1
|
de Oliveira MBM, Mendes F, Martins M, Cardoso P, Fonseca J, Mascarenhas T, Saraiva MM. The Role of Artificial Intelligence in Urogynecology: Current Applications and Future Prospects. Diagnostics (Basel) 2025; 15:274. [PMID: 39941204 PMCID: PMC11816405 DOI: 10.3390/diagnostics15030274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
Artificial intelligence (AI) is the new medical hot topic, being applied mainly in specialties with a strong imaging component. In the domain of gynecology, AI has been tested and shown vast potential in several areas with promising results, with an emphasis on oncology. However, fewer studies have been made focusing on urogynecology, a branch of gynecology known for using multiple imaging exams (IEs) and tests in the management of women's pelvic floor health. This review aims to illustrate the current state of AI in urogynecology, namely with the use of machine learning (ML) and deep learning (DL) in diagnostics and as imaging tools, discuss possible future prospects for AI in this field, and go over its limitations that challenge its safe implementation.
Collapse
Affiliation(s)
- Maria Beatriz Macedo de Oliveira
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (M.B.M.d.O.); (P.C.); (T.M.)
| | - Francisco Mendes
- Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (F.M.); (M.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-427 Porto, Portugal
| | - Miguel Martins
- Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (F.M.); (M.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-427 Porto, Portugal
| | - Pedro Cardoso
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (M.B.M.d.O.); (P.C.); (T.M.)
- Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (F.M.); (M.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-427 Porto, Portugal
| | - João Fonseca
- CINTESIS@RISE, Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, 4200-427 Porto, Portugal;
| | - Teresa Mascarenhas
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (M.B.M.d.O.); (P.C.); (T.M.)
- Department of Obstetrics and Gynecology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Miguel Mascarenhas Saraiva
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (M.B.M.d.O.); (P.C.); (T.M.)
- Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (F.M.); (M.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-427 Porto, Portugal
| |
Collapse
|
2
|
Tareco Bucho TM, Tissier RLM, Groot Lipman KBW, Bodalal Z, Delli Pizzi A, Nguyen-Kim TDL, Beets-Tan RGH, Trebeschi S. How Does Target Lesion Selection Affect RECIST? A Computer Simulation Study. Invest Radiol 2024; 59:465-471. [PMID: 37921780 DOI: 10.1097/rli.0000000000001045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
OBJECTIVES Response Evaluation Criteria in Solid Tumors (RECIST) is grounded on the assumption that target lesion selection is objective and representative of the change in total tumor burden (TTB) during therapy. A computer simulation model was designed to challenge this assumption, focusing on a particular aspect of subjectivity: target lesion selection. MATERIALS AND METHODS Disagreement among readers and the disagreement between individual reader measurements and TTB were analyzed as a function of the total number of lesions, affected organs, and lesion growth. RESULTS Disagreement rises when the number of lesions increases, when lesions are concentrated on a few organs, and when lesion growth borders the thresholds of progressive disease and partial response. There is an intrinsic methodological error in the estimation of TTB via RECIST 1.1, which depends on the number of lesions and their distributions. For example, for a fixed number of lesions at 5 and 15, distributed over a maximum of 4 organs, the error rates are observed to be 7.8% and 17.3%, respectively. CONCLUSIONS Our results demonstrate that RECIST can deliver an accurate estimate of TTB in localized disease, but fails in cases of distal metastases and multiple organ involvement. This is worsened by the "selection of the largest lesions," which introduces a bias that makes it hardly possible to perform an accurate estimate of the TTB. Including more (if not all) lesions in the quantitative analysis of tumor burden is desirable.
Collapse
Affiliation(s)
- Teresa M Tareco Bucho
- From the Radiology Department (T.T.B., K.G.L., Z.B., T.D.L.N.-K., R.B.-T., S.T.), Biostatistics Unit (R.T.), and Thoracic Oncology (K.G.L.), Netherlands Cancer Institute, Amsterdam, the Netherlands; GROW School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands (T.T.B., K.G.L., Z.B., R.B.-T., S.T.); Institute for Advanced Biomedical Technologies, Gabriele d'Annunzio University of Chieti-Pescara, Italy (A.D.P.); Department of Innovative Technologies in Medicine and Dentistry, Gabriele d'Annunzio University of Chieti-Pescara, Italy (A.D.P.); Institute of Diagnostic and Interventional Radiology, University Hospital of Zurich, Zurich, Switzerland (T.D.L.N.-K.); Institute of Radiology and Nuclear Medicine, Stadtspital Zürich, Zurich, Switzerland (T.D.L.N.-K.); and Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark (R.B.-T.)
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Kummar S, Lu R. Using Radiomics in Cancer Management. JCO Precis Oncol 2024; 8:e2400155. [PMID: 38723232 DOI: 10.1200/po.24.00155] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 03/19/2024] [Indexed: 08/23/2024] Open
Affiliation(s)
- Shivaani Kummar
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Heath & Science University School of Medicine, Portland, OR
| | | |
Collapse
|
4
|
Ligero M, Gielen B, Navarro V, Cresta Morgado P, Prior O, Dienstmann R, Nuciforo P, Trebeschi S, Beets-Tan R, Sala E, Garralda E, Perez-Lopez R. A whirl of radiomics-based biomarkers in cancer immunotherapy, why is large scale validation still lacking? NPJ Precis Oncol 2024; 8:42. [PMID: 38383736 PMCID: PMC10881558 DOI: 10.1038/s41698-024-00534-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/26/2024] [Indexed: 02/23/2024] Open
Abstract
The search for understanding immunotherapy response has sparked interest in diverse areas of oncology, with artificial intelligence (AI) and radiomics emerging as promising tools, capable of gathering large amounts of information to identify suitable patients for treatment. The application of AI in radiology has grown, driven by the hypothesis that radiology images capture tumor phenotypes and thus could provide valuable insights into immunotherapy response likelihood. However, despite the rapid growth of studies, no algorithms in the field have reached clinical implementation, mainly due to the lack of standardized methods, hampering study comparisons and reproducibility across different datasets. In this review, we performed a comprehensive assessment of published data to identify sources of variability in radiomics study design that hinder the comparison of the different model performance and, therefore, clinical implementation. Subsequently, we conducted a use-case meta-analysis using homogenous studies to assess the overall performance of radiomics in estimating programmed death-ligand 1 (PD-L1) expression. Our findings indicate that, despite numerous attempts to predict immunotherapy response, only a limited number of studies share comparable methodologies and report sufficient data about cohorts and methods to be suitable for meta-analysis. Nevertheless, although only a few studies meet these criteria, their promising results underscore the importance of ongoing standardization and benchmarking efforts. This review highlights the importance of uniformity in study design and reporting. Such standardization is crucial to enable meaningful comparisons and demonstrate the validity of biomarkers across diverse populations, facilitating their implementation into the immunotherapy patient selection process.
Collapse
Affiliation(s)
- Marta Ligero
- Radiomics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Bente Gielen
- Radiomics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Victor Navarro
- Oncology Data Science (ODysSey) Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Pablo Cresta Morgado
- Oncology Data Science (ODysSey) Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Department of Medical Oncology, Vall d'Hebron University Hospital and Institute of Oncology (VHIO), Barcelona, Spain
- Prostate Cancer Translational Research Group, Institute of Oncology (VHIO), Vall d'Hebron University Hospital, Barcelona, Spain
| | - Olivia Prior
- Radiomics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Rodrigo Dienstmann
- Oncology Data Science (ODysSey) Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Paolo Nuciforo
- Molecular Oncology Group, Vall d'Hebron University Hospital and Institute of Oncology (VHIO), Barcelona, Spain
| | - Stefano Trebeschi
- Department of Radiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Regina Beets-Tan
- Department of Radiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
- Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Evis Sala
- Dipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Dipartimento di Scienze Radiologiche ed Ematologiche, Universita Cattolica del Sacro Cuore, Rome, Italy
| | - Elena Garralda
- Department of Medical Oncology, Vall d'Hebron University Hospital and Institute of Oncology (VHIO), Barcelona, Spain
| | - Raquel Perez-Lopez
- Radiomics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.
| |
Collapse
|
5
|
Bodalal Z, Bogveradze N, Ter Beek LC, van den Berg JG, Sanders J, Hofland I, Trebeschi S, Groot Lipman KBW, Storck K, Hong EK, Lebedyeva N, Maas M, Beets-Tan RGH, Gomez FM, Kurilova I. Radiomic signatures from T2W and DWI MRI are predictive of tumour hypoxia in colorectal liver metastases. Insights Imaging 2023; 14:133. [PMID: 37477715 PMCID: PMC10361926 DOI: 10.1186/s13244-023-01474-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/27/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Tumour hypoxia is a negative predictive and prognostic biomarker in colorectal cancer typically assessed by invasive sampling methods, which suffer from many shortcomings. This retrospective proof-of-principle study explores the potential of MRI-derived imaging markers in predicting tumour hypoxia non-invasively in patients with colorectal liver metastases (CLM). METHODS A single-centre cohort of 146 CLMs from 112 patients were segmented on preoperative T2-weighted (T2W) images and diffusion-weighted imaging (DWI). HIF-1 alpha immunohistochemical staining index (high/low) was used as a reference standard. Radiomic features were extracted, and machine learning approaches were implemented to predict the degree of histopathological tumour hypoxia. RESULTS Radiomic signatures from DWI b200 (AUC = 0.79, 95% CI 0.61-0.93, p = 0.002) and ADC (AUC = 0.72, 95% CI 0.50-0.90, p = 0.019) were significantly predictive of tumour hypoxia. Morphological T2W TE75 (AUC = 0.64, 95% CI 0.42-0.82, p = 0.092) and functional DWI b0 (AUC = 0.66, 95% CI 0.46-0.84, p = 0.069) and b800 (AUC = 0.64, 95% CI 0.44-0.82, p = 0.071) images also provided predictive information. T2W TE300 (AUC = 0.57, 95% CI 0.33-0.78, p = 0.312) and b = 10 (AUC = 0.53, 95% CI 0.33-0.74, p = 0.415) images were not predictive of tumour hypoxia. CONCLUSIONS T2W and DWI sequences encode information predictive of tumour hypoxia. Prospective multicentre studies could help develop and validate robust non-invasive hypoxia-detection algorithms. CRITICAL RELEVANCE STATEMENT Hypoxia is a negative prognostic biomarker in colorectal cancer. Hypoxia is usually assessed by invasive sampling methods. This proof-of-principle retrospective study explores the role of AI-based MRI-derived imaging biomarkers in non-invasively predicting tumour hypoxia in patients with colorectal liver metastases (CLM).
Collapse
Affiliation(s)
- Zuhir Bodalal
- Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Nino Bogveradze
- Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
- Department of Radiology, American Hospital Tbilisi, Tbilisi, Georgia
| | - Leon C Ter Beek
- Department of Medical Physics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jose G van den Berg
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Joyce Sanders
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ingrid Hofland
- Core Facility Molecular Pathology & Biobank, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Stefano Trebeschi
- Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Kevin B W Groot Lipman
- Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Koen Storck
- Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Eun Kyoung Hong
- Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Natalya Lebedyeva
- Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Monique Maas
- Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Regina G H Beets-Tan
- Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Fernando M Gomez
- Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
- Hospital Clinic-Hospital Sant Joan de Deu, Barcelona, Spain.
| | - Ieva Kurilova
- Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Bodalal Z, Katz S, Shi H, Beets-Tan R. "Advances in cancer imaging and technology"-special collection -introductory Editorial. BJR Open 2022; 4:20229003. [PMID: 38525165 PMCID: PMC10959000 DOI: 10.1259/bjro.20229003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
| | - Sharyn Katz
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Haibin Shi
- Center for Molecular Imaging and Nuclear Medicine, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
| | | |
Collapse
|
7
|
Ringborg U, Berns A, Celis JE, Heitor M, Tabernero J, Schüz J, Baumann M, Henrique R, Aapro M, Basu P, Beets‐Tan R, Besse B, Cardoso F, Carneiro F, van den Eede G, Eggermont A, Fröhling S, Galbraith S, Garralda E, Hanahan D, Hofmarcher T, Jönsson B, Kallioniemi O, Kásler M, Kondorosi E, Korbel J, Lacombe D, Carlos Machado J, Martin‐Moreno JM, Meunier F, Nagy P, Nuciforo P, Oberst S, Oliveiera J, Papatriantafyllou M, Ricciardi W, Roediger A, Ryll B, Schilsky R, Scocca G, Seruca R, Soares M, Steindorf K, Valentini V, Voest E, Weiderpass E, Wilking N, Wren A, Zitvogel L. The Porto European Cancer Research Summit 2021. Mol Oncol 2021; 15:2507-2543. [PMID: 34515408 PMCID: PMC8486569 DOI: 10.1002/1878-0261.13078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 01/22/2023] Open
Abstract
Key stakeholders from the cancer research continuum met in May 2021 at the European Cancer Research Summit in Porto to discuss priorities and specific action points required for the successful implementation of the European Cancer Mission and Europe's Beating Cancer Plan (EBCP). Speakers presented a unified view about the need to establish high-quality, networked infrastructures to decrease cancer incidence, increase the cure rate, improve patient's survival and quality of life, and deal with research and care inequalities across the European Union (EU). These infrastructures, featuring Comprehensive Cancer Centres (CCCs) as key components, will integrate care, prevention and research across the entire cancer continuum to support the development of personalized/precision cancer medicine in Europe. The three pillars of the recommended European infrastructures - namely translational research, clinical/prevention trials and outcomes research - were pondered at length. Speakers addressing the future needs of translational research focused on the prospects of multiomics assisted preclinical research, progress in Molecular and Digital Pathology, immunotherapy, liquid biopsy and science data. The clinical/prevention trial session presented the requirements for next-generation, multicentric trials entailing unified strategies for patient stratification, imaging, and biospecimen acquisition and storage. The third session highlighted the need for establishing outcomes research infrastructures to cover primary prevention, early detection, clinical effectiveness of innovations, health-related quality-of-life assessment, survivorship research and health economics. An important outcome of the Summit was the presentation of the Porto Declaration, which called for a collective and committed action throughout Europe to develop the cancer research infrastructures indispensable for fostering innovation and decreasing inequalities within and between member states. Moreover, the Summit guidelines will assist decision making in the context of a unique EU-wide cancer initiative that, if expertly implemented, will decrease the cancer death toll and improve the quality of life of those confronted with cancer, and this is carried out at an affordable cost.
Collapse
|