400 PMCID: PMC8655503 DOI: 10.1042/bsr20211218c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/25/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
Breast cancer continues to affect millions of women worldwide, and the number of new cases dramatically increases every year. The physiological causes behind the disease are still not fully understood. One in every 100 cases can occur in men, and although the frequency is lower than among women, men tend to have a worse prognosis of the disease. Various therapeutic alternatives to combat the disease are available. These depend on the type and progress of the disease, and include chemotherapy, radiotherapy, surgery, and cancer immunotherapy. However, there are several well-reported side effects of these treatments that have a significant impact on life quality, and patients either relapse or are refractory to treatment. This makes it necessary to develop new therapeutic strategies. One promising initiative are bioactive peptides, which have emerged in recent years as a family of compounds with an enormous number of clinical applications due to their broad spectrum of activity. They are widely distributed in several organisms as part of their immune system. The antitumoral activity of these peptides lies in a nonspecific mechanism of action associated with their interaction with cancer cell membranes, inducing, through several routes, bilayer destabilization and cell death. This review provides an overview of the literature on the evaluation of cationic peptides as potential agents against breast cancer under different study phases. First, physicochemical characteristics such as the primary structure and charge are presented. Secondly, information about dosage, the experimental model used, and the mechanism of action proposed for the peptides are discussed.
Collapse
Affiliation(s)
- Marcela Manrique-Moreno
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, A.A. 1226, Medellin, Antioquia
| | - Gloria A. Santa-González
- Biomedical Innovation and Research Group, Faculty of Applied and Exact Sciences, Instituto Tecnólogico Metropolitano, A.A. 54959, Medellin, Colombia
| | - Vanessa Gallego
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, A.A. 1226, Medellin, Antioquia
| |
Collapse
|